Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Phytopathology ; 104(2): 163-73, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23941780

RESUMO

Limber pine (Pinus flexilis) is being threatened by the lethal disease white pine blister rust caused by the non-native pathogen Cronartium ribicola. The types and frequencies of genetic resistance to the rust will likely determine the potential success of restoration or proactive measures. These first extensive inoculation trials using individual tree seed collections from >100 limber pine trees confirm that genetic segregation of a stem symptom-free trait to blister rust is consistent with inheritance by a single dominant resistance (R) gene, and the resistance allele appears to be distinct from the R allele in western white pine. Following previous conventions, we are naming the R gene for limber pine "Cr4." The frequency of the Cr4 allele across healthy and recently invaded populations in the Southern Rocky Mountains was unexpectedly high (5.0%, ranging from 0 to 13.9%). Cr4 is in equilibrium, suggesting that it is not a product of a recent mutation and may have other adaptive significance within the species, possibly related to other abiotic or biotic stress factors. The identification of Cr4 in native populations of limber pine early in the invasion progress in this region provides useful information for predicting near-term impacts and structuring long-term management strategies.


Assuntos
Basidiomycota/patogenicidade , Resistência à Doença , Variação Genética , Pinus/genética , Doenças das Plantas/imunologia , Proteínas de Plantas/genética , Alelos , Cruzamentos Genéticos , Fenótipo , Pinus/microbiologia , Doenças das Plantas/microbiologia , Folhas de Planta/genética , Folhas de Planta/microbiologia , Caules de Planta/genética , Caules de Planta/microbiologia , Plântula/genética , Plântula/microbiologia
2.
Phytopathology ; 89(10): 861-7, 1999 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-18944728

RESUMO

ABSTRACT A dominant gene for resistance to white pine blister was indicated by Mendelian segregation in full-sib families of western white pine parent trees selected for phenotypic resistance in six heavily infected stands in the Western Cascades of Oregon and Washington. Seedlings were artificially inoculated three times between 1959 and 1964 and observed for development of stem infection. Segregation at this locus (Cr2) occurred in only two of the six parent populations sampled: one a natural stand, Champion Mine (CM), and the other a plantation of unknown seed origin. At CM, reduced penetrance of this gene was expressed by altered Mendelian ratios (mostly less-than-expected resistant phenotypes) in families of specific combinations of certain parents, indicating the presence of modifier genes with effects that ranged from mild to almost complete suppression of Cr2. Between 1968 and 1994, an apparent shift in virulence at CM caused all of the resistant selections to become infected and die. Recent inoculations of many of the same or related families from these parents, made from grafted ramets in a seed orchard, showed that Cr2 conditions a classical hypersensitive reaction (HR) in needle tissues, the primary infection courts. In the latter tests, seedlings were challenged with wild-type and four other sources of inoculum at and near CM that were also suspected of having wider virulence than wild type. No seedlings segregating for HR that were inoculated with wild type subsequently developed stem symptoms, but the other inocula induced both susceptible and HR needle spots on Cr2- genotypes, and many of these seedlings did develop stem infections. This implied that spore genotypes with specific virulence to Cr2 are carried in these inocula.

3.
Tree Physiol ; 21(11): 743-9, 2001 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-11470660

RESUMO

We measured water relations attributes of the terminal shoots of 3-year-old Port-Orford-cedar (Chamaecyparis lawsoniana (A. Murr.) Parl.) seedlings that represented its geographic range. Pressure-volume curves were developed and osmotic potentials at full (psi(sf)) and zero turgor (psi(sz)), relative water content at zero turgor, and an index of tissue elasticity (IE) were calculated for 38 families during early, mid- and late summer at an inland nursery, and for 12 of these families during mid- and late summer at a coastal nursery. Compared with other conifer species, psi(sz) was high (-1.4 to -1.5 MPa) and declined in seedlings at both nurseries as the season progressed. Both IE and osmotic amplitude (psi(sf)-psi(sz)) increased during the season. Osmotic potential at zero turgor was lower and osmotic amplitude greater in seedlings at the inland nursery than at the coastal nursery. Correlations of water relations attributes with geographic location of the seed sources were weak and usually not significant. High elevation southern sources exhibited smaller differences in psi(sz) between nurseries than low elevation northern sources. The small differences in water relations attributes among sources and between nurseries suggest that some may be of marginal physiological importance; however, sources that produced larger seedlings appeared to be less desiccation tolerant. We conclude that, when moving genotypes during reforestation, decisions based on patterns in tree size and timing of growth will account for these small differences in water relations.


Assuntos
Chamaecyparis/fisiologia , Brotos de Planta/fisiologia , Árvores/fisiologia , Estações do Ano , Água/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA