Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 599
Filtrar
1.
Anal Chem ; 96(9): 3970-3978, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38386411

RESUMO

Heparin is a highly sulfated linear glycosaminoglycan that is used as an anticoagulant to prevent and treat thrombotic diseases. Herein, we find that heparin specifically inhibits the activation of the Cas12 protein through the competitive binding of heparin and crRNA to Cas12. Studies illustrate that heparin's high molecular weight and strong negative charge are critical parameters for its inhibitory effect. This unexpected finding was engineered for the detection of heparin, affording a low detection limit of 0.36 ng/mL for fluorometric quantification. We further developed a rapid lateral flow-based system named HepaStrip (heparin strip), allowing heparin monitoring in clinical samples within 20 min. Finally, in vivo investigations revealed that heparin can regulate gene editing with the clusters of the regularly spaced short palindromic repeat (CRISPR)/Cas12 system in Escherichia coli. Heparin blocks the formation of Cas12-crRNA ribonucleoprotein, allowing the application of CRISPR for rapid and field-deployable detection of heparin and unleashing the potential use of heparin in future anti-CRISPR applications.


Assuntos
Edição de Genes , Heparina , Heparina/química , RNA Guia de Sistemas CRISPR-Cas , Sistemas CRISPR-Cas/genética , Anticoagulantes/farmacologia , Escherichia coli/metabolismo
2.
Biopolymers ; : e23586, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38747448

RESUMO

Cellulose nanofibers, a sustainable and promising material with widespread applications, exhibit appreciable strength and excellent mechanical and physicochemical properties. The preparation of cellulosic nanofibers from food or agricultural residue is not sustainable. Therefore, this study was designed to use three halophytic plants (Cressa cretica, Phragmites karka, and Suaeda fruticosa) to extract cellulose for the subsequent conversion to cellulosic nanofibers composites. The other extracted biomass components including lignin, hemicellulose, and pectin were also utilized to obtain industrially valuable enzymes. The maximum pectinase (31.56 IU mL-1), xylanase (35.21 IU mL-1), and laccase (15.89 IU mL-1) were produced after the fermentation of extracted pectin, hemicellulose, and lignin from S. fruticosa, P. karka, and C. cretica, respectively. Cellulose was methylated (with a degree of substitution of 2.4) and subsequently converted into a composite using polyvinyl alcohol. Scanning electron microscopy and Fourier-transform infrared spectroscopy confirmed the successful synthesis of the composites. The composites made up of cellulose from C. cretica and S. fruticosa had a high tensile strength (21.5 and 15.2 MPa) and low biodegradability (47.58% and 44.56%, respectively) after dumping for 3 months in soil, as compared with the composite from P. karka (98.79% biodegradability and 4.9 MPa tensile strength). Moreover, all the composites exhibited antibacterial activity against gram-negative bacteria (Escherichia coli and Klebsiella pneumoniae) and gram-positive bacteria (Staphylococcus aureus). Hence, this study emphasizes the possibility for various industrial applications of biomass from halophytic plants.

3.
Arch Microbiol ; 206(4): 149, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38466437

RESUMO

Domestic yak (Bos grunniens) is an economically important feature of the mountainous region of Gilgit-Baltistan in Pakistan where agriculture is restricted and yaks play multiple roles which includes being a source of milk, meat, hides, fuel and power. However little is known about the parasitic infections in Pakistani yaks. Aim of this research was to report the prevalence and genetic diversity of protozoa parasite (Theileria ovis, 18 S rDNA gene was targeted) and an obligate bacterium (Anaplasma marginale, msp-1 gene was amplified) in the blood that was sampled from 202 yaks collected from four districts in Gilgit-Baltistan during January 2023 till January 2024. Results revealed that 6/202 (3%) yaks were of Theileria ovis while 8/202 (4%) were Anaplasma marginale infected. Positive PCR products of both parasites were confirmed by DNA sequencing and their similarity with previously available pathogen sequences was determined by BLAST analysis. Phylogenetic tree indicated that isolates of both parasites displayed genetic. Anaplasma marginale infection varied with the sampling districts and Shigar district had the highest rate of bacterial infection. Cows were significantly more prone to Theileria ovis infection than bulls. Calf and hybrid yaks were more prone to Anaplasma marginale infection. In conclusion, this is the first report that yaks residing the Gilgit-Baltistan region in Pakistan are infected with Theileria ovis and Anaplasma marginale. Similar larger scales studies are recommended in various regions of Gilgit-Baltistan to document the infection rates of these parasites to formulate strategies that will lead to the effective control of these pathogens.


Assuntos
Anaplasma marginale , Anaplasmose , Theileria , Carrapatos , Feminino , Bovinos , Animais , Ovinos , Anaplasma marginale/genética , Theileria/genética , Paquistão/epidemiologia , Anaplasma/genética , Prevalência , Carrapatos/microbiologia , Carrapatos/parasitologia , Filogenia , Anaplasmose/epidemiologia , Anaplasmose/microbiologia
4.
J Basic Microbiol ; 64(2): e2300529, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38066405

RESUMO

Global production of sugarcane bagasse (SB) by sugar industries exceeds more than 100 tons per annum. SB is rich in lignin and polysaccharide and hence can serve as a low-cost energy and carbon source for the growth of industrially important microorganism. However, various other applications of SB have also been investigated. In this study, SB was used as an adsorbent to remove an azo dye, malachite green. Subsequently, the dye-adsorbed SB was fermented by Trametes pubescens MB 89 for the production of laccase enzyme. The fungal pretreated SB was further utilized as a substrate for the simultaneous production of multiple plant cell wall degrading enzymes including, cellulase, xylanase, pectinase, and amylase by thermophilic bacterial strains. Results showed that 0.1% SB removed 97.04% malachite green at 30°C after 30 min from a solution containing 66 ppm of the dye. Fermentation of the dye-adsorbed SB by T. pubescens MB 89 yielded 667.203 IU mL-1 laccase. Moreover, Brevibacillus borstelensis UE10 produced 38.41 and 18.6 IU mL-1 ß-glucosidase and pectinase, respectively, by using fungal-pretreated SB. Cultivation of B. borstelensis UE27 in the medium containing the same substrate yielded 32.14 IU mL-1 of endoglucanase and 27.23 IU mL-1 of ß-glucosidase. Likewise, Neobacillus sedimentimangrovi UE25 could produce a mix of ß-glucosidase (37.24 IU mL-1 ), xylanase (18.65 IU mL-1 ) and endoglucanase (26.65 IU mL-1 ). Hence, this study led to the development of a method through which dye-containing textile effluent can be treated by SB along with the production of industrially important enzymes.


Assuntos
Celulase , Corantes de Rosanilina , Saccharum , Celulose/metabolismo , Celulase/metabolismo , Poligalacturonase , Saccharum/metabolismo , Lacase , Trametes/metabolismo , Fermentação , beta-Glucosidase/metabolismo
5.
Mol Biol Evol ; 39(10)2022 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-36130322

RESUMO

Epistasis refers to fitness or functional effects of mutations that depend on the sequence background in which these mutations arise. Epistasis is prevalent in nature, including populations of viruses, bacteria, and cancers, and can contribute to the evolution of drug resistance and immune escape. However, it is difficult to directly estimate epistatic effects from sampled observations of a population. At present, there are very few methods that can disentangle the effects of selection (including epistasis), mutation, recombination, genetic drift, and genetic linkage in evolving populations. Here we develop a method to infer epistasis, along with the fitness effects of individual mutations, from observed evolutionary histories. Simulations show that we can accurately infer pairwise epistatic interactions provided that there is sufficient genetic diversity in the data. Our method also allows us to identify which fitness parameters can be reliably inferred from a particular data set and which ones are unidentifiable. Our approach therefore allows for the inference of more complex models of selection from time-series genetic data, while also quantifying uncertainty in the inferred parameters.


Assuntos
Epistasia Genética , Seleção Genética , Aptidão Genética , Ligação Genética , Modelos Genéticos , Mutação
6.
Planta ; 258(1): 12, 2023 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-37296318

RESUMO

MAIN CONCLUSION: Legumes manage both symbiotic (indirect) and non-symbiotic (direct) nitrogen acquisition pathways. Understanding and optimising the direct pathway for nitrate uptake will support greater legume growth and seed yields. Legumes have multiple pathways to acquire reduced nitrogen to grow and set seed. Apart from the symbiotic N2-fixation pathway involving soil-borne rhizobia bacteria, the acquisition of nitrate and ammonia from the soil can also be an important secondary nitrogen source to meet plant N demand. The balance in N delivery between symbiotic N (indirect) and inorganic N uptake (direct) remains less clear over the growing cycle and with the type of legume under cultivation. In fertile, pH balanced agricultural soils, NO3- is often the predominant form of reduced N available to crop plants and will be a major contributor to whole plant N supply if provided at sufficient levels. The transport processes for NO3- uptake into legume root cells and its transport between root and shoot tissues involves both high and low-affinity transport systems called HATS and LATS, respectively. These proteins are regulated by external NO3- availability and by the N status of the cell. Other proteins also play a role in NO3- transport, including the voltage dependent chloride/nitrate channel family (CLC) and the S-type anion channels of the SLAC/SLAH family. CLC's are linked to NO3- transport across the tonoplast of vacuoles and the SLAC/SLAH's with NO3- efflux across the plasma membrane and out of the cell. An important step in managing the N requirements of a plant are the mechanisms involved in root N uptake and the subsequent cellular distribution within the plant. In this review, we will present the current knowledge of these proteins and what is understood on how they function in key model legumes (Lotus japonicus, Medicago truncatula and Glycine sp.). The review will examine their regulation and role in N signalling, discuss how post-translational modification affects NO3- transport in roots and aerial tissues and its translocation to vegetative tissues and storage/remobilization in reproductive tissues. Lastly, we will present how NO3-influences the autoregulation of nodulation and nitrogen fixation and its role in mitigating salt and other abiotic stresses.


Assuntos
Lotus , Nitratos , Nitratos/metabolismo , Simbiose/fisiologia , Nitrogênio/metabolismo , Lotus/fisiologia , Verduras/metabolismo , Solo , Raízes de Plantas/metabolismo , Proteínas de Plantas/metabolismo
7.
Chem Rec ; 23(2): e202200149, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36408911

RESUMO

Recently, the growing demand for a renewable and sustainable fuel alternative is contingent on fuel cell technologies. Even though it is regarded as an environmentally sustainable method of generating fuel for immediate concerns, it must be enhanced to make it extraordinarily affordable, and environmentally sustainable. Hydrogen (H2 ) synthesis by electrochemical water splitting (ECWS) is considered one of the foremost potential prospective methods for renewable energy output and H2 society implementation. Existing massive H2 output is mostly reliant on the steaming reformation of carbon fuels that yield CO2 together with H2 and is a finite resource. ECWS is a viable, efficient, and contamination-free method for H2 evolution. Consequently, developing reliable and cost-effective technology for ECWS was a top priority for scientists around the globe. Utilizing renewable technologies to decrease total fuel utilization is crucial for H2 evolution. Capturing and transforming the fuel from the ambient through various renewable solutions for water splitting (WS) could effectively reduce the need for additional electricity. ECWS is among the foremost potential prospective methods for renewable energy output and the achievement of a H2 -based economy. For the overall water splitting (OWS), several transition-metal-based polyfunctional metal catalysts for both cathode and anode have been synthesized. Furthermore, the essential to the widespread adoption of such technology is the development of reduced-price, super functional electrocatalysts to substitute those, depending on metals. Many metal-premised electrocatalysts for both the anode and cathode have been designed for the WS process. The attributes of H2 and oxygen (O2 ) dynamics interactions on the electrodes of water electrolysis cells and the fundamental techniques for evaluating the achievement of electrocatalysts are outlined in this paper. Special emphasis is paid to their fabrication, electrocatalytic performance, durability, and measures for enhancing their efficiency. In addition, prospective ideas on metal-based WS electrocatalysts based on existing problems are presented. It is anticipated that this review will offer a straight direction toward the engineering and construction of novel polyfunctional electrocatalysts encompassing superior efficiency in a suitable WS technique.

8.
Chem Rec ; 23(1): e202200143, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36285706

RESUMO

The increasing demand for searching highly efficient and robust technologies in the context of sustainable energy production totally rely onto the cost-effective energy efficient production technologies. Solar power technology in this regard will perceived to be extensively employed in a variety of ways in the future ahead, in terms of the combustion of petroleum-based pollutants, CO2 reduction, heterogeneous photocatalysis, as well as the formation of unlimited and sustainable hydrogen gas production. Semiconductor-based photocatalysis is regarded as potentially sustainable solution in this context. g-C3 N4 is classified as non-metallic semiconductor to overcome this energy demand and enviromental challenges, because of its superior electronic configuration, which has a median band energy of around 2.7 eV, strong photocatalytic stability, and higher light performance. The photocatalytic performance of g-C3 N4 is perceived to be inadequate, owing to its small surface area along with high rate of charge recombination. However, various synthetic strategies were applied in order to incorporate g-C3 N4 with different guest materials to increase photocatalytic performance. After these fabrication approaches, the photocatalytic activity was enhanced owing to generation of photoinduced electrons and holes, by improving light absorption ability, and boosting surface area, which provides more space for photocatalytic reaction. In this review, various metals, non-metals, metals oxide, sulfides, and ferrites have been integrated with g-C3 N4 to form mono, bimetallic, heterojunction, Z-scheme, and S-scheme-based materials for boosting performance. Also, different varieties of g-C3 N4 were utilized for different aspects of photocatalytic application i. e., water reduction, water oxidation, CO2 reduction, and photodegradation of dye pollutants, etc. As a consequence, we have assembled a summary of the latest g-C3 N4 based materials, their uses in solar energy adaption, and proper management of the environment. This research will further well explain the detail of the mechanism of all these photocatalytic processes for the next steps, as well as the age number of new insights in order to overcome the current challenges.

9.
Chem Rec ; 23(5): e202200171, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37066717

RESUMO

Graphitic carbon nitride (g-C3 N4 ) has gained tremendous interest in the sector of power transformation and retention, because of its distinctive stacked composition, adjustable electronic structure, metal-free feature, superior thermodynamic durability, and simple availability. Furthermore, the restricted illumination and extensive recombination of photoexcitation electrons have inhibited the photocatalytic performance of pure g-C3 N4 . The dimensions of g-C3 N4 may impact the field of electronics confinement; as a consequence, g-C3 N4 with varying dimensions shows unique features, making it appropriate for a number of fascinating uses. Even if there are several evaluations emphasizing on the fabrication methods and deployments of g-C3 N4 , there is certainly an insufficiency of a full overview, that exhaustively depicts the synthesis and composition of diverse aspects of g-C3 N4 . Consequently, from the standpoint of numerical simulations and experimentation, several legitimate methodologies were employed to deliberately develop the photocatalyst and improve the optimal result, including elements loading, defects designing, morphological adjustment, and semiconductors interfacing. Herein, this evaluation initially discusses different dimensions, the physicochemical features, modifications and interfaces design development of g-C3 N4 . Emphasis is given to the practical design and development of g-C3 N4 for the various power transformation and inventory applications, such as photocatalytic H2 evolution, photoreduction of CO2 source, electrocatalytic H2 evolution, O2 evolution, O2 reduction, alkali-metal battery cells, lithium-ion batteries, lithium-sulfur batteries, and metal-air batteries. Ultimately, the current challenges and potential of g-C3 N4 for fuel transformation and retention activities are explored.

10.
Eur Biophys J ; 52(8): 735-747, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37943328

RESUMO

The failure of antibiotics against infectious diseases has become a global health issue due to the incessant use of antibiotics in the community and a lack of entry of new antibacterial drugs onto the market. The limited knowledge of biophysical interactions of existing antibiotics with bio-membranes is one of the major hurdles to design and develop more effective antibiotics. Surfactant systems are the simplest biological membrane models that not only mimic the cell membrane functions but are also used to investigate the biophysical interactions between pharmaceutical drugs and bio-membranes at the molecular level. In this work, volumetric and acoustic studies were used to investigate the molecular interactions of moxifloxacin (MXF), a potential antibacterial drug, with ionic surfactants (dodecyl-tri-methyl-ammonium bromide (DTAB), a cationic surfactant and sodium dodecyl sulfate (SDS), an anionic surfactant) under physiological conditions (phosphate buffer, pH 7.4) at T = 298.15-313.15 K at an interval of 5 K. Various volumetric and acoustic parameters were computed from the density and sound speed data and interpreted in terms of MXF-ionic surfactant interaction using electrostriction effect and co-sphere overlap model. Absorption spectroscopy and cyclic voltammetry were further used to determine the binding, partitioning, and related free energies of MXF with ionic micelles.


Assuntos
Micelas , Tensoativos , Tensoativos/química , Dodecilsulfato de Sódio/química , Análise Espectral , Íons , Antibacterianos
11.
J Org Chem ; 88(14): 10277-10281, 2023 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-37403968

RESUMO

We demonstrated that the loading amounts and concentrations of reactant 1,3-cyclohexanedione affect reaction rates and outcomes. In certain cases, reactions with higher concentrations of 1,3-cyclohexanedione were slower than those with lower concentrations. By minimizing the use of the cyclic 1,3-dione derivatives and by tuning the reaction concentration, the acid catalyst was reduced to 0.1 mol % to afford the desired products in high yields, and the reaction scope was expanded.

12.
Nanotechnology ; 34(42)2023 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-37467733

RESUMO

NfsB (nitroreductase fromEscherichia coli) can catalyze nitroaromatic compounds to aromatic amines under mild conditions. Compared with the purified enzyme NfsB, we found that the crude enzyme demonstrated better thermal stability and tolerance against a wide pH range, rendering it convenient to use and cost-effective as it did not require any downstream processing. In addition, we introduced metal-organic frameworks to immobilize the crude-NfsB. The resulting composite, crude-NfsB@ZIF-90, showed excellent catalytic performance and reusability, and it also demonstrated good catalytic activity in organic solvents, rendering it more efficient for the removal of nitroaromatic contaminants in complex environments. The nitroreductase-ZIF-90 biocatalyst can be used for fluorescent labeling of carbohydrates, which is favorable for the study of the function of carbohydrates.


Assuntos
Proteínas de Escherichia coli , Proteínas de Escherichia coli/metabolismo , Hexoses , Nitrorredutases/metabolismo
13.
Antonie Van Leeuwenhoek ; 116(7): 653-665, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37140754

RESUMO

Genetic and enzymatic potential of Neobacillus sedimentimangrovi has not been assembled to date. Here, we report a high-quality genome assembly of thermophilic bacterium Neobacillus sedimentimangrovi UE25 using Illumina Hi-seq 2500. The strain was isolated from a crocodile pond Manghopir, Karachi, Pakistan. QUAST quality parameters showed 37.75% GC content and exhibited the genome into 110 contigs, with a total size of 3,230,777 bases. Genome of N. sedimentimangrovi UE25 harbors phage mediated DNA through horizontal gene exchange from the phages, symbiotic and pathogenic bacteria. Most of the phage genome encodes for hypothetical proteins, protease, and phage assembly proteins. Gene clusters encoding the intrinsic resistance to glycopeptides, isoniazid, rifamycin, elfamycin, macrolide, aminoglycosides, tetracycline and fluoroquinolone were identified into the genome. Since, the strain has been reported for the production of many industrially important thermostable enzymes, therefore, the genomic data of thermostable enzymes might be helpful to employ this species in commercial sectors. Probing genes of multiple thermostable glycoside hydrolase enzymes especially xylanases of N. sedimentimangrovi UE25 showed genetic diversity among the genes and confer the industrial importance of this microorganism. Furthermore, the genome of N. sedimentimangrovi will greatly improve our understanding of its genetics and evolution.


Assuntos
Bacillaceae , Glicosídeo Hidrolases , Glicosídeo Hidrolases/genética , Bactérias/metabolismo , Bacillaceae/metabolismo , Isoniazida , Genômica
14.
J Basic Microbiol ; 63(7): 722-733, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36856084

RESUMO

Sugarcane bagasse (SB) is a promising source of appreciable quantities of fermentable sugars. However, the presence of lignin hinders utilization of these carbohydrates and hence pretreatment to remove lignin is necessarily carried out. Here, a biological pretreatment method was synchronized with the production of a thermostable cellulase using SB as a raw material. Initially, bagasse was fermented by a laccase producing fungus, Trametes pubescens MB 89 under solid state fermentation (SSF) and a titer of 1758 IU mL-1 of laccase was obtained. Investigations of nine factors affecting laccase production through Plackett Burman design improved the titers to 6539 IU mL-1 . Five factors (incubation period, concentration of CuSO4 , temperature, moisture content, and particle size) were found significant which were optimized through Central Composite design leading to an improvement in the titers by ~5 folds (8841 IU mL-1 ). Biologically pretreated SB was fermented by a thermophilic bacterium, Neobacillus sedimentimangrovi UE25, that yielded 8.64 IU mL-1 of cellulase. Delignification and cellulose utilization were affirmed by structural analysis through FTIR and SEM. The synchronized process yielded higher titers of laccase and cellulase under SSF of SB with the minimum use of corrosive chemicals.


Assuntos
Celulase , Saccharum , Celulose/metabolismo , Lignina/metabolismo , Lacase/metabolismo , Celulase/metabolismo , Saccharum/química , Trametes/metabolismo , Fermentação , Bactérias/metabolismo , Hidrólise
15.
Sensors (Basel) ; 23(5)2023 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-36904753

RESUMO

Multiple-input multiple-output (MIMO) radars enable better estimation accuracy with improved resolution in contrast to traditional radar systems; thus, this field has attracted attention in recent years from researchers, funding agencies, and practitioners. The objective of this work is to estimate the direction of arrival of targets for co-located MIMO radars by proposing a novel approach called flower pollination. This approach is simple in concept, easy to implement and has the capability of solving complex optimization problems. The received data from the far field located targets are initially passed through the matched filter to enhance the signal-to-noise ratio, and then the fitness function is optimized by incorporating the concept of virtual or extended array manifold vectors of the system. The proposed approach outperforms other algorithms mentioned in the literature by utilizing statistical tools for fitness, root mean square error, cumulative distribution function, histograms, and box plots.

16.
Molecules ; 28(4)2023 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-36838704

RESUMO

Elicitors are stressors that activate secondary pathways that lead to the increased production of bioactive molecules in plants. Different elicitors including the fungus Aspergillus niger (0.2 g/L), methyl jasmonate (MeJA, 100 µM/L), and silver nanoparticles (1 µg/L) were added, individually and in combination, in a hydroponic medium. The application of these elicitors in hydroponic culture significantly increased the concentration of photosynthetic pigments and total phenolic contents. The treatment with MeJA (methyl jasmonate) (100 µM/L) and the co-treatment of MeJA and AgNPs (silver nanoparticles) (100 µM/L + 1 µg/L) exhibited the highest chlorophyll a (29 µg g-1 FW) and chlorophyll b (33.6 µg g-1 FW) contents, respectively. The elicitor MeJA (100 µM/L) gave a substantial rise in chlorophyll a and b and total chlorophyll contents. Likewise, a significant rise in carotenoid contents (9 µg/g FW) was also observed when subjected to meJA (100 µM/L). For the phenolic content, the treatment with meJA (100 µM/L) proved to be very effective. Nevertheless, the highest production (431 µg/g FW) was observed when treated with AgNPs (1 µg/L). The treatments with various elicitors in this study had a significant effect on flavonoid and lignin content. The highest concentration of flavonoids and lignin was observed when MeJA (100 mM) was used as an elicitor, following a 72-h treatment period. Hence, for different plant metabolites, the treatment with meJA (100 µM/L) and a co-treatment of MeJA and AgNPs (100 µM/L + 1 µg/L) under prolonged exposure times of 120-144 h proved to be the most promising in the accretion of valuable bioactive molecules. The study opens new insights into the use of these elicitors, individually or in combination, by using different concentrations and compositions.


Assuntos
Nanopartículas Metálicas , Silybum marianum , Silybum marianum/metabolismo , Clorofila A/metabolismo , Lignina/metabolismo , Prata/metabolismo , Hidroponia , Flavonoides/química , Acetatos/metabolismo , Ciclopentanos/metabolismo , Oxilipinas/metabolismo , Fenóis/metabolismo
17.
Environ Monit Assess ; 195(7): 851, 2023 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-37326918

RESUMO

Measurements of radionuclides' activities in air, water, and soil give clues about the anthropogenic activities in the region, and imperative to assess the overall radiological risk for individuals. Such an investigation was carried out to characterize the soil activities in the region hosting a research center, and to calculate the associated elements of radiological risk in terms of radiation doses and hazard indices. The soil samples were collected within the radius of 10 km in local area, Nilore, and analysed for activity using a high-purity germanium (HPGe) gamma spectrometric system. In all samples, only the basic nuclides, contributing to terrestrial activity, i.e., 40 K, 232Th, 226Ra, and 137Cs, were observed within the detectable limits of activity. The distribution of the data set and the correlation between the measured activities were studied with the use of the principal component analysis (PCA). The measured average specific activities of 226Ra, 232Th, 40 K, and 137Cs were 40.65 ± 9.84 Bq/kg, 59.31 ± 16.53 Bq/kg, 528.24 ± 131.18 Bq/kg, and 5.16 ± 4.56 Bq/kg respectively. The corresponding dose rate in air was found to be 76.63 ± 18.39 nGy/h, which is slightly higher than the world median value of 51 nGy/h calculated from concentration of terrestrial radionuclides in soil but falls within the world average value range of outdoor external exposure of 18-93 nGy/h obtained through direct measurement, and therefore not harmful for the living species. The standard hazard indices for all soil samples such as radium equivalent activity ([Formula: see text]), external hazard index (Hex), and internal hazard index (Hin) were also found within safe limits for the soil to be used as construction of building material. This investigation led to conclusion that the soil activities are consistent with the usual background level of terrestrial activities, and their associated dose rates are well within the safe limits for public.


Assuntos
Monitoramento de Radiação , Rádio (Elemento) , Poluentes Radioativos do Solo , Humanos , Espectrometria gama , Monitoramento de Radiação/métodos , Paquistão , Poluentes Radioativos do Solo/análise , Radioisótopos de Césio/análise , Rádio (Elemento)/análise , Solo/química , Medição de Risco , Tório/análise , Radioisótopos de Potássio/análise
18.
J Pak Med Assoc ; 73(11): 2257-2259, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38013541

RESUMO

The majority of meniscal tears in bucket handles are associated with anterior cruciate ligament (ACL) impairment. Its a rare condition which is rarely encountered when the meniscus has a bucket handle on both sides of the compartment. Here we present the case of a 28-year- old male cricket player with a total ACL rupture, a double Posterior Cruciate ligament (PCL) sign on MRI (Magnetic Resonance Imaging), an uncommon occurrence of a complex bucket handle rupture of the medial meniscus with a double PCL sign. It was a complete ACL tear and displaced bucket handle medial meniscus that was also visible on the magnetic resonance imaging. In this report, double PCL sign was shown on MRI and that was confirmed during the arthroscopic procedure.


Assuntos
Lesões do Ligamento Cruzado Anterior , Traumatismos do Joelho , Lesões do Menisco Tibial , Humanos , Masculino , Adulto , Lesões do Ligamento Cruzado Anterior/diagnóstico por imagem , Lesões do Ligamento Cruzado Anterior/cirurgia , Lesões do Ligamento Cruzado Anterior/complicações , Artroscopia/métodos , Ligamento Cruzado Anterior/cirurgia , Meniscos Tibiais/patologia , Meniscos Tibiais/cirurgia , Traumatismos do Joelho/cirurgia , Lesões do Menisco Tibial/diagnóstico por imagem , Lesões do Menisco Tibial/cirurgia , Lesões do Menisco Tibial/complicações , Imageamento por Ressonância Magnética/métodos , Estudos Retrospectivos
19.
Saudi Pharm J ; 31(5): 669-677, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37181138

RESUMO

Microneedle patches are promising transdermal drug delivery platforms with minimal invasiveness in a painless manner. Microneedle patch could be a promising alternate route for delivery of drugs having poor solubility and low bioavailability. This research work therefore, aimed to develop and characterize microneedle patch of thiolated chitosan (TCS) and polyvinyl acetate (PVA) for the systemic delivery of dydrogesterone (DYD). TCS-PVA-based microneedle patch was fabricated with 225 needles having a length of 575 µm with the sharp pointed end. Different ratios of TCS-PVA-based patch were employed to investigate the effects of mechanical tensile strength and percentage elongation. The scanning electron microscopy (SEM) revealed intact sharp-pointed needles. In vitro dissolution studies of microneedle patch (MN-P) were carried out by modified Franz-diffusion cell revealing the sustained release of DYD 81.45 ± 2.768 % at 48 hrs as compared to pure drug that showed 96.7 ± 1.75 % at 12 hrs. The transport of DYD (81%) across skin reaching the systemic circulation was evaluated through ex vivo permeation studies of MN-P. The skin penetration study through the parafilm M method showed good penetration with no deformation and breakage of needles along with no visible signs of skin irritation. Histological study of mice skins clearly showed the deeper penetration of needles into the skin. In summary, as-prepared MN-P show potential in developing an effective transdermal delivery system for DYD.

20.
Chem Rec ; 22(12): e202200097, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36103617

RESUMO

Use of MXenes (Ti3 C2 Tx ), which belongs to the family of two-dimensional transition metal nitrides and carbides by encompassing unique combination of metallic conductivity and hydrophilicity, is receiving tremendous attention, since its discovery as energy material in 2011. Owing to its precursor selective chemical etching, and unique intrinsic characteristics, the MXene surface properties are further classified into highly chemically active compound, which further produced different surface functional groups i. e., oxygen, fluorine or hydroxyl groups. However, the role of surface functional groups doesn't not only have a significant impact onto its electrochemical and hydrophilic characteristics (i. e., ion adsorption/diffusion), but also imparting a noteworthy effect onto its conductivity, work function, electronic structure and properties. Henceforth, such kind of inherent chemical nature, robust electrochemistry and high hydrophilicity ultimately increasing the MXene application as a most propitious material for overall environment-remediation, electrocatalytic sensors, energy conversion and storage application. Moreover, it is well documented that the role of MXenes in all kinds of research fields is still on a progress stage for their further improvement, which is not sufficiently summarized in literature till now. The present review article is intended to critically discuss the different chemical aptitudes and the diversity of MXenes and its derivates (i. e., hybrid composites) in all aforesaid application with special emphasis onto the improvement of its surface characteristics for the multidimensional application. However, this review article is anticipated to endorse MXenes and its derivates hybrid configuration, which is discussed in detail for emerging environmental decontamination, electrochemical use, and pollutant detection via electrocatalytic sensors, photocatalysis, along with membrane distillation and the adsorption application. Finally, it is expected, that this review article will open up new window for the effective use of MXene in a broad range of environmental remediation, energy conversion and storage application as a novel, robust, multidimensional and more proficient materials.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA