Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Eur J Neurosci ; 2024 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-39449079

RESUMO

Initial symptoms of neurodegenerative diseases are often defined by the loss of the most vulnerable neural populations specific to each disorder. In the early stages of Alzheimer's disease, vulnerable circuits in the temporal lobe exhibit diminished activity prior to overt degeneration. It remains unclear whether these functional changes contribute to regional vulnerability or are simply a consequence of pathology. We previously found that entorhinal neurons in the temporal cortex undergo cell death following transient suppression of electrical activity, suggesting a causal role for activity disruption in neurodegeneration. Here we demonstrate that electrical arrest of this circuit stimulates the injury-response transcription factor c-Jun. Entorhinal silencing induces transcriptional changes consistent with c-Jun activation that share characteristics of gene signatures in other neuronal populations vulnerable to Alzheimer's disease. Despite its established role in the neuronal injury response, inhibiting c-Jun failed to ameliorate entorhinal degeneration following activity disruption. Finally, we present preliminary evidence of integrated stress response activity that may serve as an alternative hypothesis to what drives entorhinal degeneration after silencing. Our data demonstrate that c-Jun is activated in response to neuronal silencing in the entorhinal cortex but is decoupled from subsequent neurodegeneration.

2.
Proc Natl Acad Sci U S A ; 114(10): 2741-2746, 2017 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-28223508

RESUMO

Intrinsically photosensitive retinal ganglion cells (ipRGCs) express the photopigment melanopsin and mediate several non-image-forming visual functions, including circadian photoentrainment and the pupillary light reflex (PLR). ipRGCs act as autonomous photoreceptors via the intrinsic melanopsin-based phototransduction pathway and as a relay for rod/cone input via synaptically driven responses. Under low light intensities, where only synaptically driven rod/cone input activates ipRGCs, the duration of the ipRGC response will be determined by the termination kinetics of the rod/cone circuits. Little is known, however, about the termination kinetics of the intrinsic melanopsin-based phototransduction pathway and its contribution to several melanopsin-mediated behaviors. Here, we show that C-terminal phosphorylation of melanopsin determines the recovery kinetics of the intrinsic melanopsin-based photoresponse in ipRGCs, the duration of the PLR, and the speed of reentrainment. In contrast, circadian phase alignment and direct effects of light on activity (masking) are not influenced by C-terminal phosphorylation of melanopsin. Electrophysiological measurements demonstrate that expression of a virally encoded melanopsin lacking all C-terminal phosphorylation sites (C terminus phosphonull) leads to a prolonged intrinsic light response. In addition, mice expressing the C terminus phosphonull in ipRGCs reentrain faster to a delayed light/dark cycle compared with mice expressing virally encoded WT melanopsin; however, the phase angle of entrainment and masking were indistinguishable. Importantly, a sustained PLR in the phosphonull animals is only observed at brighter light intensities that activate melanopsin phototransduction, but not at dimmer light intensities that activate only the rod/cone pathway. Taken together, our results highlight how the kinetics of the melanopsin photoresponse differentially regulate distinct light-mediated behaviors.


Assuntos
Comportamento Animal , Transdução de Sinal Luminoso/genética , Células Ganglionares da Retina/metabolismo , Opsinas de Bastonetes/metabolismo , Animais , Ritmo Circadiano/genética , Cinética , Luz , Transdução de Sinal Luminoso/fisiologia , Camundongos , Técnicas de Patch-Clamp , Fosforilação/genética , Células Fotorreceptoras de Vertebrados/metabolismo , Células Fotorreceptoras de Vertebrados/fisiologia , Reflexo Pupilar/genética , Reflexo Pupilar/fisiologia , Retina/metabolismo , Retina/fisiologia , Células Ganglionares da Retina/fisiologia , Opsinas de Bastonetes/química , Opsinas de Bastonetes/genética , Sinapses/genética , Sinapses/metabolismo , Visão Ocular/genética , Visão Ocular/fisiologia
3.
J Immunol ; 186(12): 6822-9, 2011 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-21555531

RESUMO

Programmed death ligand 1 (PDL1, or B7-H1) is expressed constitutively or is induced by IFN-γ on the cell surface of most human cancer cells and acts as a "molecular shield" by protecting tumor cells from T cell-mediated destruction. Using seven cell lines representing four histologically distinct solid tumors (lung adenocarcinoma, mammary carcinoma, cutaneous melanoma, and uveal melanoma), we demonstrate that transfection of human tumor cells with the gene encoding the costimulatory molecule CD80 prevents PDL1-mediated immune suppression by tumor cells and restores T cell activation. Mechanistically, CD80 mediates its effects through its extracellular domain, which blocks the cell surface expression of PDL1 but does not prevent intracellular expression of PDL1 protein. These studies demonstrate a new role for CD80 in facilitating antitumor immunity and suggest new therapeutic avenues for preventing tumor cell PDL1-induced immune suppression.


Assuntos
Antígenos CD/imunologia , Antígeno B7-1/imunologia , Linfócitos T/imunologia , Antígeno B7-1/administração & dosagem , Antígeno B7-1/genética , Antígeno B7-H1 , Linhagem Celular Tumoral , Expressão Gênica/efeitos dos fármacos , Humanos , Imunoterapia/métodos , Ativação Linfocitária/imunologia , Transfecção
4.
bioRxiv ; 2023 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-37034690

RESUMO

Previously we showed that neurodegeneration initiated by axonal insults depends in part on the stress-responsive kinase Perk (Larhammar et al., 2017). Here we show that Perk acts primarily through Activating Transcription Factor-4 (Atf4) to stimulate not only pro-apoptotic but also pro-regenerative responses following optic nerve injury. Using conditional knockout mice, we find an extensive Perk/Atf4-dependent transcriptional response that includes canonical Atf4 target genes and modest contributions by C/ebp homologous protein (Chop). Overlap with c-Jun-dependent transcription suggests interplay with a parallel stress pathway that couples regenerative and apoptotic responses. Accordingly, neuronal knockout of Atf4 recapitulates the neuroprotection afforded by Perk deficiency, and Perk or Atf4 knockout impairs optic axon regeneration enabled by disrupting the tumor suppressor Pten. These findings contrast with the transcriptional and functional consequences reported for CRISPR targeting of Atf4 or Chop and reveal an integral role for Perk/Atf4 in coordinating neurodegenerative and regenerative responses to CNS axon injury.

5.
Elife ; 52016 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-27669145

RESUMO

Rapid and stable control of pupil size in response to light is critical for vision, but the neural coding mechanisms remain unclear. Here, we investigated the neural basis of pupil control by monitoring pupil size across time while manipulating each photoreceptor input or neurotransmitter output of intrinsically photosensitive retinal ganglion cells (ipRGCs), a critical relay in the control of pupil size. We show that transient and sustained pupil responses are mediated by distinct photoreceptors and neurotransmitters. Transient responses utilize input from rod photoreceptors and output by the classical neurotransmitter glutamate, but adapt within minutes. In contrast, sustained responses are dominated by non-conventional signaling mechanisms: melanopsin phototransduction in ipRGCs and output by the neuropeptide PACAP, which provide stable pupil maintenance across the day. These results highlight a temporal switch in the coding mechanisms of a neural circuit to support proper behavioral dynamics.


Assuntos
Luz , Células Fotorreceptoras/fisiologia , Células Fotorreceptoras/efeitos da radiação , Pupila/fisiologia , Células Ganglionares da Retina/fisiologia , Células Ganglionares da Retina/efeitos da radiação , Ácido Glutâmico/metabolismo , Neurotransmissores/metabolismo , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA