RESUMO
Myocardial regeneration capacity declines during the first week after birth, and this decline is linked to adaptation to oxidative metabolism. Utilizing this regenerative window, we characterized the metabolic changes in myocardial injury in 1-day-old regeneration-competent and 7-day-old regeneration-compromised mice. The mice were either sham-operated or received left anterior descending coronary artery ligation to induce myocardial infarction (MI) and acute ischemic heart failure. Myocardial samples were collected 21 days after operations for metabolomic, transcriptomic and proteomic analyses. Phenotypic characterizations were carried out using echocardiography, histology and mitochondrial structural and functional assessments. In both groups, MI induced an early decline in cardiac function that persisted in the regeneration-compromised mice over time. By integrating the findings from metabolomic, transcriptomic and proteomic examinations, we linked regeneration failure to the accumulation of long-chain acylcarnitines and insufficient metabolic capacity for fatty acid beta-oxidation. Decreased expression of the redox-sensitive mitochondrial Slc25a20 carnitine-acylcarnitine translocase together with a decreased reduced:oxidized glutathione ratio in the myocardium in the regeneration-compromised mice pointed to a defect in the redox-sensitive acylcarnitine transport to the mitochondrial matrix. Rather than a forced shift from the preferred adult myocardial oxidative fuel source, our results suggest the facilitation of mitochondrial fatty acid transport and improvement of the beta-oxidation pathway as a means to overcome the metabolic barrier for repair and regeneration in adult mammals after MI and heart failure.
Assuntos
Insuficiência Cardíaca , Infarto do Miocárdio , Animais , Camundongos , Proteômica , Miocárdio/metabolismo , Infarto do Miocárdio/metabolismo , Insuficiência Cardíaca/metabolismo , Ácidos Graxos/metabolismo , Mamíferos/metabolismoRESUMO
OBJECTIVE: Cancer cachexia and muscle loss are associated with increased morbidity and mortality. In preclinical animal models, blocking activin receptor (ACVR) ligands has improved survival and prevented muscle wasting in cancer cachexia without an effect on tumour growth. However, the underlying mechanisms are poorly understood. This study aimed to identify cancer cachexia and soluble ACVR (sACVR) administration-evoked changes in muscle proteome. METHODS: Healthy and C26 tumour-bearing (TB) mice were treated with recombinant sACVR. The sACVR or PBS control were administered either prior to the tumour formation or by continued administration before and after tumour formation. Muscles were analysed by quantitative proteomics with further examination of mitochondria and nicotinamide adenine dinucleotide (NAD+) metabolism. To complement the first prophylactic experiment, sACVR (or PBS) was injected as a treatment after tumour cell inoculation. RESULTS: Muscle proteomics in TB cachectic mice revealed downregulated signatures for mitochondrial oxidative phosphorylation (OXPHOS) and increased acute phase response (APR). These were accompanied by muscle NAD+ deficiency, alterations in NAD+ biosynthesis including downregulation of nicotinamide riboside kinase 2 (Nrk2), and decreased muscle protein synthesis. The disturbances in NAD+ metabolism and protein synthesis were rescued by treatment with sACVR. Across the whole proteome and APR, in particular, Serpina3n represented the most upregulated protein and the strongest predictor of cachexia. However, the increase in Serpina3n expression was associated with increased inflammation rather than decreased muscle mass and/or protein synthesis. CONCLUSIONS: We present evidence implicating disturbed muscle mitochondrial OXPHOS proteome and NAD+ homeostasis in experimental cancer cachexia. Treatment of TB mice with a blocker of activin receptor ligands restores depleted muscle NAD+ and Nrk2, as well as decreased muscle protein synthesis. These results indicate putative new treatment therapies for cachexia and that although acute phase protein Serpina3n may serve as a predictor of cachexia, it more likely reflects a condition of elevated inflammation.
Assuntos
Proteínas de Fase Aguda/metabolismo , Músculo Esquelético/metabolismo , NAD/metabolismo , Serpinas/metabolismo , Receptores de Ativinas/antagonistas & inibidores , Receptores de Ativinas/efeitos dos fármacos , Receptores de Ativinas/metabolismo , Ativinas/metabolismo , Ativinas/farmacologia , Proteínas de Fase Aguda/fisiologia , Animais , Caquexia/metabolismo , Caquexia/fisiopatologia , Linhagem Celular Tumoral , Modelos Animais de Doenças , Masculino , Camundongos , Mitocôndrias/metabolismo , Músculo Esquelético/fisiologia , Atrofia Muscular/metabolismo , Miostatina/metabolismo , Fosforilação Oxidativa , Serpinas/fisiologiaRESUMO
Temporin A (TA) is a small, basic, highly hydrophobic, antimicrobial peptide amide (FLPLIGRVLSGIL-NH2) found in the skin of the European red frog, Rana temporaria. It has variable antibiotic activities against a broad spectrum of microorganisms, including clinically important methicillin-sensitive and -resistant Staphylococcus aureus as well as vancomycin-resistant Enterococcus faecium strains. In this investigation the antimicrobial activity and structural characteristics of TA synthetic analogs were studied. For antibacterial activity against S. aureus and enterococcal strains, the hydrophobicity of the N-terminal amino acid of TA was found to be important as well as a positive charge at amino acid position 7, and bulky hydrophobic side chains at positions 5 and 12. Replacing isoleucine with leucine at amino acid positions 5 and 12 resulted in the greatest enhancement of antibacterial activity. In addition, there was little difference between the activities of TA and its all-D enantiomer, indicating that the peptide probably exerts its effect on bacteria via non-chiral interactions with membrane lipids.
Assuntos
Antibacterianos/farmacologia , Peptídeos/farmacologia , Proteínas/farmacologia , Sequência de Aminoácidos , Animais , Antibacterianos/química , Antibacterianos/isolamento & purificação , Peptídeos Catiônicos Antimicrobianos , Dicroísmo Circular , Resistência Microbiana a Medicamentos , Enterococcus faecalis/efeitos dos fármacos , Enterococcus faecium/efeitos dos fármacos , Espectroscopia de Ressonância Magnética , Resistência a Meticilina , Testes de Sensibilidade Microbiana , Modelos Moleculares , Peptídeos/química , Peptídeos/isolamento & purificação , Conformação Proteica , Proteínas/química , Proteínas/isolamento & purificação , Rana temporaria , Staphylococcus aureus/efeitos dos fármacos , Relação Estrutura-Atividade , Resistência a VancomicinaRESUMO
We selected peptide ligands mimicking the surface structure of discontinuous binding sites of Puumala hantavirus-neutralizing monoclonal antibodies from a random 18-amino acid peptide library containing a disulfide bridge in a fixed position and displayed on a filamentous phage. The varying of selection conditions, either by shortening of the association time or by competitive elution with antigen, was crucial for the selection of peptide inserts that could be aligned with the primary sequences of the envelope glycoproteins G1 and G2. Correspondingly, when the envelope glycoprotein sequences were synthesized as overlapping peptides as spots on membrane, the same site in primary structure was found as with phage display, which corroborates the use of the two methods in mapping of conformational epitopes. Also, epitopes reactive with early-phase sera from Puumala virus infection were defined with the pepspot assay in the amino-terminal region of G1. Similarities of the selected phage clones to a monoclonal antibody-escape mutant site and to a linear early-phase epitope were found.