Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
Sensors (Basel) ; 24(3)2024 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-38339715

RESUMO

A novel approach for video instance segmentation is presented using semisupervised learning. Our Cluster2Former model leverages scribble-based annotations for training, significantly reducing the need for comprehensive pixel-level masks. We augment a video instance segmenter, for example, the Mask2Former architecture, with similarity-based constraint loss to handle partial annotations efficiently. We demonstrate that despite using lightweight annotations (using only 0.5% of the annotated pixels), Cluster2Former achieves competitive performance on standard benchmarks. The approach offers a cost-effective and computationally efficient solution for video instance segmentation, especially in scenarios with limited annotation resources.

2.
Soft Matter ; 16(38): 8925-8932, 2020 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-32895674

RESUMO

Suspensions of neutrally buoyant elliptic particles are modeled in 2D using fully resolved simulations that provide two-way interaction between the particle and the fluid medium. Forces due to particle collisions are represented by a diffuse interface approach that allows the investigation of dense suspensions (up to 47% packing fraction). We focus on the role inertial forces play at low and high particle Reynolds numbers termed low Reynolds number and inertial regimes, respectively. The suspensions are characterized by the orientation distribution function (ODF) that reflects shear induced rotation of the particles at low Reynolds numbers, and nearly stationary (swaying) particles at high Reynolds numbers. In both cases, orientational ordering differs qualitatively from the behavior observed in the Stokesian-regime. The ODF becomes flatter with increasing packing fraction, as opposed to the sharpening previous work predicted in the Stokesian regime. The ODF at low particle concentrations differs significantly for the low Reynolds number and inertial regimes, whereas with increasing packing fraction convergence is observed. For dense suspensions, the particle-particle interactions dominate the particle motion.

3.
J Theor Biol ; 456: 261-278, 2018 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-30086288

RESUMO

Vascular patterning is a key process during development and disease. The diffusive decoy receptor sVEGFR1 (sFlt1) is a known regulator of endothelial cell behavior, yet the mechanism by which it controls vascular structure is little understood. We propose computational models to shed light on how vascular patterning is guided by self-organized gradients of the VEGF/sVEGFR1 factors. We demonstrate that a diffusive inhibitor can generate structures with a dense branching morphology in models where the activator elicits directed growth. Inadequate presence of the inhibitor leads to compact growth, while excessive production of the inhibitor blocks expansion and stabilizes existing structures. Model predictions were compared with time-resolved experimental data obtained from endothelial sprout kinetics in fibrin gels. In the presence of inhibitory antibodies against VEGFR1 vascular sprout density increases while the speed of sprout expansion remains unchanged. Thus, the rate of secretion and stability of extracellular sVEGFR1 can modulate vascular sprout density.


Assuntos
Modelos Cardiovasculares , Neovascularização Patológica/metabolismo , Neovascularização Fisiológica/fisiologia , Receptor 1 de Fatores de Crescimento do Endotélio Vascular/fisiologia , Algoritmos , Células Cultivadas , Células Endoteliais da Veia Umbilical Humana/metabolismo , Células Endoteliais da Veia Umbilical Humana/fisiologia , Humanos , Neovascularização Patológica/patologia , Transdução de Sinais/fisiologia , Esferoides Celulares/fisiologia
4.
Soft Matter ; 13(2): 415-420, 2017 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-27934998

RESUMO

We report the first experimental demonstration of bulk segregation in a shear-driven dry granular mixture, where the particles only differ in their surface friction coefficients. We found that the smoother particles tend to sink to the bottom of the shear zone, while rough particles migrate to the top of the sample. This phenomenon is similar to the well known kinetic sieving in particle mixtures with size heterogeneity. In the present case the smooth particles have a higher probability to penetrate into voids created by the shearing than the rough ones. Discrete element simulations were carried out and reproduced the experimentally observed segregation patterns. Moreover, simulations performed in the absence of gravity revealed that rough particles tend to remain in the shear zone, while the smooth particles are being expelled from it. We propose a mechanism in which the smooth particles are driven towards regions of lower shear rate.

5.
Soft Matter ; 13(47): 9036-9045, 2017 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-29177346

RESUMO

Solids deform and fluids flow, but soft glassy materials, such as emulsions, foams, suspensions, and pastes, exhibit an intricate mix of solid- and liquid-like behavior. While much progress has been made to understand their elastic (small strain) and flow (infinite strain) properties, such understanding is lacking for the softening and yielding phenomena that connect these asymptotic regimes. Here we present a comprehensive framework for softening and yielding of soft glassy materials, based on extensive numerical simulations of oscillatory rheological tests, and show that two distinct scenarios unfold depending on the material's packing density. For dense systems, there is a single, pressure-independent strain where the elastic modulus drops and the particle motion becomes diffusive. In contrast, for weakly jammed systems, a two-step process arises: at an intermediate softening strain, the elastic and loss moduli both drop down and then reach a new plateau value, whereas the particle motion becomes diffusive at the distinctly larger yield strain. We show that softening is associated with an extensive number of microscopic contact changes leading to a non-analytic rheological signature. Moreover, the scaling of the softening strain with pressure suggest the existence of a novel pressure scale above which softening and yielding coincide, and we verify the existence of this crossover scale numerically. Our findings thus evidence the existence of two distinct classes of soft glassy materials - jamming dominated and dense - and show how these can be distinguished by their rheological fingerprint.

6.
Soft Matter ; 13(38): 6870-6876, 2017 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-28951909

RESUMO

We report the results of molecular dynamics simulations of stress relaxation tests in athermal viscous soft sphere packings close to their unjamming transition. By systematically and simultaneously varying both the amplitude of the applied strain step and the pressure of the initial condition, we access both linear and nonlinear response regimes and control the distance to jamming. Stress relaxation in viscoelastic solids is characterized by a relaxation time τ* that separates short time scales, where viscous loss is substantial, from long time scales, where elastic storage dominates and the response is essentially quasistatic. We identify two distinct plateaus in the strain dependence of the relaxation time, one each in the linear and nonlinear regimes. The height of both plateaus scales as an inverse power law with the distance to jamming. By probing the time evolution of particle velocities during relaxation, we further identify a correlation between mechanical relaxation in the bulk and the degree of non-affinity in the particle velocities on the micro scale.

7.
Soft Matter ; 12(24): 5450-60, 2016 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-27212139

RESUMO

The shear response of soft solids can be modeled with linear elasticity, provided the forcing is slow and weak. Both of these approximations must break down when the material loses rigidity, such as in foams and emulsions at their (un)jamming point - suggesting that the window of linear elastic response near jamming is exceedingly narrow. Yet precisely when and how this breakdown occurs remains unclear. To answer these questions, we perform computer simulations of stress relaxation and shear start-up tests in athermal soft sphere packings, the canonical model for jamming. By systematically varying the strain amplitude, strain rate, distance to jamming, and system size, we identify characteristic strain and time scales that quantify how and when the window of linear elasticity closes, and relate these scales to changes in the microscopic contact network.

8.
Soft Matter ; 11(13): 2570-6, 2015 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-25679351

RESUMO

In this paper we report experiments where we shear granular rods in split-bottom geometries, and find that a significant heap of height of least 40% of the filling height can form at the particle surface. We show that heaping is caused by a significant secondary flow, absent for spherical particles. Flow reversal transiently reverses the secondary flow, leading to a quick collapse and slower regeneration of the heap. We present a symmetry argument and experimental data that show that the generation of the secondary flow is driven by a misalignment of the mean particle orientation with the streamlines of the flow. This general mechanism is expected to be important in all flows of sufficiently anisometric grains.

9.
Soft Matter ; 10(28): 5157-67, 2014 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-24911156

RESUMO

A granular material exposed to shear shows a variety of unique phenomena: Reynolds dilatancy, positional order and orientational order effects may compete in the shear zone. We study granular packing consisting of macroscopic prolate, oblate and spherical grains and compare their behaviour. X-ray tomography is used to determine the particle positions and orientations in a cylindrical split bottom shear cell. Packing densities and the arrangements of individual particles in the shear zone are evaluated. For anisometric particles, we observe the competition of two opposite effects. On the one hand, the sheared granules are dilated, on the other hand the particles reorient and align with respect to the streamlines. Even though aligned cylinders in principle may achieve higher packing densities, this alignment compensates for the effect of dilatancy only partially. The complex rearrangements lead to a depression of the surface above the well oriented region while neighbouring parts still show the effect of dilation in the form of heaps. For grains with isotropic shapes, the surface remains rather flat. Perfect monodisperse spheres crystallize in the shear zone, whereby positional order partially overcompensates dilatancy effects. However, even slight deviations from the ideal monodisperse sphere shape inhibit crystallization.


Assuntos
Grão Comestível/química , Elasticidade , Sementes/química , Resistência ao Cisalhamento , Cristalização , Modelos Químicos , Tamanho da Partícula
10.
Healthc Inform Res ; 29(2): 112-119, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37190735

RESUMO

OBJECTIVES: Melanoma is the deadliest form of skin cancer, but it can be fully cured through early detection and treatment in 99% of cases. Our aim was to develop a non-invasive machine learning system that can predict the thickness of a melanoma lesion, which is a proxy for tumor progression, through dermoscopic images. This method can serve as a valuable tool in identifying urgent cases for treatment. METHODS: A modern convolutional neural network architecture (EfficientNet) was used to construct a model capable of classifying dermoscopic images of melanoma lesions into three distinct categories based on thickness. We incorporated techniques to reduce the impact of an imbalanced training dataset, enhanced the generalization capacity of the model through image augmentation, and utilized five-fold cross-validation to produce more reliable metrics. RESULTS: Our method achieved 71% balanced accuracy for three-way classification when trained on a small public dataset of 247 melanoma images. We also presented performance projections for larger training datasets. CONCLUSIONS: Our model represents a new state-of-the-art method for classifying melanoma thicknesses. Performance can be further optimized by expanding training datasets and utilizing model ensembles. We have shown that earlier claims of higher performance were mistaken due to data leakage during the evaluation process.

11.
Phys Rev Lett ; 108(22): 228302, 2012 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-23003661

RESUMO

Shear induced alignment of elongated particles is studied experimentally and numerically. We show that shear alignment of ensembles of macroscopic particles is comparable even on a quantitative level to simple molecular systems, despite the completely different types of particle interactions. We demonstrate that for dry elongated grains the preferred orientation forms a small angle with the streamlines, independent of shear rate across three decades. For a given particle shape, this angle decreases with increasing aspect ratio of the particles. The shear-induced alignment results in a considerable reduction of the effective friction of the granular material.

12.
Nature ; 439(7078): 828-30, 2006 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-16482153

RESUMO

Force networks form the skeleton of static granular matter. They are the key factor that determines mechanical properties such as stability, elasticity and sound transmission, which are important for civil engineering and industrial processing. Previous studies have focused on investigations of the global structure of external forces (the boundary condition) and on the probability distribution of individual contact forces. So far, however, precise knowledge of the disordered spatial structure of the force network has remained elusive. Here we report that molecular dynamics simulations of realistic granular packings reveal scale invariance of clusters of particles interacting by means of relatively strong forces. Despite visual variation, force networks for various values of the confining pressure and other parameters have identical scaling exponents and scaling function, thereby determining a universality class. Unexpectedly, the flat ensemble of force configurations (a simple generalization of equilibrium statistical mechanics) belongs to this universality class, whereas some widely studied simplified models do not. This implies that the elasticity of the grains and their geometrical disorder do not affect the universal mechanical properties.

13.
Phys Rev E ; 103(4-1): 042901, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34006001

RESUMO

More than 30 years ago Edwards and co-authors proposed a model to describe the statistics of granular packings by an ensemble of equiprobable jammed states. Experimental tests of this model remained scarce so far. We introduce a simple system to analyze statistical properties of jammed granular ensembles to test Edwards theory. Identical spheres packed in a nearly two-dimensional geometrical confinement were studied in experiments and numerical simulations. When tapped, the system evolves toward a ground state, but due to incompatible domain structures it gets trapped. Analytical calculations reproduce relatively well our simulation results, which allows us to test Edwards theory on a coupled system of two subsystems with different properties. We find that the joint system can only be described by the Edwards theory if considered as a single system due to the constraints in the stresses. The results show counterintuitive effects as in the coupled system the change in the order parameter is opposite to what is expected from the change in the compactivity.

14.
Phys Rev E Stat Nonlin Soft Matter Phys ; 78(1 Pt 2): 015701, 2008 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-18764013

RESUMO

We present simulations of coherent structures in compressible flows near the transition to turbulence using the dissipative particle dynamics method. The structures we find are remarkably consistent with experimental observations and direct numerical simulations (DNS) simulations of incompressible flows, despite a difference in Mach number of several orders of magnitude. The bifurcation from the laminar flow is bistable and shifts to higher Reynolds numbers when the fluid becomes more compressible. This work underlines the robustness of coherent structures in the transition to turbulence and illustrates the ability of particle-based methods to reproduce complex nonlinear instabilities.

15.
Phys Rev E Stat Nonlin Soft Matter Phys ; 75(2 Pt 1): 020301, 2007 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-17358301

RESUMO

We probe the nature of the jamming transition of frictional granular media by studying their vibrational properties as a function of the applied pressure p and friction coefficient mu. The density of vibrational states exhibits a crossover from a plateau at frequencies omega > or similar to omega*(p,mu) to a linear growth for omega < or similar to omega*(p,mu). We show that omega* is proportional to Deltaz, the excess number of contacts per grain relative to the minimally allowed, isostatic value. For zero and infinitely large friction, typical packings at the jamming threshold have Deltaz-->0, and then exhibit critical scaling. We study the nature of the soft modes in these two limits, and find that the ratio of elastic moduli is governed by the distance from isostaticity.

16.
Phys Rev E ; 96(6-1): 062903, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29347339

RESUMO

We study the rheology of dense granular flows for frictionless spherocylinders by means of 3D numerical simulations. As in the case of spherical particles, the effective friction µ is an increasing function of the inertial number I, and we systematically investigate the dependence of µ on the particle aspect ratio Q, as well as that of the normal stress differences, the volume fraction, and the coordination number. We show in particular that the quasistatic friction coefficient is nonmonotonic with Q: from the spherical case Q=1, it first sharply increases, reaches a maximum around Q≃1.05, and then gently decreases until Q=3, passing its initial value at Q≃2. We provide a microscopic interpretation for this unexpected behavior through the analysis of the distribution of dissipative contacts around the particles: as compared to spheres, slightly elongated grains enhance contacts in their central cylindrical band, whereas at larger aspect ratios particles tend to align and dissipate by preferential contacts at their hemispherical caps.

17.
Phys Rev E Stat Nonlin Soft Matter Phys ; 72(3 Pt 1): 031403, 2005 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-16241431

RESUMO

We explore the macroscopic consequences of lattice anisotropy for diffusion limited aggregation (DLA) in three dimensions. Simple cubic and bcc lattice growths are shown to approach universal asymptotic states in a coherent fashion, and the approach is accelerated by the use of noise reduction. These states are strikingly anisotropic dendrites with a rich hierarchy of structure. For growth on an fcc lattice, our data suggest at least two stable fixed points of anisotropy, one matching the bcc case. Hexagonal growths, favoring six planar and two polar directions, appear to approach a line of asymptotic states with continuously tunable polar anisotropy. The more planar of these growths visually resembles real snowflake morphologies. Our simulations use a new and dimension-independent implementation of the DLA model. The algorithm maintains a hierarchy of sphere coverings of the growth, supporting efficient random walks onto the growth by spherical moves. Anisotropy was introduced by restricting growth to certain preferred directions.

18.
Phys Rev E Stat Nonlin Soft Matter Phys ; 72(2 Pt 1): 021301, 2005 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-16196550

RESUMO

We present numerical simulations of acoustic wave propagation in confined granular systems consisting of particles interacting with the three-dimensional Hertz-Mindlin force law. The response to a short mechanical excitation on one side of the system is found to be a propagating coherent wave front followed by random oscillations made of multiply scattered waves. We find that the coherent wave front is insensitive to details of the packing: force chains do not play an important role in determining this wave front. The coherent wave propagates linearly in time, and its amplitude and width depend as a power law on distance, while its velocity is roughly compatible with the predictions of macroscopic elasticity. As there is at present no theory for the broadening and decay of the coherent wave, we numerically and analytically study pulse propagation in a one-dimensional chain of identical elastic balls. The results for the broadening and decay exponents of this system differ significantly from those of the random packings. In all our simulations, the speed of the coherent wave front scales with pressure as p1/6; we compare this result with experimental data on various granular systems where deviations from the p1/6 behavior are seen. We briefly discuss the eigenmodes of the system and effects of damping are investigated as well.

19.
Phys Rev E Stat Nonlin Soft Matter Phys ; 66(2 Pt 2): 026109, 2002 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-12241239

RESUMO

Off-lattice diffusion-limited aggregation (DLA) clusters grown with different levels of noise reduction are found to be consistent with a simple fractal fixed point. Cluster shapes and their ensemble variation exhibit a dominant slowest correction to scaling, and this also accounts for the apparent "multiscaling" in the DLA mass distribution. We interpret the correction to scaling in terms of renormalized noise. The limiting value of this variable is strikingly small and is dominated by fluctuations in cluster shape. Earlier claims of anomalous scaling in DLA were misled by the slow approach to this small fixed point value.

20.
Phys Rev E Stat Nonlin Soft Matter Phys ; 68(2 Pt 1): 020401, 2003 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-14524940

RESUMO

We performed extensive numerical simulation of diffusion-limited aggregation in two-dimensional channel geometry. Contrary to earlier claims, the measured fractal dimension D=1.712+/-0.002 and its leading correction to scaling are the same as in the radial case. The average cluster, defined as the average conformal map, is similar but not identical to Saffman-Taylor fingers.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA