Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
1.
Cell ; 184(5): 1171-1187.e20, 2021 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-33621484

RESUMO

SARS-CoV-2 can mutate and evade immunity, with consequences for efficacy of emerging vaccines and antibody therapeutics. Here, we demonstrate that the immunodominant SARS-CoV-2 spike (S) receptor binding motif (RBM) is a highly variable region of S and provide epidemiological, clinical, and molecular characterization of a prevalent, sentinel RBM mutation, N439K. We demonstrate N439K S protein has enhanced binding affinity to the hACE2 receptor, and N439K viruses have similar in vitro replication fitness and cause infections with similar clinical outcomes as compared to wild type. We show the N439K mutation confers resistance against several neutralizing monoclonal antibodies, including one authorized for emergency use by the US Food and Drug Administration (FDA), and reduces the activity of some polyclonal sera from persons recovered from infection. Immune evasion mutations that maintain virulence and fitness such as N439K can emerge within SARS-CoV-2 S, highlighting the need for ongoing molecular surveillance to guide development and usage of vaccines and therapeutics.


Assuntos
COVID-19/imunologia , Aptidão Genética , Evasão da Resposta Imune , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus/genética , Enzima de Conversão de Angiotensina 2/química , Anticorpos Neutralizantes/genética , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , COVID-19/virologia , Humanos , Mutação , Filogenia , SARS-CoV-2/química , SARS-CoV-2/patogenicidade , Glicoproteína da Espícula de Coronavírus/química , Virulência
2.
Nature ; 617(7961): 555-563, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36996873

RESUMO

An outbreak of acute hepatitis of unknown aetiology in children was reported in Scotland1 in April 2022 and has now been identified in 35 countries2. Several recent studies have suggested an association with human adenovirus with this outbreak, a virus not commonly associated with hepatitis. Here we report a detailed case-control investigation and find an association between adeno-associated virus 2 (AAV2) infection and host genetics in disease susceptibility. Using next-generation sequencing, PCR with reverse transcription, serology and in situ hybridization, we detected recent infection with AAV2 in plasma and liver samples in 26 out of 32 (81%) cases of hepatitis compared with 5 out of 74 (7%) of samples from unaffected individuals. Furthermore, AAV2 was detected within ballooned hepatocytes alongside a prominent T cell infiltrate in liver biopsy samples. In keeping with a CD4+ T-cell-mediated immune pathology, the human leukocyte antigen (HLA) class II HLA-DRB1*04:01 allele was identified in 25 out of 27 cases (93%) compared with a background frequency of 10 out of 64 (16%; P = 5.49 × 10-12). In summary, we report an outbreak of acute paediatric hepatitis associated with AAV2 infection (most likely acquired as a co-infection with human adenovirus that is usually required as a 'helper virus' to support AAV2 replication) and disease susceptibility related to HLA class II status.


Assuntos
Infecções por Adenovirus Humanos , Dependovirus , Hepatite , Criança , Humanos , Doença Aguda/epidemiologia , Infecções por Adenovirus Humanos/epidemiologia , Infecções por Adenovirus Humanos/genética , Infecções por Adenovirus Humanos/virologia , Alelos , Estudos de Casos e Controles , Linfócitos T CD4-Positivos/imunologia , Coinfecção/epidemiologia , Coinfecção/virologia , Dependovirus/isolamento & purificação , Predisposição Genética para Doença , Vírus Auxiliares/isolamento & purificação , Hepatite/epidemiologia , Hepatite/genética , Hepatite/virologia , Hepatócitos/virologia , Cadeias HLA-DRB1/genética , Cadeias HLA-DRB1/imunologia , Fígado/virologia
3.
Nucleic Acids Res ; 52(6): 3199-3212, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38407436

RESUMO

Productive infections by RNA viruses require faithful replication of the entire genome. Yet many RNA viruses also produce deletion-containing viral genomes (DelVGs), aberrant replication products with large internal deletions. DelVGs interfere with the replication of wild-type virus and their presence in patients is associated with better clinical outcomes. The DelVG RNA itself is hypothesized to confer this interfering activity. DelVGs antagonize replication by out-competing the full-length genome and triggering innate immune responses. Here, we identify an additionally inhibitory mechanism mediated by a new class of viral proteins encoded by DelVGs. We identified hundreds of cryptic viral proteins translated from DelVGs. These DelVG-encoded proteins (DPRs) include canonical viral proteins with large internal deletions, as well as proteins with novel C-termini translated from alternative reading frames. Many DPRs retain functional domains shared with their full-length counterparts, suggesting they may have activity during infection. Mechanistic studies of DPRs derived from the influenza virus protein PB2 showed that they poison replication of wild-type virus by acting as dominant-negative inhibitors of the viral polymerase. These findings reveal that DelVGs have a dual inhibitory mechanism, acting at both the RNA and protein level. They further show that DPRs have the potential to dramatically expand the functional proteomes of diverse RNA viruses.


Assuntos
Genoma Viral , Vírus da Influenza A , Proteoma , Proteínas Virais , Humanos , Genoma Viral/genética , Vírus da Influenza A/genética , Proteoma/genética , RNA Viral/genética , RNA Viral/metabolismo , Proteínas Virais/genética , Proteínas Virais/metabolismo , Replicação Viral/genética , Deleção de Sequência/genética , Animais , Cães , Linhagem Celular
4.
PLoS Biol ; 19(9): e3001352, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34491982

RESUMO

Antiviral defenses can sense viral RNAs and mediate their destruction. This presents a challenge for host cells since they must destroy viral RNAs while sparing the host mRNAs that encode antiviral effectors. Here, we show that highly upregulated interferon-stimulated genes (ISGs), which encode antiviral proteins, have distinctive nucleotide compositions. We propose that self-targeting by antiviral effectors has selected for ISG transcripts that occupy a less self-targeted sequence space. Following interferon (IFN) stimulation, the CpG-targeting antiviral effector zinc-finger antiviral protein (ZAP) reduces the mRNA abundance of multiple host transcripts, providing a mechanistic explanation for the repression of many (but not all) interferon-repressed genes (IRGs). Notably, IRGs tend to be relatively CpG rich. In contrast, highly upregulated ISGs tend to be strongly CpG suppressed. Thus, ZAP is an example of an effector that has not only selected compositional biases in viral genomes but also appears to have notably shaped the composition of host transcripts in the vertebrate interferome.


Assuntos
Fosfatos de Dinucleosídeos , Fatores Reguladores de Interferon/genética , RNA Viral , Proteínas de Ligação a RNA/metabolismo , Células A549 , Linhagem Celular , Humanos , Interferon beta/farmacologia , RNA Mensageiro , Proteínas de Ligação a RNA/genética , Fenômenos Fisiológicos Virais , Vírus
5.
Emerg Infect Dis ; 27(10): 2677-2680, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34545785

RESUMO

We describe a case of hemorrhagic fever with renal syndrome caused by Seoul virus in a woman in Scotland, UK. Whole-genome sequencing showed the virus belonged to a lineage characterized by recent international expansion, probably driven by trade in pet rats.


Assuntos
Febre Hemorrágica com Síndrome Renal , Vírus Seoul , Animais , Febre Hemorrágica com Síndrome Renal/diagnóstico , Humanos , Rim , Ratos , Escócia/epidemiologia , Vírus Seoul/genética , Reino Unido
6.
PLoS Pathog ; 15(3): e1007667, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30901352

RESUMO

Host innate immune defences play a critical role in restricting the intracellular propagation and pathogenesis of invading viral pathogens. Here we show that the histone H3.3 chaperone HIRA (histone cell cycle regulator) associates with promyelocytic leukaemia nuclear bodies (PML-NBs) to stimulate the induction of innate immune defences against herpes simplex virus 1 (HSV-1) infection. Following the activation of innate immune signalling, HIRA localized at PML-NBs in a Janus-Associated Kinase (JAK), Cyclin Dependent Kinase (CDK), and Sp100-dependent manner. RNA-seq analysis revealed that HIRA promoted the transcriptional upregulation of a broad repertoire of host genes that regulate innate immunity to HSV-1 infection, including those involved in MHC-I antigen presentation, cytokine signalling, and interferon stimulated gene (ISG) expression. ChIP-seq analysis revealed that PML, the principle scaffolding protein of PML-NBs, was required for the enrichment of HIRA onto ISGs, identifying a role for PML in the HIRA-dependent regulation of innate immunity to virus infection. Our data identifies independent roles for HIRA in the intrinsic silencing of viral gene expression and the induction of innate immune defences to restrict the initiation and propagation of HSV-1 infection, respectively. These intracellular host defences are antagonized by the HSV-1 ubiquitin ligase ICP0, which disrupts the stable recruitment of HIRA to infecting viral genomes and PML-NBs at spatiotemporally distinct phases of infection. Our study highlights the importance of histone chaperones to regulate multiple phases of intracellular immunity to virus infection, findings that are likely to be highly pertinent in the cellular restriction of many clinically important viral pathogens.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Fibroblastos/imunologia , Infecções por Herpesviridae/imunologia , Herpesvirus Humano 1/patogenicidade , Chaperonas de Histonas/metabolismo , Interações Hospedeiro-Patógeno/imunologia , Imunidade Inata/imunologia , Fatores de Transcrição/metabolismo , Proteínas de Ciclo Celular/genética , Células Cultivadas , Fibroblastos/citologia , Fibroblastos/virologia , Regulação Viral da Expressão Gênica , Infecções por Herpesviridae/metabolismo , Infecções por Herpesviridae/virologia , Chaperonas de Histonas/genética , Humanos , Fatores de Transcrição/genética , Replicação Viral
7.
Proc Natl Acad Sci U S A ; 113(13): E1816-25, 2016 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-26979960

RESUMO

Transcription is an intrinsically dynamic process and requires the coordinated interplay of RNA polymerases (RNAPs) with nucleic acids and transcription factors. Classical structural biology techniques have revealed detailed snapshots of a subset of conformational states of the RNAP as they exist in crystals. A detailed view of the conformational space sampled by the RNAP and the molecular mechanisms of the basal transcription factors E (TFE) and Spt4/5 through conformational constraints has remained elusive. We monitored the conformational changes of the flexible clamp of the RNAP by combining a fluorescently labeled recombinant 12-subunit RNAP system with single-molecule FRET measurements. We measured and compared the distances across the DNA binding channel of the archaeal RNAP. Our results show that the transition of the closed to the open initiation complex, which occurs concomitant with DNA melting, is coordinated with an opening of the RNAP clamp that is stimulated by TFE. We show that the clamp in elongation complexes is modulated by the nontemplate strand and by the processivity factor Spt4/5, both of which stimulate transcription processivity. Taken together, our results reveal an intricate network of interactions within transcription complexes between RNAP, transcription factors, and nucleic acids that allosterically modulate the RNAP during the transcription cycle.


Assuntos
Proteínas Arqueais/química , RNA Polimerases Dirigidas por DNA/química , RNA Polimerases Dirigidas por DNA/metabolismo , Fatores de Transcrição/metabolismo , Transcrição Gênica , Proteínas Arqueais/metabolismo , Sequência de Bases , Cristalografia por Raios X , DNA Arqueal/química , DNA Arqueal/metabolismo , RNA Polimerases Dirigidas por DNA/genética , Transferência Ressonante de Energia de Fluorescência , Methanocaldococcus/química , Methanocaldococcus/genética , Dados de Sequência Molecular , Nucleotídeos/metabolismo , Regiões Promotoras Genéticas , Conformação Proteica , Fatores de Transcrição/química , Fatores de Elongação da Transcrição/química , Fatores de Elongação da Transcrição/metabolismo
8.
Chembiochem ; 16(5): 752-5, 2015 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-25676849

RESUMO

RNA methylation is emerging as a regulatory RNA modification that could have important roles in the control and coordination of gene transcription and protein translation. Herein, we describe an in vivo isotope-tracing methodology to demonstrate that the ribonucleoside 5-methylcytidine (m(5)C) is subject to oxidative processing in mammals, forming 5-hydroxymethylcytidine (hm(5)C) and 5-formylcytidine (f(5)C). Furthermore, we have identified hm(5)C in total RNA from all three domains of life and in polyA-enriched RNA fractions from mammalian cells. This suggests m(5)C oxidation is a conserved process that could have critical regulatory functions inside cells.


Assuntos
Citosina/análogos & derivados , RNA/química , RNA/metabolismo , 5-Metilcitosina/análogos & derivados , Animais , Cromatografia Líquida de Alta Pressão , Citosina/biossíntese , Citosina/química , Citosina/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Estrutura Molecular , Oxirredução , Espectrometria de Massas em Tandem
10.
bioRxiv ; 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38168266

RESUMO

Productive infections by RNA viruses require faithful replication of the entire genome. Yet many RNA viruses also produce deletion-containing viral genomes (DelVGs), aberrant replication products with large internal deletions. DelVGs interfere with the replication of wild-type virus and their presence in patients is associated with better clinical outcomes as they. The DelVG RNA itself is hypothesized to confer this interfering activity. DelVGs antagonize replication by out-competing the full-length genome and triggering innate immune responses. Here, we identify an additionally inhibitory mechanism mediated by a new class of viral proteins encoded by DelVGs. We identified hundreds of cryptic viral proteins translated from DelVGs. These DelVG-encoded proteins (DPRs) include canonical viral proteins with large internal deletions, as well as proteins with novel C-termini translated from alternative reading frames. Many DPRs retain functional domains shared with their full-length counterparts, suggesting they may have activity during infection. Mechanistic studies of DPRs derived from the influenza virus protein PB2 showed that they poison replication of wild-type virus by acting as dominant-negative inhibitors of the viral polymerase. These findings reveal that DelVGs have a dual inhibitory mechanism, acting at both the RNA and protein level. They further show that DPRs have the potential to dramatically expand the functional proteomes of diverse RNA viruses.

11.
J Biol Chem ; 287(26): 22004-14, 2012 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-22528497

RESUMO

The DNA damage response is crucial for bacterial survival. The transcriptional repressor LexA is a key component of the SOS response, the main mechanism for the regulation of DNA repair genes in many bacteria. In contrast, in mycobacteria gene induction by DNA damage is carried out by two mechanisms; a relatively small number of genes are thought to be regulated by LexA, and a larger number by an alternate, independent mechanism. In this study we have used ChIP-seq analysis to identify 25 in vivo LexA-binding sites, including nine regulating genes not previously known to be part of this regulon. Some of these binding sites were found to be internal to the predicted open reading frame of the gene they are thought to regulate; experimental analysis has confirmed that these LexA-binding sites regulate the expression of the expected genes, and transcriptional start site analysis has found that their apparent relative location is due to misannotation of these genes. We have also identified novel binding sites for LexA in the promoters of genes that show no apparent DNA damage induction, show positive regulation by LexA, and those encoding small RNAs.


Assuntos
Proteínas de Bactérias/genética , Proteínas de Bactérias/fisiologia , Regulação Bacteriana da Expressão Gênica , Mycobacterium tuberculosis/metabolismo , Serina Endopeptidases/genética , Serina Endopeptidases/fisiologia , Sequência de Aminoácidos , Sítios de Ligação , Sistema Livre de Células , Imunoprecipitação da Cromatina , Dano ao DNA , Escherichia coli/metabolismo , Dados de Sequência Molecular , Plasmídeos/metabolismo , Regiões Promotoras Genéticas , Ligação Proteica , RNA/metabolismo , Proteínas Recombinantes/metabolismo , Homologia de Sequência de Aminoácidos
12.
Biochem Soc Trans ; 41(1): 362-7, 2013 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-23356312

RESUMO

All RNAPs (RNA polymerases) repeatedly make use of their DNA template by progressing through the transcription cycle multiple times. During transcription initiation and elongation, distinct sets of transcription factors associate with multisubunit RNAPs and modulate their nucleic-acid-binding and catalytic properties. Between the initiation and elongation phases of the cycle, the factors have to be exchanged by a largely unknown mechanism. We have shown that the binding sites for initiation and elongation factors are overlapping and that the binding of the factors to RNAP is mutually exclusive. This ensures an efficient exchange or 'swapping' of factors and could furthermore assist RNAP during promoter escape, enabling robust transcription. A similar mechanism applies to the bacterial RNAP system. The elongation factors are evolutionarily conserved between the bacterial (NusG) and archaeo-eukaryotic (Spt5) systems; however, the initiation factors [σ and TBP (TATA-box-binding protein)/TF (transcription factor) B respectively] are not. Therefore we propose that this factor-swapping mechanism, operating in all three domains of life, is the outcome of convergent evolution.


Assuntos
RNA Polimerases Dirigidas por DNA/metabolismo , Fatores de Transcrição , RNA Polimerases Dirigidas por DNA/genética , Evolução Molecular , Modelos Moleculares , Regiões Promotoras Genéticas , Biossíntese de Proteínas , Fatores de Transcrição/metabolismo
13.
Commun Biol ; 6(1): 968, 2023 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-37740023

RESUMO

In eukaryotes, histone paralogues form obligate heterodimers such as H3/H4 and H2A/H2B that assemble into octameric nucleosome particles. Archaeal histones are dimeric and assemble on DNA into 'hypernucleosome' particles of varying sizes with each dimer wrapping 30 bp of DNA. These are composed of canonical and variant histone paralogues, but the function of these variants is poorly understood. Here, we characterise the structure and function of the histone paralogue MJ1647 from Methanocaldococcus jannaschii that has a unique C-terminal extension enabling homotetramerisation. The 1.9 Å X-ray structure of a dimeric MJ1647 species, structural modelling of the tetramer, and site-directed mutagenesis reveal that the C-terminal tetramerization module consists of two alpha helices in a handshake arrangement. Unlike canonical histones, MJ1647 tetramers can bridge two DNA molecules in vitro. Using single-molecule tethered particle motion and DNA binding assays, we show that MJ1647 tetramers bind ~60 bp DNA and compact DNA in a highly cooperative manner. We furthermore show that MJ1647 effectively competes with the transcription machinery to block access to the promoter in vitro. To the best of our knowledge, MJ1647 is the first histone shown to have DNA bridging properties, which has important implications for genome structure and gene expression in archaea.


Assuntos
DNA , Histonas , Histonas/genética , DNA/genética , Archaea/genética , Bioensaio , Eucariotos , Polímeros
14.
Viruses ; 15(8)2023 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-37632111

RESUMO

Although domestic cats are susceptible to infection with SARS-CoV-2, the role of the virus in causing feline disease is less well defined. We conducted a large-scale study to identify SARS-CoV-2 infections in UK pet cats, using active and passive surveillance. Remnant feline respiratory swab samples, submitted for other pathogen testing between May 2021 and February 2023, were screened using RT-qPCR. In addition, we appealed to veterinarians for swab samples from cats suspected of having clinical SARS-CoV-2 infections. Bespoke testing for SARS-CoV-2 neutralising antibodies was also performed, on request, in suspected cases. One RT-qPCR-positive cat was identified by active surveillance (1/549, 0.18%), during the Delta wave (1/175, 0.57%). Passive surveillance detected one cat infected with the Alpha variant, and two of ten cats tested RT-qPCR-positive during the Delta wave. No cats tested RT-qPCR-positive after the emergence of Omicron BA.1 and its descendants although 374 were tested by active and eleven by passive surveillance. We describe four cases of SARS-CoV-2 infection in pet cats, identified by RT-qPCR and/or serology, that presented with a range of clinical signs, as well as their SARS-CoV-2 genome sequences. These cases demonstrate that, although uncommon in cats, a variety of clinical signs can occur.


Assuntos
COVID-19 , SARS-CoV-2 , Animais , Gatos , SARS-CoV-2/genética , COVID-19/diagnóstico , COVID-19/veterinária , Anticorpos Antivirais , Reino Unido/epidemiologia
15.
J Infect ; 87(2): 128-135, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37270070

RESUMO

OBJECTIVES: To determine how the intrinsic severity of successively dominant SARS-CoV-2 variants changed over the course of the pandemic. METHODS: A retrospective cohort analysis in the NHS Greater Glasgow and Clyde (NHS GGC) Health Board. All sequenced non-nosocomial adult COVID-19 cases in NHS GGC with relevant SARS-CoV-2 lineages (B.1.177/Alpha, Alpha/Delta, AY.4.2 Delta/non-AY.4.2 Delta, non-AY.4.2 Delta/Omicron, and BA.1 Omicron/BA.2 Omicron) during analysis periods were included. Outcome measures were hospital admission, ICU admission, or death within 28 days of positive COVID-19 test. We report the cumulative odds ratio; the ratio of the odds that an individual experiences a severity event of a given level vs all lower severity levels for the resident and the replacement variant after adjustment. RESULTS: After adjustment for covariates, the cumulative odds ratio was 1.51 (95% CI: 1.08-2.11) for Alpha versus B.1.177, 2.09 (95% CI: 1.42-3.08) for Delta versus Alpha, 0.99 (95% CI: 0.76-1.27) for AY.4.2 Delta versus non-AY.4.2 Delta, 0.49 (95% CI: 0.22-1.06) for Omicron versus non-AY.4.2 Delta, and 0.86 (95% CI: 0.68-1.09) for BA.2 Omicron versus BA.1 Omicron. CONCLUSIONS: The direction of change in intrinsic severity between successively emerging SARS-CoV-2 variants was inconsistent, reminding us that the intrinsic severity of future SARS-CoV-2 variants remains uncertain.


Assuntos
COVID-19 , SARS-CoV-2 , Adulto , Humanos , SARS-CoV-2/genética , Estudos Retrospectivos , Hospitalização
16.
PLoS One ; 18(4): e0284187, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37053201

RESUMO

OBJECTIVES: The SARS-CoV-2 Alpha variant was associated with increased transmission relative to other variants present at the time of its emergence and several studies have shown an association between Alpha variant infection and increased hospitalisation and 28-day mortality. However, none have addressed the impact on maximum severity of illness in the general population classified by the level of respiratory support required, or death. We aimed to do this. METHODS: In this retrospective multi-centre clinical cohort sub-study of the COG-UK consortium, 1475 samples from Scottish hospitalised and community cases collected between 1st November 2020 and 30th January 2021 were sequenced. We matched sequence data to clinical outcomes as the Alpha variant became dominant in Scotland and modelled the association between Alpha variant infection and severe disease using a 4-point scale of maximum severity by 28 days: 1. no respiratory support, 2. supplemental oxygen, 3. ventilation and 4. death. RESULTS: Our cumulative generalised linear mixed model analyses found evidence (cumulative odds ratio: 1.40, 95% CI: 1.02, 1.93) of a positive association between increased clinical severity and lineage (Alpha variant versus pre-Alpha variants). CONCLUSIONS: The Alpha variant was associated with more severe clinical disease in the Scottish population than co-circulating lineages.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , Estudos Retrospectivos , Escócia/epidemiologia , Genômica
17.
Cell Microbiol ; 13(9): 1429-39, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21740499

RESUMO

The enteric pathogens enteropathogenic Escherichia coli (EPEC), enterohaemorrhagic E. coli (EHEC) and Shigella flexneri all translocate at least one effector protein of the EspG protein family into host cells via a type III secretion system (T3SS). The EspG family comprises EspG, EspG2 and VirA. From a Y2H screen, we identified the Golgi matrix protein GM130 as a potential binding partner of EspG. We confirmed EspG:GM130 protein interaction by affinity co-purification. In co-immunoprecipitation experiments EspG was co-precipitated with GM130 while both GM130 and tubulins were co-precipitated with EspG. When expressed ectopically in HeLa cells, the EspG protein family all localized to the Golgi and induced fragmentation of the Golgi apparatus. All EspG family proteins were also able to disrupt protein secretion to a greater extent than the T3SS effector NleA/EspI, which has previously been shown to localize to the Golgi and interact with SEC24 to disrupt COPII vesicle formation. We hypothesize that EspG:GM130 interaction disrupts protein secretion either through direct disruption of GM130 function or through recruitment of other EspG interacting proteins to the Golgi.


Assuntos
Autoantígenos/metabolismo , Escherichia coli Êntero-Hemorrágica/metabolismo , Escherichia coli Enteropatogênica/metabolismo , Proteínas de Escherichia coli/metabolismo , Complexo de Golgi/metabolismo , Proteínas de Membrana/metabolismo , Proteínas de Escherichia coli/genética , Células HeLa , Humanos , Imunoprecipitação , Microscopia de Fluorescência , Ligação Proteica
18.
Sci Rep ; 12(1): 11735, 2022 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-35853960

RESUMO

Whole genome sequencing of SARS-CoV-2 has occurred at an unprecedented scale, and can be exploited for characterising outbreak risks at the fine-scale needed to inform control strategies. One setting at continued risk of COVID-19 outbreaks are higher education institutions, associated with student movements at the start of term, close living conditions within residential halls, and high social contact rates. Here we analysed SARS-CoV-2 whole genome sequences in combination with epidemiological data to investigate a large cluster of student cases associated with University of Glasgow accommodation in autumn 2020, Scotland. We identified 519 student cases of SARS-CoV-2 infection associated with this large cluster through contact tracing data, with 30% sequencing coverage for further analysis. We estimated at least 11 independent introductions of SARS-CoV-2 into the student population, with four comprising the majority of detected cases and consistent with separate outbreaks. These four outbreaks were curtailed within a week following implementation of control measures. The impact of student infections on the local community was short-term despite an underlying increase in community infections. Our study highlights the need for context-specific information in the formation of public health policy for higher educational settings.


Assuntos
COVID-19 , SARS-CoV-2 , COVID-19/epidemiologia , Surtos de Doenças , Genômica , Planejamento em Saúde , Humanos , SARS-CoV-2/genética , Estados Unidos , Universidades
19.
Nat Microbiol ; 7(8): 1161-1179, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35798890

RESUMO

Vaccines based on the spike protein of SARS-CoV-2 are a cornerstone of the public health response to COVID-19. The emergence of hypermutated, increasingly transmissible variants of concern (VOCs) threaten this strategy. Omicron (B.1.1.529), the fifth VOC to be described, harbours multiple amino acid mutations in spike, half of which lie within the receptor-binding domain. Here we demonstrate substantial evasion of neutralization by Omicron BA.1 and BA.2 variants in vitro using sera from individuals vaccinated with ChAdOx1, BNT162b2 and mRNA-1273. These data were mirrored by a substantial reduction in real-world vaccine effectiveness that was partially restored by booster vaccination. The Omicron variants BA.1 and BA.2 did not induce cell syncytia in vitro and favoured a TMPRSS2-independent endosomal entry pathway, these phenotypes mapping to distinct regions of the spike protein. Impaired cell fusion was determined by the receptor-binding domain, while endosomal entry mapped to the S2 domain. Such marked changes in antigenicity and replicative biology may underlie the rapid global spread and altered pathogenicity of the Omicron variant.


Assuntos
COVID-19 , Glicoproteína da Espícula de Coronavírus , Anticorpos Antivirais , Vacina BNT162 , Humanos , Glicoproteínas de Membrana/metabolismo , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus/genética , Proteínas do Envelope Viral/metabolismo , Internalização do Vírus
20.
J Bacteriol ; 193(4): 1007-11, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21169493

RESUMO

Expression of the Mycobacterium tuberculosis sigG sigma factor was induced by a variety of DNA-damaging agents, but inactivation of sigG did not affect induction of gene expression or bacterial survival under these conditions. Therefore, SigG does not control the DNA repair response of M. tuberculosis H37Rv.


Assuntos
Proteínas de Bactérias/metabolismo , Dano ao DNA , Regulação Bacteriana da Expressão Gênica , Mycobacterium tuberculosis/metabolismo , Fator sigma/metabolismo , Proteínas de Bactérias/genética , Sequência de Bases , Dados de Sequência Molecular , Mycobacterium tuberculosis/genética , Fator sigma/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA