Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Ano de publicação
Intervalo de ano de publicação
1.
Trends Immunol ; 45(8): 597-608, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39030115

RESUMO

Innate immune cells are primary effectors during host defense and in sterile inflammation. Their production in the bone marrow is tightly regulated by growth and niche factors, and their activity at sites of inflammation is orchestrated by a network of alarmins and cytokines. Yet, recent work highlights a significant role of the peripheral nervous system in these processes. Sympathetic neural pathways play a key role in regulating blood cell homeostasis, and sensory neural pathways mediate pro- or anti-inflammatory signaling in a tissue-specific manner. Here, we review emerging evidence of the fine titration of hematopoiesis, leukocyte trafficking, and tissue repair via neuro-immune crosstalk, and how its derailment can accelerate chronic inflammation, as in atherosclerosis.


Assuntos
Hematopoese , Inflamação , Neuroimunomodulação , Humanos , Inflamação/imunologia , Animais , Hematopoese/imunologia , Imunidade Inata , Transdução de Sinais/imunologia
2.
Blood ; 144(3): 308-322, 2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-38657197

RESUMO

ABSTRACT: Thrombotic microangiopathy (TMA) is characterized by immunothrombosis and life-threatening organ failure but the precise underlying mechanism driving its pathogenesis remains elusive. In this study, we hypothesized that gasdermin D (GSDMD), a pore-forming protein that serves as the final downstream effector of the pyroptosis/interleukin-1ß (IL-1ß) pathway, contributes to TMA and its consequences by amplifying neutrophil maturation and subsequent necrosis. Using a murine model of focal crystalline TMA, we found that Gsdmd deficiency ameliorated immunothrombosis, acute tissue injury, and failure. Gsdmd-/- mice exhibited a decrease in mature IL-1ß, as well as in neutrophil maturation, ß2-integrin activation, and recruitment to TMA lesions, in which they formed reduced neutrophil extracellular traps in both arteries and interstitial tissue. The GSDMD inhibitor disulfiram dose-dependently suppressed human neutrophil pyroptosis in response to cholesterol crystals. Experiments with GSDMD-deficient, human-induced, pluripotent stem cell-derived neutrophils confirmed the involvement of GSDMD in neutrophil ß2-integrin activation, maturation, and pyroptosis. Both prophylactic and therapeutic administration of disulfiram protected the mice from focal TMA, acute tissue injury, and failure. Our data identified GSDMD as a key mediator of focal crystalline TMA and its consequences, including ischemic tissue infarction and organ failure. GSDMD could potentially serve as a therapeutic target for the systemic forms of TMA.


Assuntos
Gasderminas , Neutrófilos , Proteínas de Ligação a Fosfato , Microangiopatias Trombóticas , Animais , Humanos , Camundongos , Antígenos CD18/metabolismo , Antígenos CD18/genética , Modelos Animais de Doenças , Armadilhas Extracelulares/metabolismo , Armadilhas Extracelulares/imunologia , Inflamação/patologia , Inflamação/metabolismo , Interleucina-1beta/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neutrófilos/imunologia , Neutrófilos/metabolismo , Neutrófilos/patologia , Proteínas de Ligação a Fosfato/metabolismo , Proteínas de Ligação a Fosfato/genética , Piroptose , Microangiopatias Trombóticas/patologia , Microangiopatias Trombóticas/metabolismo , Microangiopatias Trombóticas/imunologia , Microangiopatias Trombóticas/etiologia
3.
Artigo em Inglês | MEDLINE | ID: mdl-38115607

RESUMO

Neutrophils, the most abundant white blood cells in the human circulation, play crucial roles in various diseases, including kidney disease. Traditionally viewed as short-lived pro-inflammatory phagocytes that release reactive oxygen species, cytokines and neutrophil extracellular traps, recent studies have revealed their complexity and heterogeneity, thereby challenging this perception. Neutrophils are now recognized as transcriptionally active cells capable of proliferation and reverse migration, displaying phenotypic and functional heterogeneity. They respond to a wide range of signals and deploy various cargo to influence the activity of other cells in the circulation and in tissues. They can regulate the behavior of multiple immune cell types, exhibit innate immune memory, and contribute to both acute and chronic inflammatory responses while also promoting inflammation resolution in a context-dependent manner. Here, we explore the origin and heterogeneity of neutrophils, their functional diversity, and the cues that regulate their effector functions. We also examine their emerging role in infectious and non-infectious diseases with a particular emphasis on kidney disease. Understanding the complex behavior of neutrophils during tissue injury and inflammation may provide novel insights, thereby paving the way for potential therapeutic strategies to manage acute and chronic conditions. By deciphering their multifaceted role, targeted interventions can be developed to address the intricacies of neutrophil-mediated immune responses and improve disease outcomes.

4.
Trends Pharmacol Sci ; 45(7): 651-662, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38853103

RESUMO

Extracellular histones instigate an inflammatory triad - centered on cytotoxicity, immune cell stimulation, and coagulation - ultimately shaping the dynamics and outcome of various inflammatory pathologies. Given the virtual absence of beneficial functions of histones in the extracellular space, in recent years a number of interference strategies have emerged. In this review we summarize pathogenic functions of extracellular histones and highlight current developments of therapeutic interference. Finally, we elaborate on the current status of preclinical attempts to interfere with extracellular histones in the context of a focus on sepsis and cardiovascular diseases, both of which are leading causes of mortality worldwide.


Assuntos
Histonas , Inflamação , Humanos , Histonas/metabolismo , Animais , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Sepse/tratamento farmacológico , Doença Crônica , Doença Aguda , Doenças Cardiovasculares/tratamento farmacológico
5.
Front Immunol ; 15: 1354074, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39148732

RESUMO

Formyl peptide receptor 2 (FPR2) is a receptor for formylated peptides and specific pro-resolving mediators, and is involved in various inflammatory processes. Here, we aimed to elucidate the role of FPR2 in dendritic cell (DC) function and autoimmunity-related central nervous system (CNS) inflammation by using the experimental autoimmune encephalomyelitis (EAE) model. EAE induction was accompanied by increased Fpr2 mRNA expression in the spinal cord. FPR2-deficient (Fpr2 KO) mice displayed delayed onset of EAE compared to wild-type (WT) mice, associated with reduced frequencies of Th17 cells in the inflamed spinal cord at the early stage of the disease. However, FPR2 deficiency did not affect EAE severity after the disease reached its peak. FPR2 deficiency in mature DCs resulted in decreased expression of Th17 polarizing cytokines IL6, IL23p19, IL1ß, and thereby diminished the DC-mediated activation of Th17 cell differentiation. LPS-activated FPR2-deficient DCs showed upregulated Nos2 expression and nitric oxide (NO) production, as well as reduced oxygen consumption rate and impaired mitochondrial function, including decreased mitochondrial superoxide levels, lower mitochondrial membrane potential and diminished expression of genes related to the tricarboxylic acid cycle and genes related to the electron transport chain, as compared to WT DCs. Treatment with a NO inhibitor reversed the reduced Th17 cell differentiation in the presence of FPR2-deficient DCs. Together, by regulating DC metabolism, FPR2 enhances the production of DC-derived Th17-polarizing cytokines and hence Th17 cell differentiation in the context of neuroinflammation.


Assuntos
Diferenciação Celular , Células Dendríticas , Encefalomielite Autoimune Experimental , Camundongos Knockout , Receptores de Formil Peptídeo , Células Th17 , Animais , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Receptores de Formil Peptídeo/genética , Receptores de Formil Peptídeo/metabolismo , Células Th17/imunologia , Células Th17/metabolismo , Camundongos , Encefalomielite Autoimune Experimental/imunologia , Encefalomielite Autoimune Experimental/metabolismo , Camundongos Endogâmicos C57BL , Citocinas/metabolismo , Doenças Neuroinflamatórias/imunologia , Doenças Neuroinflamatórias/metabolismo , Feminino , Medula Espinal/imunologia , Medula Espinal/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA