Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 75
Filtrar
1.
Gastroenterology ; 158(4): 1029-1043.e10, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31857074

RESUMO

BACKGROUND & AIMS: The ß-catenin signaling pathway is one of the most commonly deregulated pathways in cancer cells. Amino acid substitutions within armadillo repeats 5 and 6 (K335, W383, and N387) of ß-catenin are found in several tumor types, including liver tumors. We investigated the mechanisms by which these substitutions increase signaling and the effects on liver carcinogenesis in mice. METHODS: Plasmids encoding tagged full-length ß-catenin (CTNNB1) or ß-catenin with the K335I or N387K substitutions, along with MET, were injected into tails of FVB/N mice. Tumor growth was monitored, and livers were collected and analyzed by histology, immunohistochemistry, and quantitative reverse-transcription polymerase chain reaction. Tagged full-length and mutant forms of ß-catenin were expressed in HEK293, HCT116, and SNU449 cells, which were analyzed by immunoblots and immunoprecipitation. A panel of ß-catenin variants and cell lines with knock-in mutations were analyzed for differences in N-terminal phosphorylation, half-life, and association with other proteins in the signaling pathway. RESULTS: Mice injected with plasmids encoding K335I or N387K ß-catenin and MET developed larger, more advanced tumors than mice injected with plasmids encoding WT ß-catenin and MET. K335I and N387K ß-catenin bound APC with lower affinity than WT ß-catenin but still interacted with scaffold protein AXIN1 and in the nucleus with TCF7L2. This interaction resulted in increased transcription of genes regulated by ß-catenin. Studies of protein structures supported the observed changes in relative binding affinities. CONCLUSION: Expression of ß-catenin with mutations in armadillo repeats 5 and 6, along with MET, promotes formation of liver tumors in mice. In contrast to N-terminal mutations in ß-catenin that directly impair its phosphorylation by GSK3 or binding to BTRC, the K335I or N387K substitutions increase signaling via reduced binding to APC. However, these mutant forms of ß-catenin still interact with the TCF family of transcription factors in the nucleus. These findings show how these amino acid substitutions increase ß-catenin signaling in cancer cells.


Assuntos
Carcinogênese/genética , Genes APC/fisiologia , Neoplasias Hepáticas/genética , Via de Sinalização Wnt/genética , beta Catenina/genética , Animais , Células HCT116 , Células HEK293 , Humanos , Fígado/metabolismo , Camundongos , Mutação , Plasmídeos/farmacologia , Proteínas Proto-Oncogênicas c-met , Transcrição Gênica
2.
Liver Int ; 41(1): 206-219, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33084231

RESUMO

BACKGROUND & AIMS: Mature transfer RNAs (tRNA) charged with amino acids decode mRNA to synthesize proteins. Dysregulation of translational machineries has a fundamental impact on cancer biology. This study aims to map the tRNAome landscape in liver cancer patients and to explore potential therapeutic targets at the interface of charging amino acid with tRNA. METHODS: Resected tumour and paired tumour-free (TFL) tissues from hepatocellular carcinoma (HCC) patients (n = 69), and healthy liver tissues from organ transplant donors (n = 21), HCC cell lines, and cholangiocarcinoma (CC) patient-derived tumour organoids were used. RESULTS: The expression levels of different mature tRNAs were highly correlated and closely clustered within individual tissues, suggesting that different members of the tRNAome function cooperatively in protein translation. Interestingly, high expression of tRNA-Lys-CUU in HCC tumours was associated with more tumour recurrence (HR 1.1; P = .022) and worse patient survival (HR 1.1; P = .0037). The expression of Lysyl-tRNA Synthetase (KARS), the enzyme catalysing the charge of lysine to tRNA-Lys-CUU, was significantly upregulated in HCC tumour tissues compared to tumour-free liver tissues. In HCC cell lines, lysine deprivation, KARS knockdown or treatment with the KARS inhibitor cladosporin effectively inhibited overall cell growth, single cell-based colony formation and cell migration. This was mechanistically mediated by cell cycling arrest and induction of apoptosis. Finally, these inhibitory effects were confirmed in 3D cultured patient-derived CC organoids. CONCLUSIONS: The biological process of charging tRNA-Lys-CUU with lysine sustains liver cancer cell growth and migration, and is clinically relevant in HCC patients. This process can be therapeutically targeted and represents an unexplored territory for developing novel treatment strategies against liver cancer.


Assuntos
Fenômenos Biológicos , Carcinoma Hepatocelular , Neoplasias Hepáticas , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/genética , Humanos , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/genética , Lisina , Recidiva Local de Neoplasia , Aminoacilação de RNA de Transferência
3.
Carcinogenesis ; 40(12): 1514-1524, 2019 12 31.
Artigo em Inglês | MEDLINE | ID: mdl-31099823

RESUMO

The transformation of normal colonic epithelium to colorectal cancer (CRC) involves a relatively ordered progression, and understanding the molecular alterations involved may aid rational design of strategies aimed at preventing or counteracting disease. Homeobox A9 (HOXA9) is an oncogene in leukemia and has been implicated in CRC pathology, although its role in disease etiology remains obscure at best. We observe that HOXA9 expression is increased in colonic adenomas compared with location-matched healthy colon epithelium. Its forced expression results in dramatic genetic and signaling changes, with increased expression of growth factors IGF1 and FLT3, super-activity of the AKT survival pathway and a concomitant increase in compartment size. Furthermore, a reduced mRNA expression of the epithelial to mesenchymal transition marker N-cadherin as well as reduced activity of the actin cytoskeletal mediator PAK was seen, which is in apparent agreement with an observed reduced migratory response in HOXA9-overexpressing cells. Thus, HOXA9 appears closely linked with adenoma growth while impairing migration and metastasis and hence is both a marker and driver of premalignant polyp growth. Colonic polyps grow but remain premalignant for up to decades. Here, we show that HOXA9 drives growth in premalignant polyps, but simultaneously prevents further transformation.


Assuntos
Transformação Celular Neoplásica/metabolismo , Neoplasias do Colo/patologia , Transição Epitelial-Mesenquimal/fisiologia , Proteínas de Homeodomínio/metabolismo , Lesões Pré-Cancerosas/patologia , Idoso , Transformação Celular Neoplásica/patologia , Neoplasias do Colo/metabolismo , Pólipos do Colo/metabolismo , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Lesões Pré-Cancerosas/metabolismo
4.
Carcinogenesis ; 40(1): 145-154, 2019 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-30289434

RESUMO

The current understanding of cancer biology and development of effective treatments for cancer remain far from satisfactory. This in turn heavily relies on the availability of easy and robust model systems that resemble the architecture/physiology of the tumors in patients to facilitate research. Cancer research in vitro has mainly been based on the use of immortalized 2D cancer cell lines that deviate in many aspects from the original primary tumors. The recent development of the organoid technology allowing generation of organ-buds in 3D culture from adult stem cells has endowed the possibility of establishing stable culture from primary tumors. Although culturing organoids from liver tumors is thought to be difficult, we now convincingly demonstrate the establishment of organoids from mouse primary liver tumors. We have succeeded in culturing 91 lines from 129 liver tissue/tumors. These organoids can be grown in long-term cultures in vitro. About 20% of these organoids form tumors in immunodeficient mice upon (serial) transplantation, confirming their tumorigenic and self-renewal properties. Interestingly, single cells from the tumor organoids have high efficiency of organoid initiation, and a single organoid derived from a cancer cell is able to initiate a tumor in mice, indicating the enrichment of tumor-initiating cells in the tumor organoids. Furthermore, these organoids recapitulate, to some extent, the heterogeneity of liver cancer in patients, with respect to phenotype, cancer cell composition and treatment response. These model systems shall provide enormous opportunities to advance our research on liver cancer (stem cell) biology, drug development and personalized medicine.


Assuntos
Ensaios de Seleção de Medicamentos Antitumorais/métodos , Neoplasias Hepáticas/patologia , Organoides/patologia , Animais , Antineoplásicos/uso terapêutico , Humanos , Neoplasias Hepáticas/tratamento farmacológico , Camundongos , Cultura Primária de Células , Ensaios Antitumorais Modelo de Xenoenxerto
5.
Nature ; 493(7430): 106-10, 2013 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-23178811

RESUMO

A remarkable feature of regenerative processes is their ability to halt proliferation once an organ's structure has been restored. The Wnt signalling pathway is the major driving force for homeostatic self-renewal and regeneration in the mammalian intestine. However, the mechanisms that counterbalance Wnt-driven proliferation are poorly understood. Here we demonstrate in mice and humans that yes-associated protein 1 (YAP; also known as YAP1)--a protein known for its powerful growth-inducing and oncogenic properties--has an unexpected growth-suppressive function, restricting Wnt signals during intestinal regeneration. Transgenic expression of YAP reduces Wnt target gene expression and results in the rapid loss of intestinal crypts. In addition, loss of YAP results in Wnt hypersensitivity during regeneration, leading to hyperplasia, expansion of intestinal stem cells and niche cells, and formation of ectopic crypts and microadenomas. We find that cytoplasmic YAP restricts elevated Wnt signalling independently of the AXIN-APC-GSK-3ß complex partly by limiting the activity of dishevelled (DVL). DVL signals in the nucleus of intestinal stem cells, and its forced expression leads to enhanced Wnt signalling in crypts. YAP dampens Wnt signals by restricting DVL nuclear translocation during regenerative growth. Finally, we provide evidence that YAP is silenced in a subset of highly aggressive and undifferentiated human colorectal carcinomas, and that its expression can restrict the growth of colorectal carcinoma xenografts. Collectively, our work describes a novel mechanistic paradigm for how proliferative signals are counterbalanced in regenerating tissues. Additionally, our findings have important implications for the targeting of YAP in human malignancies.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proliferação de Células , Intestinos/citologia , Fosfoproteínas/metabolismo , Regeneração/fisiologia , Células-Tronco/citologia , Células-Tronco/metabolismo , Transporte Ativo do Núcleo Celular , Proteínas Adaptadoras de Transdução de Sinal/deficiência , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Proteínas de Ciclo Celular , Neoplasias Colorretais/genética , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Proteínas Desgrenhadas , Genes Supressores de Tumor , Humanos , Intestinos/fisiologia , Camundongos , Camundongos Knockout , Transplante de Neoplasias , Fosfoproteínas/deficiência , Fosfoproteínas/genética , Nicho de Células-Tronco , Trombospondinas/genética , Trombospondinas/metabolismo , Fatores de Transcrição , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo , Proteínas Wnt/metabolismo , Via de Sinalização Wnt , Proteínas de Sinalização YAP
6.
Gastroenterology ; 153(4): 1133-1147, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28716722

RESUMO

BACKGROUND & AIMS: Adult liver stem cells are usually maintained in a quiescent/slow-cycling state. However, a proliferative population, marked by leucine-rich repeat-containing G-protein coupled receptor 5 (LGR5), was recently identified as an important liver stem cell population. We aimed to investigate the dynamics and functions of proliferative and quiescent stem cells in healthy and injured livers. METHODS: We studied LGR5-positive stem cells using diphtheria toxin receptor and green fluorescent protein (GFP) knock-in mice. In these mice, LGR5-positive cells specifically coexpress diphtheria toxin receptor and the GFP reporter. Lineage-tracing experiments were performed in mice in which LGR5-positive stem cells and their daughter cells expressed a yellow fluorescent protein/mTmG reporter. Slow-cycling stem cells were investigated using GFP-based, Tet-on controlled transgenic mice. We studied the dynamics of both stem cell populations during liver homeostasis and injury induced by carbon tetrachloride. Stem cells were isolated from mouse liver and organoid formation assays were performed. We analyzed hepatocyte and cholangiocyte lineage differentiation in cultured organoids. RESULTS: We did not detect LGR5-expressing stem cells in livers of mice at any stage of a lifespan, but only following liver injury induced by carbon tetrachloride. In the liver stem cell niche, where the proliferating LGR5+ cells are located, we identified a quiescent/slow-cycling cell population, called label-retaining cells (LRCs). These cells were present in the homeostatic liver, capable of retaining the GFP label over 1 year, and expressed a panel of progenitor/stem cell markers. Isolated single LRCs were capable of forming organoids that could be carried in culture, expanded for months, and differentiated into hepatocyte and cholangiocyte lineages in vitro, demonstrating their bona fide stem cell properties. More interestingly, LRCs responded to liver injury and gave rise to LGR5-expressing stem cells, as well as other potential progenitor/stem cell populations, including SOX9- and CD44-positive cells. CONCLUSIONS: Proliferative LGR5 cells are an intermediate stem cell population in the liver that emerge only during tissue injury. In contrast, LRCs are quiescent stem cells that are present in homeostatic liver, respond to tissue injury, and can give rise to LGR5 stem cells, as well as SOX9- and CD44-positive cells.


Assuntos
Proliferação de Células , Senescência Celular , Doença Hepática Induzida por Substâncias e Drogas/patologia , Regeneração Hepática , Fígado/patologia , Células-Tronco/patologia , Animais , Ductos Biliares/metabolismo , Ductos Biliares/patologia , Tetracloreto de Carbono , Diferenciação Celular , Linhagem da Célula , Células Cultivadas , Doença Hepática Induzida por Substâncias e Drogas/genética , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Toxina Diftérica/genética , Toxina Diftérica/metabolismo , Modelos Animais de Doenças , Regulação da Expressão Gênica no Desenvolvimento , Genótipo , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Hepatócitos/metabolismo , Hepatócitos/patologia , Fígado/metabolismo , Camundongos Transgênicos , Fenótipo , Regiões Promotoras Genéticas , RNA não Traduzido/genética , Receptores Acoplados a Proteínas G/genética , Nicho de Células-Tronco , Células-Tronco/metabolismo , Fatores de Tempo
7.
Pediatr Blood Cancer ; 65(6): e26991, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29446530

RESUMO

BACKGROUND: The Wnt/ß-catenin pathway plays a central role in the pathogenesis of most hepatoblastomas (HBs), that is, up to 60-80% carry activating CTNNB1 mutations. HBs can however also be the first manifestation of familial adenomatous polyposis (FAP). As this is a severe disease, it is important for the patient and related family members to firmly exclude FAP at an early stage. Current diagnosis largely depends on APC germline mutation detection on genomic DNA, which is associated with 10-20% false-negative results. Here, we establish and validate a tissue-based ß-catenin gene and immunohistochemical analysis, which complements germline mutation screening to exclude the diagnosis of FAP among HB patients. METHODS: Tumor tissues of 18 HB patients, including three FAP cases were subjected to CTNNB1 exon 3 mutational analysis and immunohistochemistry comparing staining patterns for total and exon 3 specific ß-catenin antibodies. RESULTS: Our novel tissue-based method reliably identified all three FAP patients. Their tumors were characterized by a wild-type exon 3 sequence and a comparable nuclear staining for both antibodies. In contrast, the non-FAP tumors carried missense CTNNB1 mutations combined with a clearly reduced staining for the exon 3 antibody, or complete loss of staining in case of lesions with exon 3 deletions. CONCLUSION: We have successfully established and validated a novel ß-catenin gene and immunohistochemical diagnostic method, which, when combined with routine germline DNA testing, allows the exclusion of the diagnosis of FAP among HB patients.


Assuntos
Polipose Adenomatosa do Colo/diagnóstico , Mutação em Linhagem Germinativa , Hepatoblastoma/diagnóstico , Neoplasias Hepáticas/diagnóstico , Mutação de Sentido Incorreto , beta Catenina/genética , beta Catenina/metabolismo , Polipose Adenomatosa do Colo/complicações , Polipose Adenomatosa do Colo/genética , Polipose Adenomatosa do Colo/metabolismo , Adolescente , Criança , Pré-Escolar , Análise Mutacional de DNA , Diagnóstico Diferencial , Feminino , Seguimentos , Hepatoblastoma/complicações , Hepatoblastoma/genética , Hepatoblastoma/metabolismo , Humanos , Imuno-Histoquímica , Lactente , Neoplasias Hepáticas/complicações , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Masculino , Prognóstico
8.
Histochem Cell Biol ; 146(4): 445-55, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27246004

RESUMO

Guanylin (GN) and uroguanylin (UGN), through activation of guanylyl cyclase C (GCC), serve to control intestinal fluid homeostasis. Both peptides are produced in the intestinal epithelium, but their cellular origin has not been fully charted. Using quantitative PCR and an improved in situ hybridization technique (RNAscope), we have assessed the expression of GN (Guca2a), UGN (Guca2b), and GCC (Gucy2c) in mouse intestine. In the crypts of Lieberkühn, expression of Guca2a and Guca2b was restricted to cells of secretory lineage, at the crypt's base, and to a region above, previously identified as a common origin of cellular differentiation. In this compartment, comparatively uniform levels of Guca2a and Guca2b expression were observed throughout the length of the gut. In contrast, Guca2a and Guca2b expression in the villus-surface region was more variable, and reflected the distinct, but overlapping expression pattern observed previously. Accordingly, in jejunum and ileum, Guca2a and Guca2b were abundantly expressed by enterocytes, whereas in colon only Guca2a transcript was found in the surface region. In duodenum, only low levels of Guca2b transcript were observed in columnar cells, and Guca2a expression was restricted entirely to cells of the secretory lineage. Gucy2c was shown to be expressed relatively uniformly along the rostrocaudal and crypt-villus axes and was also found in the duodenal glands. Our study reveals novel aspects of the cellular localization of the GCC signaling axis that, apart from its role in the regulation of fluid balance, link it to pH regulation, cell cycle control, and host defense.


Assuntos
Linhagem da Célula , Células Epiteliais/citologia , Células Epiteliais/metabolismo , Hormônios Gastrointestinais/biossíntese , Intestinos/citologia , Peptídeos Natriuréticos/biossíntese , Animais , Hormônios Gastrointestinais/análise , Hormônios Gastrointestinais/genética , Mucosa Intestinal/metabolismo , Camundongos , Camundongos Endogâmicos , Peptídeos Natriuréticos/análise , Peptídeos Natriuréticos/genética , Transdução de Sinais
10.
Am J Respir Cell Mol Biol ; 51(2): 311-22, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24669837

RESUMO

Lung development is determined by the coordinated expression of several key genes. Previously, we and others have shown the importance of the sex determining region Y-box 2 (Sox2) gene in lung development. Transgenic expression of Sox2 during lung development resulted in cystic airways, and here we show that modulating the timing of ectopic Sox2 expression in the branching regions of the developing lung results in variable cystic lesions resembling the spectrum of the human congenital disorder congenital cystic adenomatoid malformation (CCAM). Sox2 dominantly differentiated naive epithelial cells into the proximal lineage irrespective of the presence of Fgf10. Sox2 directly induced the expression of Trp63, the master switch toward the basal cell lineage and induced the expression of Gata6, a factor involved in the emergence of bronchoalveolar stem cells. We showed that SOX2 and TRP63 are coexpressed in the lungs of human patients with type II CCAM. The combination of premature differentiation toward the proximal cell lineage and the induction of proliferation resulted in the cyst-like structures. Thus, we show that Sox2 is directly responsible for the emergence of two lung progenitor cells: basal cells by regulating the master gene Trp63 and bronchoalveolar stem cells by regulating Gata6.


Assuntos
Malformação Adenomatoide Cística Congênita do Pulmão/metabolismo , Células Epiteliais/metabolismo , Pulmão/metabolismo , Fosfoproteínas/metabolismo , Fatores de Transcrição SOXB1/metabolismo , Células-Tronco/metabolismo , Transativadores/metabolismo , Fatores de Transcrição/metabolismo , Transcrição Gênica , Ativação Transcricional , Proteínas Supressoras de Tumor/metabolismo , Animais , Diferenciação Celular , Linhagem Celular Tumoral , Linhagem da Célula , Proliferação de Células , Malformação Adenomatoide Cística Congênita do Pulmão/genética , Malformação Adenomatoide Cística Congênita do Pulmão/patologia , Células Epiteliais/patologia , Fator 10 de Crescimento de Fibroblastos/metabolismo , Fator de Transcrição GATA6/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Genótipo , Idade Gestacional , Células HEK293 , Humanos , Pulmão/patologia , Camundongos , Camundongos Transgênicos , Fenótipo , Fosfoproteínas/genética , Fatores de Transcrição SOXB1/genética , Células-Tronco/patologia , Técnicas de Cultura de Tecidos , Transativadores/genética , Fatores de Transcrição/genética , Transfecção , Proteínas Supressoras de Tumor/genética , Regulação para Cima
12.
PLoS One ; 19(6): e0304607, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38848383

RESUMO

BACKGROUND: Hepatocellular carcinoma (HCC) is a highly aggressive liver cancer with significant morbidity and mortality rates. AXIN1 is one of the top-mutated genes in HCC, but the mechanism by which AXIN1 mutations contribute to HCC development remains unclear. METHODS: In this study, we utilized CRISPR/Cas9 genome editing to repair AXIN1-truncated mutations in five HCC cell lines. RESULTS: For each cell line we successfully obtained 2-4 correctly repaired clones, which all show reduced ß-catenin signaling accompanied with reduced cell viability and colony formation. Although exposure of repaired clones to Wnt3A-conditioned medium restored ß-catenin signaling, it did not or only partially recover their growth characteristics, indicating the involvement of additional mechanisms. Through RNA-sequencing analysis, we explored the gene expression patterns associated with repaired AXIN1 clones. Except for some highly-responsive ß-catenin target genes, no consistent alteration in gene/pathway expression was observed. This observation also applies to the Notch and YAP/TAZ-Hippo signaling pathways, which have been associated with AXIN1-mutant HCCs previously. The AXIN1-repaired clones also cannot confirm a recent observation that AXIN1 is directly linked to YAP/TAZ protein stability and signaling. CONCLUSIONS: Our study provides insights into the effects of repairing AXIN1 mutations on ß-catenin signaling, cell viability, and colony formation in HCC cell lines. However, further investigations are necessary to understand the complex mechanisms underlying HCC development associated with AXIN1 mutations.


Assuntos
Proteína Axina , Sistemas CRISPR-Cas , Carcinoma Hepatocelular , Neoplasias Hepáticas , Mutação , beta Catenina , Proteína Axina/genética , Proteína Axina/metabolismo , Humanos , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/metabolismo , Linhagem Celular Tumoral , beta Catenina/metabolismo , beta Catenina/genética , Regulação Neoplásica da Expressão Gênica , Edição de Genes , Transdução de Sinais/genética
13.
Cancer Res ; 84(9): 1443-1459, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38359148

RESUMO

AXIN1 is a major component of the ß-catenin destruction complex and is frequently mutated in various cancer types, particularly liver cancers. Truncating AXIN1 mutations are recognized to encode a defective protein that leads to ß-catenin stabilization, but the functional consequences of missense mutations are not well characterized. Here, we first identified the GSK3ß, ß-catenin, and RGS/APC interaction domains of AXIN1 that are the most critical for proper ß-catenin regulation. Analysis of 80 tumor-associated variants in these domains identified 18 that significantly affected ß-catenin signaling. Coimmunoprecipitation experiments revealed that most of them lost binding to the binding partner corresponding to the mutated domain. A comprehensive protein structure analysis predicted the consequences of these mutations, which largely overlapped with the observed effects on ß-catenin signaling in functional experiments. The structure analysis also predicted that loss-of-function mutations within the RGS/APC interaction domain either directly affected the interface for APC binding or were located within the hydrophobic core and destabilized the entire structure. In addition, truncated AXIN1 length inversely correlated with the ß-catenin regulatory function, with longer proteins retaining more functionality. These analyses suggest that all AXIN1-truncating mutations at least partially affect ß-catenin regulation, whereas this is only the case for a subset of missense mutations. Consistently, most colorectal and liver cancers carrying missense variants acquire mutations in other ß-catenin regulatory genes such as APC and CTNNB1. These results will aid the functional annotation of AXIN1 mutations identified in large-scale sequencing efforts or in individual patients. SIGNIFICANCE: Characterization of 80 tumor-associated missense variants of AXIN1 reveals a subset of 18 mutations that disrupt its ß-catenin regulatory function, whereas the majority are passenger mutations.


Assuntos
Proteína Axina , Mutação de Sentido Incorreto , beta Catenina , Proteína Axina/genética , Proteína Axina/metabolismo , Humanos , beta Catenina/genética , beta Catenina/metabolismo , Transdução de Sinais/genética , Glicogênio Sintase Quinase 3 beta/genética , Glicogênio Sintase Quinase 3 beta/metabolismo , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Neoplasias/genética , Neoplasias/patologia , Neoplasias/metabolismo , Células HEK293 , Linhagem Celular Tumoral , Ligação Proteica
14.
Carcinogenesis ; 34(11): 2629-38, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23764752

RESUMO

Whereas aberrant activation of canonical Wnt/ß-catenin signaling underlies the majority of colorectal cancer cases, the contribution of non-canonical Wnt signaling is unclear. As enhanced expression of the most extensively studied non-canonical Wnt ligand WNT5A is observed in various diseases including colon cancer, WNT5A is gaining attention nowadays. Numerous in vitro studies suggest modulating capacities of WNT5A on proliferation, differentiation, migration and invasion, affecting tumor and non-mutant cells. However, a possible contribution of WNT5A to colorectal cancer remains to be elucidated. We have analyzed WNT5A expression in colorectal cancer profiling data sets, altered WNT5A expression in colon cancer cells and used our inducible Wnt5a transgenic mouse model to gain more insight into the role of WNT5A in intestinal cancer. We observed that increased WNT5A expression is associated with poor prognosis of colorectal cancer patients. WNT5A knockdown in human colon cancer cells caused reduced directional migration, deregulated focal adhesion site formation and reduced invasion, whereas Wnt5a administration promoted the directional migration of colon cancer cells. Despite these observed protumorigenic activities of WNT5A, the induction of Wnt5a expression in intestinal tumors of Apc1638N mice was not sufficient to augment malignancy or metastasis by itself. In conclusion, WNT5A promotes adhesion sites to form in a focal fashion and promotes the directional migration and invasion of colon cancer cells. Although these activities appear insufficient by themselves to augment malignancy or metastasis in Apc1638N mice, they might explain the poor colon cancer prognosis associated with enhanced WNT5A expression.


Assuntos
Proteína da Polipose Adenomatosa do Colo/fisiologia , Movimento Celular , Proliferação de Células , Transformação Celular Neoplásica/patologia , Neoplasias do Colo/patologia , Intestinos/patologia , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Wnt/metabolismo , Animais , Apoptose , Western Blotting , Adesão Celular , Transformação Celular Neoplásica/metabolismo , Neoplasias do Colo/genética , Neoplasias do Colo/metabolismo , Adesões Focais , Humanos , Técnicas Imunoenzimáticas , Mucosa Intestinal/metabolismo , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Invasividade Neoplásica , Proteínas Proto-Oncogênicas/genética , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Células Tumorais Cultivadas , Proteínas Wnt/genética , Proteína Wnt-5a
15.
Dev Biol ; 369(1): 91-100, 2012 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-22691362

RESUMO

Wnt5a is essential during embryonic development, as indicated by mouse Wnt5a knockout embryos displaying outgrowth defects of multiple structures including the gut. The dynamics of Wnt5a involvement in these processes is unclear, and perinatal lethality of Wnt5a knockout embryos has hampered investigation of Wnt5a during postnatal stages in vivo. Although in vitro studies have suggested a relevant role for Wnt5a postnatally, solid evidence for a significant impact of Wnt5a within the complexity of an adult organism is lacking. We generated a tightly-regulated inducible Wnt5a transgenic mouse model and investigated the effects of Wnt5a induction during different time-frames of embryonic development and in adult mice, focusing on the gastrointestinal tract. When induced in embryos from 10.5 dpc onwards, Wnt5a expression led to severe outgrowth defects affecting the gastrointestinal tracts, limbs, facial structures and tails, closely resembling the defects observed in Wnt5a knockout mice. However, Wnt5a induction from 13.5 dpc onwards did not cause this phenotype, indicating that the most critical period for Wnt5a in embryonic development is prior to 13.5 dpc. In adult mice, induced Wnt5a expression did not reveal abnormalities, providing the first in vivo evidence that Wnt5a has no major impact on mouse intestinal homeostasis postnatally. Protein expression of Wnt5a receptor Ror2 was strongly reduced in adult intestine compared to embryonic stages. Moreover, we uncovered a regulatory process where induction of Wnt5a causes downregulation of its receptor Ror2. Taken together, our results indicate a role for Wnt5a during a restricted time-frame of embryonic development, but suggest no impact during homeostatic postnatal stages.


Assuntos
Envelhecimento/genética , Embrião de Mamíferos/metabolismo , Desenvolvimento Embrionário/genética , Intestinos/embriologia , Proteínas Wnt/metabolismo , Envelhecimento/efeitos dos fármacos , Animais , Linhagem da Célula/efeitos dos fármacos , Linhagem da Célula/genética , Regulação para Baixo/efeitos dos fármacos , Regulação para Baixo/genética , Embrião de Mamíferos/citologia , Embrião de Mamíferos/efeitos dos fármacos , Desenvolvimento Embrionário/efeitos dos fármacos , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Mucosa Intestinal/metabolismo , Intestinos/citologia , Intestinos/efeitos dos fármacos , Camundongos , Camundongos Transgênicos , Modelos Animais , Receptores Órfãos Semelhantes a Receptor Tirosina Quinase/genética , Receptores Órfãos Semelhantes a Receptor Tirosina Quinase/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Tetraciclina/farmacologia , Proteínas Wnt/genética , Proteína Wnt-5a
16.
Nat Genet ; 32(4): 594-605, 2002 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-12426568

RESUMO

The Wnt signal-transduction pathway induces the nuclear translocation of membrane-bound beta-catenin (Catnb) and has a key role in cell-fate determination. Tight somatic regulation of this signal is essential, as uncontrolled nuclear accumulation of beta-catenin can cause developmental defects and tumorigenesis in the adult organism. The adenomatous polyposis coli gene (APC) is a major controller of the Wnt pathway and is essential to prevent tumorigenesis in a variety of tissues and organs. Here, we have investigated the effect of different mutations in Apc on the differentiation potential of mouse embryonic stem (ES) cells. We provide genetic and molecular evidence that the ability and sensitivity of ES cells to differentiate into the three germ layers is inhibited by increased doses of beta-catenin by specific Apc mutations. These range from a severe differentiation blockade in Apc alleles completely deficient in beta-catenin regulation to more specific neuroectodermal, dorsal mesodermal and endodermal defects in more hypomorphic alleles. Accordingly, a targeted oncogenic mutation in Catnb also affects the differentiation potential of ES cells. Expression profiling of wildtype and Apc-mutated teratomas supports the differentiation defects at the molecular level and pinpoints a large number of downstream structural and regulating genes. Chimeric experiments showed that this effect is cell-autonomous. Our results imply that constitutive activation of the Apc/beta-catenin signaling pathway results in differentiation defects in tissue homeostasis, and possibly underlies tumorigenesis in the colon and other self-renewing tissues.


Assuntos
Proteína da Polipose Adenomatosa do Colo/fisiologia , Proteínas do Citoesqueleto/genética , Embrião de Mamíferos/citologia , Células-Tronco Pluripotentes/fisiologia , Transdução de Sinais/genética , Transativadores/genética , Proteína da Polipose Adenomatosa do Colo/genética , Alelos , Animais , Diferenciação Celular , Linhagem Celular , Células Cultivadas , Proteínas do Citoesqueleto/metabolismo , Dosagem de Genes , Perfilação da Expressão Gênica , Genes APC , Genótipo , Mutação em Linhagem Germinativa , Heterozigoto , Homozigoto , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos , Teratoma/genética , Transativadores/metabolismo , Transplante Isogênico , beta Catenina
17.
Mol Cells ; 46(7): 441-450, 2023 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-37190767

RESUMO

ß-Catenin (Ctnnb1) has been shown to play critical roles in the development and maintenance of epithelial cells, including the retinal pigment epithelium (RPE). Ctnnb1 is not only a component of intercellular junctions in the epithelium, it also functions as a transcriptional regulator in the Wnt signaling pathway. To identify which of its functional modalities is critically involved in mouse RPE development and maintenance, we varied Ctnnb1 gene content and activity in mouse RPE lineage cells and tested their impacts on mouse eye development. We found that a Ctnnb1 double mutant (Ctnnb1dm), which exhibits impaired transcriptional activity, could not replace Ctnnb1 in the RPE, whereas Ctnnb1Y654E, which has reduced affinity for the junctions, could do so. Expression of the constitutively active Ctnnb1∆ex3 mutant also suppressed the development of RPE, instead facilitating a ciliary cell fate. However, the post-mitotic or mature RPE was insensitive to the loss, inactivation, or constitutive activation of Ctnnb1. Collectively, our results suggest that Ctnnb1 should be maintained within an optimal range to specify RPE through transcriptional regulation of Wnt target genes in the optic neuroepithelium.


Assuntos
Epitélio Pigmentado da Retina , Via de Sinalização Wnt , Camundongos , Animais , Epitélio Pigmentado da Retina/metabolismo , Via de Sinalização Wnt/genética , Diferenciação Celular , beta Catenina/genética , beta Catenina/metabolismo , Regulação da Expressão Gênica , Neurônios/metabolismo
18.
PLoS One ; 18(4): e0283894, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37023034

RESUMO

RNF43 is an important negative regulator of ß-catenin signaling by removing Wnt-receptors from the membrane. It is often mutated in cancers, leading to aberrant Wnt-dependent nuclear translocation of ß-catenin. RNF43 has also been suggested to regulate ß-catenin signaling directly within the nucleus, among other proposed nuclear functions. Given the importance of RNF43 in regulating Wnt/ß-catenin signaling and its potential therapeutic relevance, a proper understanding of RNF43 biology is required. However, the presumed nuclear location is mainly based on available antibodies. These same antibodies have also been used extensively for immunoblotting or immunohistochemical purposes. However, a proper evaluation of their quality to reliably detect endogenous RNF43 has not been performed. Here, using genome editing we have generated a cell line that entirely misses RNF43 exons 8 and 9, encoding the epitopes of commonly used RNF43 antibodies. Using this clone in addition to various other cell line tools, we show that four RNF43 antibodies only yield non-specific signals when applied in immunoblotting, immunofluorescence and immunohistochemical experiments. In other words, they cannot reliably detect endogenous RNF43. Our results suggest that the nuclear staining patterns are an antibody artifact and that RNF43 is unlikely to localize within the nucleus. More generally, reports using RNF43 antibodies should be interpreted with caution, at least for the RNF43 protein aspects described in these papers.


Assuntos
Proteínas de Ligação a DNA , beta Catenina , beta Catenina/genética , beta Catenina/metabolismo , Proteínas de Ligação a DNA/genética , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Proteínas Oncogênicas/genética , Via de Sinalização Wnt/genética
19.
Biochim Biophys Acta ; 1816(2): 219-31, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21855610

RESUMO

In contrast to the majority of sporadic colorectal cancer which predominantly occur in the distal colon, most mismatch repair deficient tumours arise at the proximal side. At present, these regional preferences have not been explained properly. Recently, we have screened colorectal tumours for mutations in Wnt-related genes focusing specifically on colorectal location. Combining this analysis with published data, we propose a mechanism underlying the side-related preferences of colorectal cancers, based on the specific acquired genetic defects in ß-catenin signalling.


Assuntos
Neoplasias Colorretais/genética , Sequência de Aminoácidos , Animais , Sequência de Bases , Neoplasias Encefálicas , Genes APC , Humanos , Dados de Sequência Molecular , Mutação , Síndromes Neoplásicas Hereditárias , Especificidade de Órgãos , Via de Sinalização Wnt , beta Catenina/genética , beta Catenina/fisiologia
20.
PLoS Genet ; 5(7): e1000547, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19578404

RESUMO

Germline mutations in the adenomatous polyposis coli (APC) gene are responsible for familial adenomatous polyposis (FAP), an autosomal dominant hereditary predisposition to the development of multiple colorectal adenomas and of a broad spectrum of extra-intestinal tumors. Moreover, somatic APC mutations play a rate-limiting and initiating role in the majority of sporadic colorectal cancers. Notwithstanding its multifunctional nature, the main tumor suppressing activity of the APC gene resides in its ability to regulate Wnt/beta-catenin signaling. Notably, genotype-phenotype correlations have been established at the APC gene between the length and stability of the truncated proteins encoded by different mutant alleles, the corresponding levels of Wnt/beta-catenin signaling activity they encode for, and the incidence and distribution of intestinal and extra-intestinal tumors. Here, we report a novel mouse model, Apc1572T, obtained by targeting a truncated mutation at codon 1572 in the endogenous Apc gene. This hypomorphic mutant allele results in intermediate levels of Wnt/beta-catenin signaling activation when compared with other Apc mutations associated with multifocal intestinal tumors. Notwithstanding the constitutive nature of the mutation, Apc(+/1572T) mice have no predisposition to intestinal cancer but develop multifocal mammary adenocarcinomas and subsequent pulmonary metastases in both genders. The histology of the Apc1572T primary mammary tumours is highly heterogeneous with luminal, myoepithelial, and squamous lineages and is reminiscent of metaplastic carcinoma of the breast in humans. The striking phenotype of Apc(+/1572T) mice suggests that specific dosages of Wnt/beta-catenin signaling activity differentially affect tissue homeostasis and initiate tumorigenesis in an organ-specific fashion.


Assuntos
Proteína da Polipose Adenomatosa do Colo/genética , Polipose Adenomatosa do Colo/genética , Marcação de Genes , Mutação em Linhagem Germinativa , Neoplasias Intestinais/genética , Neoplasias Mamárias Animais/genética , Polipose Adenomatosa do Colo/metabolismo , Polipose Adenomatosa do Colo/patologia , Proteína da Polipose Adenomatosa do Colo/metabolismo , Animais , Modelos Animais de Doenças , Feminino , Humanos , Neoplasias Intestinais/metabolismo , Neoplasias Intestinais/patologia , Masculino , Neoplasias Mamárias Animais/metabolismo , Neoplasias Mamárias Animais/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Mutação de Sentido Incorreto , Especificidade de Órgãos , Transdução de Sinais , Proteínas Wnt/genética , Proteínas Wnt/metabolismo , beta Catenina/genética , beta Catenina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA