RESUMO
The most promising means of controlling anthrax, a lethal zoonotic disease during the early infection stages, entail restricting the resilient infectious form, i.e., the spores from proliferating to replicating bacilli in the host. The extractible antigen (EA1), a major S-layer protein present on the vegetative cells and spores of Bacillus anthracis, is highly immunogenic and protects mice against lethal challenge upon immunization. In the present study, mice were immunized with r-EA1C, the C terminal crystallization domain of EA1, to generate a neutralizing monoclonal antibody EA752-862, that was evaluated for its anti-spore and anti-bacterial properties. The monoclonal antibody EA752-862 had a minimum inhibitory concentration of 0.08 mg/ml, was bactericidal at a concentration of 0.1 mg/ml and resulted in 100% survival of mice against challenge with B. anthracis vegetative cells. Bacterial cell lysis as observed by scanning electron microscopy and nucleic acid leakage assay could be attributed as a possible mechanism for the bactericidal property. The association of mAb EA752-862 with spores inhibits their subsequent germination to vegetative cells in vitro, enhances phagocytosis of the spores and killing of the vegetative cells within the macrophage, and subsequently resulted in 90% survival of mice upon B. anthracis Ames spore challenge. Therefore, owing to its anti-spore and bactericidal properties, the present study demonstrates mAb EA752-862 as an efficient neutralizing antibody that hinders the establishment of early infection before massive multiplication and toxin release takes place.
Assuntos
Antraz/prevenção & controle , Antibacterianos/uso terapêutico , Anticorpos Monoclonais/uso terapêutico , Bacillus anthracis/imunologia , Esporos Bacterianos/imunologia , Animais , Antraz/imunologia , Antibacterianos/biossíntese , Antibacterianos/química , Antibacterianos/farmacologia , Anticorpos Antibacterianos/biossíntese , Anticorpos Antibacterianos/química , Anticorpos Antibacterianos/isolamento & purificação , Anticorpos Antibacterianos/farmacologia , Anticorpos Monoclonais/biossíntese , Anticorpos Monoclonais/química , Anticorpos Monoclonais/farmacologia , Anticorpos Neutralizantes/biossíntese , Anticorpos Neutralizantes/química , Anticorpos Neutralizantes/isolamento & purificação , Anticorpos Neutralizantes/farmacologia , Antígenos de Bactérias/imunologia , Bacillus anthracis/efeitos dos fármacos , Sítios de Ligação , Feminino , Imunização , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Testes de Sensibilidade Microbiana , Microscopia Eletrônica de Varredura , Fagocitose/efeitos dos fármacos , Fagocitose/imunologia , Esporos Bacterianos/efeitos dos fármacosRESUMO
Bacillus anthracis (BA), the etiological agent of anthrax, secretes protective antigen (PA), lethal factor (LF), and edema factor (EF) as major virulence mediators. Amongst these, PA-based vaccines are most effective for providing immunity against BA, but their low shelf life limits their usage. Previous studies showed that B-cell epitopes, ID II and ID III present in PA domain IV possess higher toxin neutralization activity and elicit higher antibody titer than ID I. Moreover, N-terminal region of both LF and EF harbors PA-binding sites which share 100% identity with each other. Here, in this study, we have developed an epitope-based chimeric vaccine (ID-LFn) comprising ID II-ID III region of PA and N-terminal region of LF. We have also evaluated its protective efficacy as well as stability and found it to be more stable than PA-based vaccine. Binding reactivities of ID-LFn with anti-PA/LF/EF antibodies were determined by ELISA. The stability of chimeric vaccine was assessed using circular dichroism spectroscopy. ID-LFn response was characterized by toxin neutralization, lymphocyte proliferation isotyping and cytokine profiling. The protective efficacy was analyzed by challenging ID-LFn-immunized mice with B. anthracis (pXO1+ and pXO2+). ID-LFn was found to be significantly stable as compared to PA. Anti-ID-LFn antibodies recognized PA, LF as well as EF. The T-cell response and the protective efficacy of ID-LFn were found to be almost similar to PA. ID-LFn exhibits equal protective efficacy in mice and possesses more stability as compared to PA along with the capability of recognizing PA, LF and EF at the same time. Thus, it can be considered as an improved vaccine against anthrax with better shelf life. ID-LFn, a novel multiepitope chimeric anthrax vaccine: ID-LFn comprises of immunodominant epitopes of domain 4 of PA and N-terminal homologous stretch of LF and EF. The administration of this protein as a vaccine provides protection against anthrax.
Assuntos
Vacinas contra Antraz/imunologia , Vacinas contra Antraz/isolamento & purificação , Antraz/prevenção & controle , Antígenos de Bactérias/imunologia , Toxinas Bacterianas/imunologia , Epitopos/imunologia , Animais , Vacinas contra Antraz/administração & dosagem , Vacinas contra Antraz/química , Anticorpos Antibacterianos/sangue , Antígenos de Bactérias/genética , Toxinas Bacterianas/genética , Dicroísmo Circular , Modelos Animais de Doenças , Estabilidade de Medicamentos , Epitopos/genética , Feminino , Camundongos Endogâmicos BALB C , Análise de Sobrevida , Linfócitos T/imunologia , Vacinas Sintéticas/administração & dosagem , Vacinas Sintéticas/química , Vacinas Sintéticas/imunologia , Vacinas Sintéticas/isolamento & purificaçãoRESUMO
BACKGROUND: Recent report on importance of phosphate starvation (PS) in Bacillus anthracis (BA) pathogenesis warrants further investigation of the underlying regulatory mechanism. Potential role of PhoPR two component system (TCS) in phosphate homeostasis and virulence of several pathogens necessitates the study of annotated PhoPR in BA. METHODS: Expression of phoP and phoR was analyzed using qRT-PCR. PhoPR was characterized biochemically. DNA-protein interaction was analyzed by EMSA. Docking was done to predict PhoPR interacting residues with further validation by mutational studies. pHCMC05 was used to overexpress PhoP in BA. RESULTS: In silico analysis revealed Bas4483-4484, as putative PhoR-PhoP. Their expression was decreased with increasing phosphate concentration reflecting some role in PS. Both PhoP (response regulator) and PhoR (histidine kinase) showed characteristic property of TCS i.e., autophosphorylation and phosphotransfer. PhoR showed both kinase and phosphatase activity. PhoP bound with promoter of PS marker genes. In silico and in vitro analysis revealed role of PhoRH370 and PhoPD10, PhoPD53, PhoPM55 in PhoPR interaction. Challenge studies showed decreased survival of mice infected with BApHCMC05-PhoP. CONCLUSION: This study affirms that PhoPR forms functional TCS which is upregulated under PS. PhoP binding with promoter of PS marker genes indicates its possible role in regulating PS response. Low survival of mice infected with BApHCMC05-PhoP suggests its role in BA virulence. GENERAL SIGNIFICANCE: Considering the significance of PS in BA infection, possible role of PhoPR in its regulation and exclusive presence of TCS in prokaryotes, PhoP can be proposed as potential drug target against anthrax.
Assuntos
Bacillus anthracis/metabolismo , Proteínas de Bactérias/metabolismo , Homeostase , Fosfatos/metabolismo , Sequência de Aminoácidos , Aminoácidos/metabolismo , Animais , Bacillus anthracis/efeitos dos fármacos , Bacillus anthracis/genética , Bacillus anthracis/patogenicidade , Proteínas de Bactérias/química , Sequência de Bases , Simulação por Computador , DNA Bacteriano/metabolismo , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Homeostase/efeitos dos fármacos , Camundongos , Simulação de Dinâmica Molecular , Óperon/genética , Fosfatos/farmacologia , Fosforilação/efeitos dos fármacos , Regiões Promotoras Genéticas , Ligação Proteica/efeitos dos fármacos , Reação em Cadeia da Polimerase em Tempo Real , Reprodutibilidade dos Testes , Homologia de Sequência de Aminoácidos , Transdução de Sinais/efeitos dos fármacos , Análise de Sobrevida , Regulação para Cima/efeitos dos fármacos , Virulência/efeitos dos fármacos , Virulência/genéticaRESUMO
Identifying the factors responsible for survival and virulence of Bacillus anthracis within the host is prerequisite for the development of therapeutics against anthrax. Host provides several stresses as well as many advantages to the invading pathogen. Inorganic phosphate (Pi) starvation within the host has been considered as one of the major contributing factors in the establishment of infection by pathogenic microorganisms. Here, we report for the first time that Pi fluctuation encountered by B. anthracis at different stages of its life cycle within the host, contributes significantly in its pathogenesis. In this study, Pi starvation was found to hasten the onset of infection cycle by promoting spore germination. After germination, it was found to impede cell growth. In addition, phosphate starved bacilli showed more antibiotic tolerance. Interestingly, phosphate starvation enhanced the pathogenicity of B. anthracis by augmenting its invasiveness in macrophages in vitro. B. anthracis grown under phosphate starvation were also found to be more efficient in establishing lethal infections in mouse model as well. Phosphate starvation increased B. anthracis virulence by promoting the secretion of primary virulence factors like protective antigen (PA), lethal factor (LF) and edema factor (EF). Thus, this study affirms that besides other host mediated factors, phosphate limitation may also contribute B. anthracis for successfully establishing itself within the host. This study is a step forward in delineating its pathophysiology that might help in understanding the pathogenesis of anthrax.
Assuntos
Bacillus anthracis/metabolismo , Fosfatos/deficiência , Animais , Antraz/patologia , Antígenos de Bactérias/metabolismo , Toxinas Bacterianas/metabolismo , Biofilmes/efeitos dos fármacos , Meios de Cultura/química , Modelos Animais de Doenças , Farmacorresistência Bacteriana Múltipla , Feminino , Camundongos , Testes de Sensibilidade Microbiana , Fosfatos/metabolismo , Esporos Bacterianos/metabolismo , Estresse FisiológicoRESUMO
Currently used Brucella vaccines, Brucella abortus strain 19 and RB51, comprises of live attenuated Brucella strains and prevent infection in animals. However, these vaccines pose potential risks to recipient animals such as attenuation reversal and virulence in susceptible hosts on administration. In this context, recombinant subunit vaccines emerge as a safe and competent alternative in combating the disease. In this study, we formulated a divalent recombinant vaccine consisting of Omp25 and L7/L12 of B. abortus and evaluated vaccine potential individually as well as in combination. Sera obtained from divalent vaccine (Omp25+L7/L12) immunized mice group exhibited enhanced IgG titers against both components and indicated specificity upon immunoblotting reiterating its authenticity. Further, the IgG1/IgG2a ratio obtained against each antigen predicted a predominant Th2 immune response in the Omp25+L7/L12 immunized mice group. Upon infection with virulent B. abortus 544, Omp25+L7/L12 infected mice exhibited superior Log10 protection compared to individual vaccines. Consequently, this study recommends that simultaneous immunization of Omp25 and L7/L12 as a divalent vaccine complements and triggers a Th2 mediated immune response in mice competent of providing protection against brucellosis.
RESUMO
Group A Streptococcus (GAS) infection causes a range of diseases, but vaccine development is hampered by the high number of serotypes. Here, using reverse vaccinology the authors identify SPy_2191 as a cross-protective vaccine candidate. From 18 initially identified surface proteins, only SPy_2191 is conserved, surface-exposed and inhibits both GAS adhesion and invasion. SPy_2191 immunization in mice generates bactericidal antibodies resulting in opsonophagocytic killing of prevalent and invasive GAS serotypes of different geographical regions, including M1 and M49 (India), M3.1 (Israel), M1 (UK) and M1 (USA). Resident splenocytes show higher interferon-γ and tumor necrosis factor-α secretion upon antigen re-stimulation, suggesting activation of cell-mediated immunity. SPy_2191 immunization significantly reduces streptococcal load in the organs and confers ~76-92% protection upon challenge with invasive GAS serotypes. Further, it significantly suppresses GAS pharyngeal colonization in mice mucosal infection model. Our findings suggest that SPy_2191 can act as a universal vaccine candidate against GAS infections.
Assuntos
Proteínas de Bactérias/imunologia , Proteção Cruzada/imunologia , Infecções Estreptocócicas/prevenção & controle , Vacinas Estreptocócicas/imunologia , Streptococcus pyogenes/imunologia , Animais , Aderência Bacteriana/imunologia , Linhagem Celular , Clonagem Molecular , Modelos Animais de Doenças , Feminino , Humanos , Imunogenicidade da Vacina , Camundongos , Testes de Neutralização , Proteínas Recombinantes/administração & dosagem , Proteínas Recombinantes/imunologia , Sorogrupo , Infecções Estreptocócicas/microbiologia , Vacinas Estreptocócicas/administração & dosagem , Vacinas Sintéticas/administração & dosagem , Vacinas Sintéticas/imunologiaRESUMO
Anthrax vaccines primarily relying only on protective antigen (PA), the cell binding component in anthrax toxins provide incomplete protection when challenged with spores of virulent encapsulated Bacillus anthracis strains. Alternatively, formaldehyde inactivated spores (FIS) or recombinant spore components generate anti-spore immune responses that inhibit the early stages of infection and augment the PA protective efficacy. In the present study domain IV of PA was spliced with exosporium antigen BxpB via a flexible G4S linker to generate a single functional antigen r-PAbxpB that was further assessed for its protective efficacy against anthrax toxins and spore infection. Immunization of mice with r-PAbxpB elicited significantly high titer antibodies comprising IgG1:IgG2a isotypes in 1:1 ratio, balanced up-regulation of both Th1 (IL2, IL12, IFN-γ) and Th2 (IL4, IL5, IL10) cytokines and high frequencies of CD4+ and CD8+ T cell subsets. The anti-r-PAbxpB antibodies significantly enhanced spore phagocytosis, and killing within macrophages; inhibited their germination to vegetative cells and completely neutralized the anthrax toxins as evidenced by the 100% protection in passive transfer studies. Active immunization with r-PAbxpB provided 100 and 83.3% protection in mice I.P. challenged with 5 × LD100 LD of toxins and 5 × 104 cfu/ml Ames spores, respectively while the sham immunized group succumbed to infection in 48 h. Therefore, the ability of r-PAbxpB to generate protective immune responses against both spores and toxin and provide significant protection suggests it as an efficient vaccine candidate against B. anthracis infection.
Assuntos
Vacinas contra Antraz , Antígenos de Bactérias/imunologia , Bacillus anthracis/imunologia , Toxinas Bacterianas/imunologia , Esporos Bacterianos/imunologia , Animais , Antraz/imunologia , Vacinas contra Antraz/imunologia , Anticorpos Antibacterianos/imunologia , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Exotoxinas/imunologia , Feminino , Imunização/métodos , Imunoglobulina G/imunologia , Macrófagos/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Fagocitose/imunologia , Células RAW 264.7 , Células Th1/imunologia , Células Th2/imunologiaRESUMO
There is a compelling need for the development of suitable adjuvants for human use to enhance the efficacy of the upcoming vaccines for the prevention of life threatening infections. In the current study, we have tried to explore the immunogenic potential of nanoparticles (NPs) made of PLGA (poly lactic-co-glycolic acid), a biodegradable and biocompatible polymer approved by FDA for human use after entrapping rL7/L12 protein, an immunodominant antigen of Brucella. Adjuvant properties were exhibited by the formulation as it elicited high IgG antibody titers just after first immunization which increased significantly after the booster administration. A good elicitation of the Th1 cytokines especially IFN-γ was recorded. Amongst the IgG antibody subclasses, IgG1 remained the predominant subclass to be elicited in mice serum after immunization; however IgG1/2a ratio showed a mixed profile of Th1/Th2 response. Lymphocyte proliferation assay as a marker of amplification in cellular immunity demonstrated that the splenocytes of the immunized mice had a high proliferation index with reference to the control, revealing that L7/L12 entrapping PLGA nanoparticles are potent inducer of inflammatory cell response indispensable to combat Brucella infection. Enumeration of splenic CFU after 14 days of infection with Brucella abortus 544 showed a significant reduction in log CFU of splenic bacteria in the vaccinated mice as compared to the control group. Therefore it is evident that PLGA nano formulations delivering the entrapped vaccine candidate in mice elicit specific humoral as well as cellular responses specific to the entrapped Brucella antigen. So there is much promise in this approach and this work by highlighting the adjuvant properties of the PLGA nanospheres will accelerate the development of improved vaccines safe for human as well as veterinary use.