Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Nat Rev Genet ; 23(3): 182-194, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34764456

RESUMO

Across the human genome, there are nearly 500 'ultraconserved' elements: regions of at least 200 contiguous nucleotides that are perfectly conserved in both the mouse and rat genomes. Remarkably, the majority of these sequences are non-coding, and many can function as enhancers that activate tissue-specific gene expression during embryonic development. From their first description more than 15 years ago, their extreme conservation has both fascinated and perplexed researchers in genomics and evolutionary biology. The intrigue around ultraconserved elements only grew with the observation that they are dispensable for viability. Here, we review recent progress towards understanding the general importance and the specific functions of ultraconserved sequences in mammalian development and human disease and discuss possible explanations for their extreme conservation.


Assuntos
Sequência Conservada/fisiologia , Genoma/genética , Animais , Desenvolvimento Embrionário/genética , Elementos Facilitadores Genéticos , Feminino , Genômica/métodos , Genômica/tendências , História do Século XXI , Humanos , Mamíferos/genética , Camundongos , Gravidez , Ratos
2.
Nature ; 583(7818): 699-710, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32728249

RESUMO

The human and mouse genomes contain instructions that specify RNAs and proteins and govern the timing, magnitude, and cellular context of their production. To better delineate these elements, phase III of the Encyclopedia of DNA Elements (ENCODE) Project has expanded analysis of the cell and tissue repertoires of RNA transcription, chromatin structure and modification, DNA methylation, chromatin looping, and occupancy by transcription factors and RNA-binding proteins. Here we summarize these efforts, which have produced 5,992 new experimental datasets, including systematic determinations across mouse fetal development. All data are available through the ENCODE data portal (https://www.encodeproject.org), including phase II ENCODE1 and Roadmap Epigenomics2 data. We have developed a registry of 926,535 human and 339,815 mouse candidate cis-regulatory elements, covering 7.9 and 3.4% of their respective genomes, by integrating selected datatypes associated with gene regulation, and constructed a web-based server (SCREEN; http://screen.encodeproject.org) to provide flexible, user-defined access to this resource. Collectively, the ENCODE data and registry provide an expansive resource for the scientific community to build a better understanding of the organization and function of the human and mouse genomes.


Assuntos
DNA/genética , Bases de Dados Genéticas , Genoma/genética , Genômica , Anotação de Sequência Molecular , Sistema de Registros , Sequências Reguladoras de Ácido Nucleico/genética , Animais , Cromatina/genética , Cromatina/metabolismo , DNA/química , Pegada de DNA , Metilação de DNA/genética , Período de Replicação do DNA , Desoxirribonuclease I/metabolismo , Genoma Humano , Histonas/metabolismo , Humanos , Camundongos , Camundongos Transgênicos , Proteínas de Ligação a RNA/genética , Transcrição Gênica/genética , Transposases/metabolismo
4.
Nucleic Acids Res ; 44(18): 8714-8725, 2016 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-27439714

RESUMO

Use of low resolution single cell DNA FISH and population based high resolution chromosome conformation capture techniques have highlighted the importance of pairwise chromatin interactions in gene regulation. However, it is unlikely that associations involving regulatory elements act in isolation of other interacting partners that also influence their impact. Indeed, the influence of multi-loci interactions remains something of an enigma as beyond low-resolution DNA FISH we do not have the appropriate tools to analyze these. Here we present a method that uses standard 4C-seq data to identify multi-loci interactions from the same cell. We demonstrate the feasibility of our method using 4C-seq data sets that identify known pairwise and novel tri-loci interactions involving the Tcrb and Igk antigen receptor enhancers. We further show that the three Igk enhancers, MiEκ, 3'Eκ and Edκ, interact simultaneously in this super-enhancer cluster, which add to our previous findings showing that loss of one element decreases interactions between all three elements as well as reducing their transcriptional output. These findings underscore the functional importance of simultaneous interactions and provide new insight into the relationship between enhancer elements. Our method opens the door for studying multi-loci interactions and their impact on gene regulation in other biological settings.


Assuntos
Cromossomos/metabolismo , Loci Gênicos , Conformação de Ácido Nucleico , Análise de Sequência de DNA/métodos , Cromatina/metabolismo , Elementos Facilitadores Genéticos , Receptor beta de Estrogênio/metabolismo , Genoma , Receptores de Antígenos de Linfócitos T alfa-beta
5.
PLoS Comput Biol ; 12(3): e1004780, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26938081

RESUMO

4C-Seq has proven to be a powerful technique to identify genome-wide interactions with a single locus of interest (or "bait") that can be important for gene regulation. However, analysis of 4C-Seq data is complicated by the many biases inherent to the technique. An important consideration when dealing with 4C-Seq data is the differences in resolution of signal across the genome that result from differences in 3D distance separation from the bait. This leads to the highest signal in the region immediately surrounding the bait and increasingly lower signals in far-cis and trans. Another important aspect of 4C-Seq experiments is the resolution, which is greatly influenced by the choice of restriction enzyme and the frequency at which it can cut the genome. Thus, it is important that a 4C-Seq analysis method is flexible enough to analyze data generated using different enzymes and to identify interactions across the entire genome. Current methods for 4C-Seq analysis only identify interactions in regions near the bait or in regions located in far-cis and trans, but no method comprehensively analyzes 4C signals of different length scales. In addition, some methods also fail in experiments where chromatin fragments are generated using frequent cutter restriction enzymes. Here, we describe 4C-ker, a Hidden-Markov Model based pipeline that identifies regions throughout the genome that interact with the 4C bait locus. In addition, we incorporate methods for the identification of differential interactions in multiple 4C-seq datasets collected from different genotypes or experimental conditions. Adaptive window sizes are used to correct for differences in signal coverage in near-bait regions, far-cis and trans chromosomes. Using several datasets, we demonstrate that 4C-ker outperforms all existing 4C-Seq pipelines in its ability to reproducibly identify interaction domains at all genomic ranges with different resolution enzymes.


Assuntos
DNA Catalítico/química , DNA Catalítico/genética , Genoma/fisiologia , Mapeamento por Restrição/métodos , Análise de Sequência de DNA/métodos , Software , Algoritmos , Sequência de Bases , Sítios de Ligação , Dados de Sequência Molecular , Ligação Proteica
6.
Nat Genet ; 56(4): 675-685, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38509385

RESUMO

Remote enhancers are thought to interact with their target promoters via physical proximity, yet the importance of this proximity for enhancer function remains unclear. Here we investigate the three-dimensional (3D) conformation of enhancers during mammalian development by generating high-resolution tissue-resolved contact maps for nearly a thousand enhancers with characterized in vivo activities in ten murine embryonic tissues. Sixty-one percent of developmental enhancers bypass their neighboring genes, which are often marked by promoter CpG methylation. The majority of enhancers display tissue-specific 3D conformations, and both enhancer-promoter and enhancer-enhancer interactions are moderately but consistently increased upon enhancer activation in vivo. Less than 14% of enhancer-promoter interactions form stably across tissues; however, these invariant interactions form in the absence of the enhancer and are likely mediated by adjacent CTCF binding. Our results highlight the general importance of enhancer-promoter physical proximity for developmental gene activation in mammals.


Assuntos
Elementos Facilitadores Genéticos , Mamíferos , Animais , Camundongos , Elementos Facilitadores Genéticos/genética , Regiões Promotoras Genéticas/genética , Ativação Transcricional/genética , Mamíferos/genética , Cromatina/genética
7.
Nat Genet ; 53(4): 521-528, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33782603

RESUMO

Ultraconserved enhancer sequences show perfect conservation between human and rodent genomes, suggesting that their functions are highly sensitive to mutation. However, current models of enhancer function do not sufficiently explain this extreme evolutionary constraint. We subjected 23 ultraconserved enhancers to different levels of mutagenesis, collectively introducing 1,547 mutations, and examined their activities in transgenic mouse reporter assays. Overall, we find that the regulatory properties of ultraconserved enhancers are robust to mutation. Upon mutagenesis, nearly all (19/23, 83%) still functioned as enhancers at one developmental stage, as did most of those tested again later in development (5/9, 56%). Replacement of endogenous enhancers with mutated alleles in mice corroborated results of transgenic assays, including the functional resilience of ultraconserved enhancers to mutation. Our findings show that the currently known activities of ultraconserved enhancers do not necessarily require the perfect conservation observed in evolution and suggest that additional regulatory or other functions contribute to their sequence constraint.


Assuntos
Elementos Facilitadores Genéticos , Regulação da Expressão Gênica no Desenvolvimento , Mutação , Fatores de Transcrição/genética , Alelos , Animais , Sequência de Bases , Sequência Conservada , Embrião de Mamíferos , Humanos , Camundongos , Mutagênese Sítio-Dirigida , Ratos , Fatores de Transcrição/metabolismo
8.
Stem Cell Reports ; 15(6): 1233-1245, 2020 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-32976761

RESUMO

Methylation of histone 3 at lysine 9 (H3K9) constitutes a roadblock for cellular reprogramming. Interference with methyltransferases or activation of demethylases by the cofactor ascorbic acid (AA) facilitates the derivation of induced pluripotent stem cells (iPSCs), but possible interactions between specific methyltransferases and AA treatment remain insufficiently explored. We show that chemical inhibition of the methyltransferases EHMT1 and EHMT2 counteracts iPSC formation in an enhanced reprogramming system in the presence of AA, an effect that is dependent on EHMT1. EHMT inhibition during enhanced reprogramming is associated with rapid loss of H3K9 dimethylation, inefficient downregulation of somatic genes, and failed mesenchymal-to-epithelial transition. Furthermore, transient EHMT inhibition during reprogramming yields iPSCs that fail to efficiently give rise to viable mice upon blastocyst injection. Our observations establish novel functions of H3K9 methyltransferases and suggest that a functional balance between AA-stimulated enzymes and EHMTs supports efficient and less error-prone iPSC reprogramming to pluripotency.


Assuntos
Reprogramação Celular , Histona-Lisina N-Metiltransferase/metabolismo , Células-Tronco Pluripotentes Induzidas/enzimologia , Animais , Histona-Lisina N-Metiltransferase/genética , Histonas/metabolismo , Células-Tronco Pluripotentes Induzidas/citologia , Metilação , Camundongos
9.
Genome Biol ; 20(1): 248, 2019 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-31752933

RESUMO

Activation of regulatory elements is thought to be inversely correlated with DNA methylation levels. However, it is difficult to determine whether DNA methylation is compatible with chromatin accessibility or transcription factor (TF) binding if assays are performed separately. We developed a fast, low-input, low sequencing depth method, EpiMethylTag, that combines ATAC-seq or ChIP-seq (M-ATAC or M-ChIP) with bisulfite conversion, to simultaneously examine accessibility/TF binding and methylation on the same DNA. Here we demonstrate that EpiMethylTag can be used to study the functional interplay between chromatin accessibility and TF binding (CTCF and KLF4) at methylated sites.


Assuntos
Sequenciamento de Cromatina por Imunoprecipitação , Metilação de DNA , Genômica/métodos , Animais , Cromatina/metabolismo , Humanos , Fator 4 Semelhante a Kruppel , Fatores de Transcrição/metabolismo
10.
Epigenomics ; 10(4): 483-498, 2018 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-29583027

RESUMO

Enhancers are short noncoding segments of DNA (100-1000 bp) that control the temporal and spatial activity of genes in an orientation-independent manner. They can be separated from their target genes by large distances and are thus known as distal regulatory elements. One consequence of the variability in the distance separating enhancers and their target promoters is that it is difficult to determine which elements are involved in the regulation of a particular gene. Moreover, enhancers can be found in clusters in which multiple regulatory elements control expression of the same target gene. However, little is known about how the individual elements contribute to gene expression. Here, we describe how chromatin conformation promotes and constraints enhancer activity. Further, we discuss enhancer clusters and what is known about the contribution of individual elements to the regulation of target genes. Finally, we examine the reliability of different methods used to identify enhancers.


Assuntos
Elementos Facilitadores Genéticos , Cromatina/química , Humanos , Elementos Isolantes , Regiões Promotoras Genéticas
11.
Cell Rep ; 15(10): 2159-2169, 2016 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-27239026

RESUMO

V(D)J recombination relies on the presence of proximal enhancers that activate the antigen receptor (AgR) loci in a lineage- and stage-specific manner. Unexpectedly, we find that both active and inactive AgR enhancers cooperate to disseminate their effects in a localized and long-range manner. Here, we demonstrate the importance of short-range contacts between active enhancers that constitute an Igk super-enhancer in B cells. Deletion of one element reduces the interaction frequency between other enhancers in the hub, which compromises the transcriptional output of each component. Furthermore, we establish that, in T cells, long-range contact and cooperation between the inactive Igk enhancer MiEκ and the active Tcrb enhancer Eß alters enrichment of CBFß binding in a manner that impacts Tcrb recombination. These findings underline the complexities of enhancer regulation and point to a role for localized and long-range enhancer-sharing between active and inactive elements in lineage- and stage-specific control.


Assuntos
Elementos Facilitadores Genéticos , Regulação da Expressão Gênica , Animais , Rearranjo Gênico da Cadeia beta dos Receptores de Antígenos dos Linfócitos T , Camundongos Endogâmicos C57BL , Ligação Proteica/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Receptores de Antígenos de Linfócitos T alfa-beta/genética , Receptores de Antígenos de Linfócitos T alfa-beta/metabolismo , Linfócitos T/imunologia
12.
Cell Rep ; 17(9): 2271-2285, 2016 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-27880903

RESUMO

B cell development is a tightly regulated process dependent on sequential rearrangements of immunoglobulin loci that encode the antigen receptor. To elucidate the role of microRNAs (miRNAs) in the orchestration of B cell development, we ablated all miRNAs at the earliest stage of B cell development by conditionally targeting the enzymes critical for RNAi in early B cell precursors. Absence of any one of these enzymes led to a block at the pro- to pre-B cell transition due to increased apoptosis and a failure of pre-B cells to proliferate. Expression of a Bcl2 transgene allowed for partial rescue of B cell development, however, the majority of the rescued B cells had low surface immunoglobulin expression with evidence of ongoing light chain editing. Our analysis revealed that miRNAs are critical for the regulation of the PTEN-AKT-FOXO1 pathway that in turn controls Rag expression during B cell development.


Assuntos
Linfócitos B/citologia , Linfócitos B/metabolismo , Diferenciação Celular/genética , Regulação da Expressão Gênica , MicroRNAs/metabolismo , Edição de RNA/genética , Receptores de Antígenos de Linfócitos B/metabolismo , Transdução de Sinais/genética , Animais , Regulação para Baixo , Fatores de Transcrição Forkhead/metabolismo , Cadeias Leves de Imunoglobulina/genética , Camundongos , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Interferência de RNA , Proteínas de Ligação a RNA/metabolismo , Ribonuclease III/metabolismo , Baço/citologia , Transgenes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA