Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 604(7904): 98-103, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35355012

RESUMO

Neural activity in the hippocampus is known to reflect how animals move through an environment1,2. Although navigational behaviour may show considerable stability3-6, the tuning stability of individual hippocampal neurons remains unclear7-12. Here we used wireless calcium imaging to longitudinally monitor the activity of dorsal CA1 hippocampal neurons in freely flying bats performing highly reproducible flights in a familiar environment. We find that both the participation and the spatial selectivity of most neurons remain stable over days and weeks. We also find that apparent changes in tuning can be largely attributed to variations in the flight behaviour of the bats. Finally, we show that bats navigating in the same environment under different room lighting conditions (lights on versus lights off) exhibit substantial changes in flight behaviour that can give the illusion of neuronal instability. However, when similar flight paths are compared across conditions, the stability of the hippocampal code persists. Taken together, we show that the underlying hippocampal code is highly stable over days and across contexts if behaviour is taken into account.


Assuntos
Região CA1 Hipocampal , Quirópteros , Neurônios , Animais , Região CA1 Hipocampal/citologia , Região CA1 Hipocampal/fisiologia , Cálcio , Quirópteros/fisiologia , Voo Animal/fisiologia , Iluminação , Neurônios/fisiologia , Navegação Espacial/fisiologia
3.
Nat Methods ; 16(1): 111-116, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30532080

RESUMO

Preprocessing of functional magnetic resonance imaging (fMRI) involves numerous steps to clean and standardize the data before statistical analysis. Generally, researchers create ad hoc preprocessing workflows for each dataset, building upon a large inventory of available tools. The complexity of these workflows has snowballed with rapid advances in acquisition and processing. We introduce fMRIPrep, an analysis-agnostic tool that addresses the challenge of robust and reproducible preprocessing for fMRI data. fMRIPrep automatically adapts a best-in-breed workflow to the idiosyncrasies of virtually any dataset, ensuring high-quality preprocessing without manual intervention. By introducing visual assessment checkpoints into an iterative integration framework for software testing, we show that fMRIPrep robustly produces high-quality results on a diverse fMRI data collection. Additionally, fMRIPrep introduces less uncontrolled spatial smoothness than observed with commonly used preprocessing tools. fMRIPrep equips neuroscientists with an easy-to-use and transparent preprocessing workflow, which can help ensure the validity of inference and the interpretability of results.


Assuntos
Imageamento por Ressonância Magnética/métodos , Fluxo de Trabalho , Mapeamento Encefálico/métodos , Humanos , Processamento de Imagem Assistida por Computador/métodos , Reprodutibilidade dos Testes
4.
Nat Neurosci ; 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38956164

RESUMO

Here we conducted wireless electrophysiological recording of hippocampal neurons from Egyptian fruit bats in the presence of human experimenters. In flying bats, many neurons modulated their activity depending on the identity of the human at the landing target. In stationary bats, many neurons carried significant spatial information about the position and identity of humans traversing the environment. Our results reveal that hippocampal activity is robustly modulated by the presence, movement and identity of human experimenters.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA