Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Tipo de documento
Ano de publicação
Intervalo de ano de publicação
1.
Materials (Basel) ; 15(20)2022 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-36295305

RESUMO

This study examines the strength development of fly ash-based geopolymer (FAG) as a stabilizer for road base material for pavement construction. In the last decade, there has been a rapid development of conventionally treated bases, such as cement-treated bases. However, a major problem with this kind of application is the shrinkage cracking in cement-treated bases that may result in the reflection cracks on the asphalt pavement surface. This study explores the effects of FAG on base layer properties using mechanistic laboratory evaluation and its practicability in pavement base layers. The investigated properties are flexural strength (FS), unconfined compressive strength (UCS), shrinkage, and resilient modulus (RM), as well as indirect tensile strength (ITS). The findings showed that the mechanical properties of the mixture enhanced when FAG was added to 80-85% of crushed aggregate, with the UCS being shown to be a crucial quality parameter. The effectiveness of FAG base material can have an impact on the flexible pavements' overall performance since the base course stiffness directly depends on the base material properties. As a stabilizing agent for flexible pavement applications, the FAG-stabilized base appeared promising, predicated on test outcomes.

2.
Materials (Basel) ; 15(24)2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-36556790

RESUMO

Foamed concrete is considered a green building material, which is porous in nature. As a result, it poses benefits such as being light in self-weight, and also has excellent thermal insulation properties, environmental safeguards, good fire resistance performance, and low cost. Nevertheless, foamed concrete has several disadvantages such as low strength, a large amount of entrained air, poor toughness, and being a brittle material, all of which has restricted its usage in engineering and building construction. Hence, this study intends to assess the potential utilization of polypropylene fibrillated fiber (PFF) in foamed concrete to enhance its engineering properties. A total of 10 mixes of 600 and 1200 kg/m3 densities were produced by the insertion of four varying percentages of PFF (1%, 2%, 3%, and 4%). The properties assessed were splitting tensile, compressive and flexural strengths, workability, porosity, water absorption, and density. Furthermore, the correlations between the properties considered were also evaluated. The outcomes reveal that the foamed concrete mix with 4% PFF attained the highest porosity, with approximately 13.9% and 15.9% for 600 and 1200 kg/m3 densities in comparison to the control specimen. Besides, the mechanical properties (splitting tensile, compressive and flexural strengths) increased steadily with the increase in the PFF percentages up to the optimum level of 3%. Beyond 3%, the strengths reduced significantly due to poor PFF dispersal in the matrix, leading to a balling effect which causes a degraded impact of scattering the stress from the foamed concrete vicinity to another area of the PFF surface. This exploratory investigation will result in a greater comprehension of the possible applications of PFF in LFC. It is crucial to promote the sustainable development and implementation of LFC materials and infrastructures.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA