Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
J Neurosci ; 42(47): 8881-8896, 2022 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-36261283

RESUMO

Fused in sarcoma (FUS) is a pathogenic RNA-binding protein in amyotrophic lateral sclerosis (ALS). We previously reported that FUS stabilizes Synaptic Ras-GTPase activating protein 1 (Syngap1) mRNA at its 3' untranslated region (UTR) and maintains spine maturation. To elucidate the pathologic roles of this mechanism in ALS patients, we identified the SYNGAP1 3'UTR variant rs149438267 in seven (four males and three females) out of 807 ALS patients at the FUS binding site from a multicenter cohort in Japan. Human-induced pluripotent stem cell (hiPSC)-derived motor neurons with the SYNGAP1 variant showed aberrant splicing, increased isoform α1 levels, and decreased isoform γ levels, which caused dendritic spine loss. Moreover, the SYNGAP1 variant excessively recruited FUS and heterogeneous nuclear ribonucleoprotein K (HNRNPK), and antisense oligonucleotides (ASOs) blocking HNRNPK altered aberrant splicing and ameliorated dendritic spine loss. These data suggest that excessive recruitment of RNA-binding proteins, especially HNRNPK, as well as changes in SYNGAP1 isoforms, are crucial for spine formation in motor neurons.SIGNIFICANCE STATEMENT It is not yet known which RNAs cause the pathogenesis of amyotrophic lateral sclerosis (ALS). We previously reported that Fused in sarcoma (FUS), a pathogenic RNA-binding protein in ALS, stabilizes synaptic Ras-GTPase activating protein 1 (Syngap1) mRNA at its 3' untranslated region (UTR) and maintains dendritic spine maturation. To elucidate whether this mechanism is crucial for ALS, we identified the SYNGAP1 3'UTR variant rs149438267 at the FUS binding site. Human-induced pluripotent stem cell (hiPSC)-derived motor neurons with the SYNGAP1 variant showed aberrant splicing, which caused dendritic spine loss along with excessive recruitment of FUS and heterogeneous nuclear ribonucleoprotein K (HNRNPK). Our findings that dendritic spine loss is because of excess recruitment of RNA-binding proteins provide a basis for the future exploration of ALS-related RNA-binding proteins.


Assuntos
Esclerose Lateral Amiotrófica , Sarcoma , Masculino , Feminino , Humanos , Esclerose Lateral Amiotrófica/metabolismo , Regiões 3' não Traduzidas/genética , Proteína FUS de Ligação a RNA/genética , Proteína FUS de Ligação a RNA/metabolismo , Ribonucleoproteínas Nucleares Heterogêneas Grupo K/genética , Espinhas Dendríticas/metabolismo , Mutação , Proteínas de Ligação a RNA/genética , RNA Mensageiro/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Proteínas Ativadoras de GTPase/genética , Proteínas Ativadoras de GTPase/metabolismo , Sarcoma/genética , Proteínas Ativadoras de ras GTPase/genética
2.
Neurochem Res ; 47(9): 2741-2756, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35622214

RESUMO

One of the key areas in stem cell research is the identification of factors capable of promoting the expansion of Neural Stem Cell/Progenitor Cells (NSPCs) and understanding their molecular mechanisms for future use in clinical settings. We previously identified Macrophage Migration Inhibitory Factor (MIF) as a novel factor that can support the proliferation and/or survival of NSPCs based on in vitro functional cloning strategy and revealed that MIF can support the proliferation of human brain tumor-initiating cells (BTICs). However, the detailed downstream signaling for the functions has largely remained unknown. Thus, in the present study, we newly identified translationally-controlled tumor protein-1 (TPT1), which is expressed in the ventricular zone of mouse embryonic brain, as a downstream target of MIF signaling in mouse and human NSPCs and human BTICs. Using gene manipulation (over or downregulation of TPT1) techniques including CRISPR/Cas9-mediated heterozygous gene disruption showed that TPT1 contributed to the regulation of cell proliferation/survival in mouse NSPCs, human embryonic stem cell (hESC) derived-NSPCs, human-induced pluripotent stem cells (hiPSCs) derived-NSPCs and BTICs. Furthermore, gene silencing of TPT1 caused defects in neuronal differentiation in the NSPCs in vitro. We also identified the MIF-CHD7-TPT1-SMO signaling axis in regulating hESC-NSPCs and BTICs proliferation. Intriguingly, TPT1suppressed the miR-338 gene, which targets SMO in hESC-NSPCs and BTICs. Finally, mice with implanted BTICs infected with lentivirus-TPT1 shRNA showed a longer overall survival than control. These results also open up new avenues for the development of glioma therapies based on the TPT1 signaling pathway.


Assuntos
Fatores Inibidores da Migração de Macrófagos , Células-Tronco Neoplásicas , Células-Tronco Neurais , Proteína Tumoral 1 Controlada por Tradução , Animais , Encéfalo/metabolismo , Proliferação de Células/fisiologia , Humanos , Oxirredutases Intramoleculares , Fatores Inibidores da Migração de Macrófagos/genética , Fatores Inibidores da Migração de Macrófagos/metabolismo , Camundongos , MicroRNAs/metabolismo , Proteínas de Neoplasias/metabolismo , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neurais/metabolismo , Proteína Tumoral 1 Controlada por Tradução/genética
3.
Neurobiol Dis ; 155: 105364, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33857636

RESUMO

Fused in sarcoma/translated in liposarcoma (FUS) is a causative gene of amyotrophic lateral sclerosis (ALS). Mutated FUS causes accumulation of DNA damage and cytosolic stress granule (SG) formation, thereby motor neuron (MN) death. However, key molecular aetiology remains unclear. Here, we applied a novel platform technology, iBRN, "Non- biased" Bayesian gene regulatory network analysis based on induced pluripotent stem cell (iPSC)-derived cell model, to elucidate the molecular aetiology using transcriptome of iPSC-derived MNs harboring FUSH517D. iBRN revealed "hub molecules", which strongly influenced transcriptome network, such as miR-125b-5p-TIMELESS axis and PRKDC for the molecular aetiology. Next, we confirmed miR-125b-5p-TIMELESS axis in FUSH517D MNs such that miR-125b-5p regulated several DNA repair-related genes including TIMELESS. In addition, we validated both introduction of miR-125b-5p and knocking down of TIMELESS caused DNA damage in the cell culture model. Furthermore, PRKDC was strongly associated with FUS mis-localization into SGs by DNA damage under impaired DNA-PK activity. Collectively, our iBRN strategy provides the first compelling evidence to elucidate molecular aetiology in neurodegenerative diseases.


Assuntos
Esclerose Lateral Amiotrófica/genética , Redes Reguladoras de Genes/fisiologia , Células-Tronco Pluripotentes Induzidas/fisiologia , MicroRNAs/genética , Proteína FUS de Ligação a RNA/genética , Esclerose Lateral Amiotrófica/metabolismo , Teorema de Bayes , Linhagem Celular Tumoral , Dano ao DNA/fisiologia , Técnicas de Inativação de Genes/métodos , Humanos , MicroRNAs/biossíntese , Proteína FUS de Ligação a RNA/biossíntese
4.
Brain ; 142(6): 1675-1689, 2019 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-31135049

RESUMO

The mechanism by which dopaminergic neurons are selectively affected in Parkinson's disease is not fully understood. In this study, we found a dramatic increase in the expression of catechol-O-methyltransferase (COMT), along with a lower level of DNA methylation, in induced pluripotent stem cell-derived dopaminergic neurons from patients with parkin (PARK2) gene mutations compared to those from healthy controls. In addition, a significant increase in the expression of COMT was found in dopaminergic neurons of isogenic PARK2 induced pluripotent stem cell lines that mimicked loss of function of PARK2 by CRISPR Cas9 technology. In dopamine transporter (DAT)-Cre mice, overexpression of COMT, specifically in dopaminergic neurons of the substantia nigra, produced cataleptic behaviours associated with impaired motor coordination. These findings suggest that upregulation of COMT, likely resulting from DNA hypomethylation, in dopaminergic neurons may contribute to the initial stage of neuronal dysfunction in Parkinson's disease.


Assuntos
Catecol O-Metiltransferase/genética , Neurônios Dopaminérgicos/metabolismo , Doença de Parkinson/metabolismo , Ubiquitina-Proteína Ligases/genética , Animais , Proteínas da Membrana Plasmática de Transporte de Dopamina/genética , Proteínas da Membrana Plasmática de Transporte de Dopamina/metabolismo , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Camundongos Transgênicos , Doença de Parkinson/genética , Doença de Parkinson/fisiopatologia , Substância Negra/metabolismo
5.
Biochem Biophys Res Commun ; 483(1): 88-93, 2017 01 29.
Artigo em Inglês | MEDLINE | ID: mdl-28057485

RESUMO

Patient-specific induced pluripotent stem cells (iPSCs) show promise for use as tools for in vitro modeling of Parkinson's disease. We sought to improve the efficiency of dopaminergic (DA) neuron induction from iPSCs by the using surface markers expressed in DA progenitors to increase the significance of the phenotypic analysis. By sorting for a CD184high/CD44- fraction during neural differentiation, we obtained a population of cells that were enriched in DA neuron precursor cells and achieved higher differentiation efficiencies than those obtained through the same protocol without sorting. This high efficiency method of DA neuronal induction enabled reliable detection of reactive oxygen species (ROS) accumulation and vulnerable phenotypes in PARK2 iPSCs-derived DA neurons. We additionally established a quantitative system using the mt-mKeima reporter system to monitor mitophagy in which mitochondria fuse with lysosomes and, by combining this system with the method of DA neuronal induction described above, determined that mitophagy is impaired in PARK2 neurons. These findings suggest that the efficiency of DA neuron induction is important for the precise detection of cellular phenotypes in modeling Parkinson's disease.


Assuntos
Neurônios Dopaminérgicos/citologia , Neurônios Dopaminérgicos/metabolismo , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Apoptose , Diferenciação Celular/fisiologia , Linhagem Celular , Humanos , Receptores de Hialuronatos/metabolismo , Mitofagia/fisiologia , Modelos Neurológicos , Células-Tronco Neurais/citologia , Células-Tronco Neurais/metabolismo , Doença de Parkinson/etiologia , Doença de Parkinson/metabolismo , Doença de Parkinson/patologia , Espécies Reativas de Oxigênio/metabolismo
6.
Cell Struct Funct ; 36(2): 209-22, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21979235

RESUMO

Generation of iPS cells from mouse embryonic fibroblasts (MEF) was achieved using a BacMam transduction system containing a polycistronic plasmid expression vector for coincident and optimized expression of four defined reprogramming transcription factors. The sequences for Oct4, Klf4, Sox2 and c-Myc, were cloned as a fusion gene (OKSM) in a single open reading frame (ORF) via self-cleaving 2A peptides and expressed under the control of the CAG promoter. The transduction efficiency of primary MEF cells with BacMam particles carrying CAG-directed Venus reporter gene is 64-98%. After three successive transductions (at intervals of 3 days) of MEF cells with BacMam particles carrying a OKSM or OSKM cassette, the iPS cell colonies are observed in 15-24 days. A single transduction of MEF cells is also effective in generating sufficiently reprogrammed iPS cell lines. The iPS cell lines from colonies picked were positively stained by Nanog, SSEA-1 immunofluorescence and alkaline phosphatase substrate markers. The advantage of using the EOS-S(4+)-EmGFP reporter to identify sufficiently reprogrammed iPS cell lines is discussed by representing experimental results obtained with electroporated plasmids, such as a mixture of 2 tandem OS and KM plasmids and a polycistronic OKSM expression plasmid.


Assuntos
Baculoviridae/genética , Vetores Genéticos/genética , Células-Tronco Pluripotentes Induzidas/citologia , Animais , Reprogramação Celular/genética , Fibroblastos/citologia , Fator 4 Semelhante a Kruppel , Fatores de Transcrição Kruppel-Like/genética , Fatores de Transcrição Kruppel-Like/metabolismo , Camundongos , Fator 3 de Transcrição de Octâmero/genética , Fator 3 de Transcrição de Octâmero/metabolismo , Fases de Leitura Aberta/genética , Proteínas Proto-Oncogênicas c-myc/genética , Proteínas Proto-Oncogênicas c-myc/metabolismo , Fatores de Transcrição SOXB1/genética , Fatores de Transcrição SOXB1/metabolismo , Proteínas Virais/genética , Proteínas Virais/metabolismo
7.
Stem Cell Reports ; 16(6): 1527-1541, 2021 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-34048688

RESUMO

Amyotrophic lateral sclerosis (ALS) is an adult-onset incurable motor neuron (MN) disease. The reasons for selective MN vulnerability in ALS are unknown. Axonal pathology is among the earliest signs of ALS. We searched for novel modulatory genes in human MN axon shortening affected by TARDBP mutations. In transcriptome analysis of RNA present in the axon compartment of human-derived induced pluripotent stem cell (iPSC)-derived MNs, PHOX2B (paired-like homeobox protein 2B) showed lower expression in TARDBP mutant axons, which was consistent with axon qPCR and in situ hybridization. PHOX2B mRNA stability was reduced in TARDBP mutant MNs. Furthermore, PHOX2B knockdown reduced neurite length in human MNs. Finally, phox2b knockdown in zebrafish induced short spinal axons and impaired escape response. PHOX2B is known to be highly express in other types of neurons maintained after ALS progression. Collectively, TARDBP mutations induced loss of axonal resilience, which is an important ALS-related phenotype mediated by PHOX2B downregulation.


Assuntos
Esclerose Lateral Amiotrófica/metabolismo , Axônios/metabolismo , Proteínas de Ligação a DNA/metabolismo , Proteínas de Homeodomínio/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Neurônios Motores/metabolismo , Fatores de Transcrição/metabolismo , Peixe-Zebra/metabolismo , Esclerose Lateral Amiotrófica/genética , Animais , Proteínas de Ligação a DNA/genética , Regulação da Expressão Gênica , Técnicas de Silenciamento de Genes/métodos , Proteínas de Homeodomínio/genética , Humanos , Mutação , Fenótipo , Fatores de Transcrição/genética , Transcriptoma
8.
Stem Cell Res ; 49: 102073, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33181472

RESUMO

Leucine-rich repeat kinase 2 (LRRK2) is the causal gene of the autosomal dominant hereditary form of Parkinson's disease (PD), PARK8. We have previously reported that induced pluripotent stem cells (iPSCs) from a PARK8 patient with I2020T LRRK2 mutation replicated to some extent the pathologic phenotype evident in the brain of PD patients. In the present study, we generated gene-corrected iPSCs line, KEIUi001-A, using TALEN-mediated genome editing. KEIUi001-A retained a normal karyotype and pluripotency, i.e. the capacity to differentiate into cell types of the three germ layers. This iPSCs will be valuable for clarifying various aspects of LRRK2-related pathology.


Assuntos
Células-Tronco Pluripotentes Induzidas , Doença de Parkinson , Humanos , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/genética , Mutação , Doença de Parkinson/genética , Fenótipo
9.
Cells ; 9(3)2020 02 25.
Artigo em Inglês | MEDLINE | ID: mdl-32106535

RESUMO

Obtaining differentiated cells with high physiological functions by an efficient, but simple and rapid differentiation method is crucial for modeling neuronal diseases in vitro using human pluripotent stem cells (hPSCs). Currently, methods involving the transient expression of one or a couple of transcription factors have been established as techniques for inducing neuronal differentiation in a rapid, single step. It has also been reported that microRNAs can function as reprogramming effectors for directly reprogramming human dermal fibroblasts to neurons. In this study, we tested the effect of adding neuronal microRNAs, miRNA-9/9*, and miR-124 (miR-9/9*-124), for the neuronal induction method of hPSCs using Tet-On-driven expression of the Neurogenin2 gene (Ngn2), a proneural factor. While it has been established that Ngn2 can facilitate differentiation from pluripotent stem cells into neurons with high purity due to its neurogenic effect, a long or indefinite time is required for neuronal maturation with Ngn2 misexpression alone. With the present method, the cells maintained a high neuronal differentiation rate while exhibiting increased gene expression of neuronal maturation markers, spontaneous calcium oscillation, and high electrical activity with network bursts as assessed by a multipoint electrode system. Moreover, when applying this method to iPSCs from Alzheimer's disease (AD) patients with presenilin-1 (PS1) or presenilin-2 (PS2) mutations, cellular phenotypes such as increased amount of extracellular secretion of amyloid ß42, abnormal oxygen consumption, and increased reactive oxygen species in the cells were observed in a shorter culture period than those previously reported. Therefore, it is strongly anticipated that the induction method combining Ngn2 and miR-9/9*-124 will enable more rapid and simple screening for various types of neuronal disease phenotypes and promote drug discovery.


Assuntos
MicroRNAs/metabolismo , Doenças do Sistema Nervoso/genética , Neurogênese/fisiologia , Neurônios/metabolismo , Células-Tronco Pluripotentes/metabolismo , Diferenciação Celular , Humanos , Neurônios/citologia , Fenótipo , Transfecção
10.
Cell Struct Funct ; 34(1): 47-59, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19305101

RESUMO

An important consideration in the design of multigene delivery technology is the availability of suitable vectors to introduce multiple genes stably and stoichiometrically into living cells and co-express these genes efficiently. As a promising system for this purpose, we developed multi-cDNA expression constructs harboring two to three tandemly situated cDNAs in a single plasmid. The utility of this vector system is amplified by combining it with the psiC31 recombinase system which mediates site-specific integration of the genes into naturally occurring chromosomal sequences. By analyzing 55 psiC31-mediated integration events with five different constructs, each carrying one, two or three tandem cDNA expression cassettes, we identified 39 pseudo attP sites in the HeLaS3 chromosomes. All these sites share a common motif containing an inverted repeat and showing a similarity to the native psiC31 attP. The 36 integration events represented 27 different pseudo attP sites, suggesting the possibility of duplicate integration of the multigene expression plasmids into different genomic loci in a single cell. We demonstrated successive introduction of two different multi-cDNA expression plasmids into definite chromosomal pseudo attP sites, attaining integration of four cDNAs of known genomic constitution at precise genomic loci of a single HeLaS3 cell. The expression levels of these several transgenes were enhanced and made equally stable and robust by inserting the cHS4 insulator between genes.


Assuntos
Bacteriófagos/enzimologia , DNA Complementar , Vetores Genéticos , Integrases/metabolismo , Transfecção , Sítios de Ligação Microbiológicos , Bacteriófagos/genética , Sequência de Bases , Linhagem Celular , Cromossomos , Células HeLa , Humanos , Integrases/genética , Dados de Sequência Molecular , Plasmídeos/genética , Recombinação Genética , Transgenes/genética
11.
PLoS One ; 14(8): e0221164, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31454364

RESUMO

Knock-in (KI) gene targeting can be employed for a wide range of applications in stem cell research. However, vectors for KI require multiple complicated processes for construction, including multiple times of digestion/ligation steps and extensive restriction mapping, which has imposed limitations for the robust applicability of KI gene targeting. To circumvent this issue, here we introduce versatile and systematic methods for generating KI vectors by molecular cloning. In this approach, we employed the Multisite Gateway technology, an efficient in vitro DNA recombination system using proprietary sequences and enzymes. KI vector construction exploiting these methods requires only efficient steps, such as PCR and recombination, enabling robust KI gene targeting. We show that combinatorial usage of the KI vectors generated using this method and site-specific nucleases enabled the precise integration of fluorescent protein genes in multiple loci of human and common marmoset (marmoset; Callithrix jacchus) pluripotent stem cells. The methods described here will facilitate the usage of KI technology and ultimately help to accelerate stem cell research.


Assuntos
DNA Recombinante/genética , Técnicas de Introdução de Genes/métodos , Marcação de Genes/métodos , Vetores Genéticos/genética , Animais , Callithrix/genética , Clonagem Molecular/métodos , Desoxirribonucleases/genética , Genes Reporter/genética , Proteínas de Fluorescência Verde/genética , Humanos , Pesquisa com Células-Tronco
12.
Sci Rep ; 9(1): 1528, 2019 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-30728412

RESUMO

Genome editing technology greatly facilitates the genetic modification of various cells and animals. The common marmoset (Callithrix jacchus), a small non-human primate which exhibits high reproductive efficiency, is a widely used animal model in biomedical research. Developing genome editing techniques in the common marmoset will further enhance its utility. Here, we report the successful establishment of a knock-in (KI) method for marmoset embryonic stem cells (ESCs), which is based on the CRISPR-Cas9 system. The use of CRISPR-Cas9, mediated by homologous recombination (HR), enhanced the KI efficiency in marmoset ESCs. Furthermore, we succeeded in performing KI in early-stage marmoset embryos. In the course of the experiments, we found that HR in the marmoset ESCs is innately highly efficient. This suggested that the marmoset possesses a repair mechanism for DNA double-strand breaks. The current study will facilitate the generation of genetically modified marmosets and gene function analysis in the marmoset.


Assuntos
Sistemas CRISPR-Cas , Quebras de DNA de Cadeia Dupla , Embrião de Mamíferos/citologia , Células-Tronco Embrionárias/citologia , Edição de Genes , Técnicas de Introdução de Genes/métodos , Células-Tronco Neurais/citologia , Animais , Callithrix , Embrião de Mamíferos/metabolismo , Células-Tronco Embrionárias/metabolismo , Feminino , Fatores de Transcrição Forkhead/antagonistas & inibidores , Fatores de Transcrição Forkhead/genética , Marcação de Genes , Recombinação Homóloga , Humanos , Masculino , Modelos Animais , Proteína Proteolipídica de Mielina/antagonistas & inibidores , Proteína Proteolipídica de Mielina/genética , Células-Tronco Neurais/metabolismo
13.
Sci Rep ; 9(1): 9705, 2019 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-31273280

RESUMO

We developed a reporter system that can be used in a dual manner in visualizing mature osteoblast formation. The system is based on a helper-dependent adenoviral vector (HDAdV), in which a fluorescent protein, Venus, is expressed under the control of the 19-kb human osteocalcin (OC) genomic locus. By infecting human and murine primary osteoblast (POB) cultures with this reporter vector, the cells forming bone-like nodules were specifically visualized by the reporter. In addition, the same vector was utilized to efficiently knock-in the reporter into the endogenous OC gene of human induced pluripotent stem cells (iPSCs), by homologous recombination. Neural crest-like cells (NCLCs) derived from the knock-in reporter iPSCs were differentiated into osteoblasts forming bone-like nodules and could be visualized by the expression of the fluorescent reporter. Living mature osteoblasts were then isolated from the murine mixed POB culture by fluorescence-activated cell sorting (FACS), and their mRNA expression profile was analyzed. Our study presents unique utility of reporter HDAdVs in stem cell biology and related applications.


Assuntos
Adenoviridae/genética , Diferenciação Celular , Células-Tronco Embrionárias/citologia , Células-Tronco Pluripotentes Induzidas/citologia , Osteoblastos/citologia , Osteogênese , Osteossarcoma/patologia , Animais , Neoplasias Ósseas/metabolismo , Neoplasias Ósseas/patologia , Células-Tronco Embrionárias/metabolismo , Genes Reporter , Vetores Genéticos/administração & dosagem , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Osteoblastos/metabolismo , Osteossarcoma/metabolismo
14.
EBioMedicine ; 45: 362-378, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31262712

RESUMO

BACKGROUND: The characteristic structure of motor neurons (MNs), particularly of the long axons, becomes damaged in the early stages of amyotrophic lateral sclerosis (ALS). However, the molecular pathophysiology of axonal degeneration remains to be fully elucidated. METHOD: Two sets of isogenic human-induced pluripotent stem cell (hiPSCs)-derived MNs possessing the single amino acid difference (p.H517D) in the fused in sarcoma (FUS) were constructed. By combining MN reporter lentivirus, MN specific phenotype was analyzed. Moreover, RNA profiling of isolated axons were conducted by applying the microfluidic devices that enable axon bundles to be produced for omics analysis. The relationship between the target gene, which was identified as a pathological candidate in ALS with RNA-sequencing, and the MN phenotype was confirmed by intervention with si-RNA or overexpression to hiPSCs-derived MNs and even in vivo. The commonality was further confirmed with other ALS-causative mutant hiPSCs-derived MNs and human pathology. FINDINGS: We identified aberrant increasing of axon branchings in FUS-mutant hiPSCs-derived MN axons compared with isogenic controls as a novel phenotype. We identified increased level of Fos-B mRNA, the binding target of FUS, in FUS-mutant MNs. While Fos-B reduction using si-RNA or an inhibitor ameliorated the observed aberrant axon branching, Fos-B overexpression resulted in aberrant axon branching even in vivo. The commonality of those phenotypes was further confirmed with other ALS causative mutation than FUS. INTERPRETATION: Analyzing the axonal fraction of hiPSC-derived MNs using microfluidic devices revealed that Fos-B is a key regulator of FUS-mutant axon branching. FUND: Japan Agency for Medical Research and development; Japanese Ministry of Education, Culture, Sports, Science and Technology Clinical Research, Innovation and Education Center, Tohoku University Hospital; Japan Intractable Diseases (Nanbyo) Research Foundation; the Kanae Foundation for the Promotion of Medical Science; and "Inochi-no-Iro" ALS research grant.


Assuntos
Esclerose Lateral Amiotrófica/genética , Proteínas Proto-Oncogênicas c-fos/genética , Proteína FUS de Ligação a RNA/genética , Esclerose Lateral Amiotrófica/patologia , Animais , Axônios/metabolismo , Axônios/patologia , Diferenciação Celular/genética , Linhagem Celular , Edição de Genes/métodos , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Lentivirus/genética , Neurônios Motores/metabolismo , Mutação , Neurogênese/genética , Fenótipo , RNA Interferente Pequeno/genética
15.
J Biotechnol ; 136(3-4): 113-21, 2008 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-18640161

RESUMO

Much attention has been focused on manipulating multiple genes in living cells for analyzing protein function. In order to perform high-throughput generation of multi-gene expression clones, gateway cloning technology (which represents a high-throughput DNA transfer from vector to vector) can be anticipated. In the conventional strategy for gateway cloning, the construction of two or more expression elements into tandem elements on a single plasmid requires the recombination of multiple entry clones with a destination vector in a single reaction mixture. Use of increasing numbers of entry clones in a single reaction is inefficient due to the difficulty in successfully recognizing multiple pairs of matched att signals simultaneously. To address this problem, a "Modular Destination" vector has been devised and constructed, whereby cDNA inserts are sequentially introduced, resulting in a tandem structure with multiple inserts. Whereas the standard destination vector contains only Cm(R) and ccdB genes flanked by two attR signals, this destination vector contains, in addition, one or two cDNA expression elements. Here, we show the rapid construction of expression vectors containing three or four tandemly arrayed cDNA expression elements and their expression in mammalian cells.


Assuntos
Clonagem Molecular/métodos , DNA Complementar/metabolismo , Expressão Gênica/genética , Proteínas Recombinantes/genética , Elementos Reguladores de Transcrição , Sequência de Bases , Sequência Consenso , Células HeLa , Humanos , Dados de Sequência Molecular , Proteínas Recombinantes/biossíntese
16.
J Biotechnol ; 136(3-4): 103-12, 2008 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-18640160

RESUMO

Two types of eukaryotic operon-type Expression clones were constructed using the Multisite Gateway system employing six types of att signals. These clones harbored a DNA cassette containing two heterologous ORFs (cDNAs) or three heterologous ORFs in tandem downstream of a single promoter. The most promoter-proximal ORF was translated via a Kozak signal and the downstream one or two ORF(s) were translated as directed by internal ribosome entry site(s) (IRES). These clones were observed to produce two or three different proteins at levels that depended on the activities of the translational initiation signals used. With the intention of modulating the expression level of the first ORF, the translational initiation signals including a Kozak sequence and 11 different IRESs were investigated for their efficiency using a single ORF. The translational activity of these signals varied within a 10-fold magnitude. Using these results, expression at pre-described relative levels was achieved from the optional IRES of the respective ORFs in the cassette. Controllable expression at desired levels of two different ORFs directed by optional IRESs on a bicistronic construct, transcribed from a single promoter, was demonstrated.


Assuntos
Clonagem Molecular/métodos , Células Eucarióticas/metabolismo , Mutagênese Insercional/métodos , Fases de Leitura Aberta/genética , Regiões Promotoras Genéticas/genética , Proteínas de Capeamento de Actina/biossíntese , Proteínas de Capeamento de Actina/genética , Citomegalovirus/genética , Escherichia coli/genética , Expressão Gênica , Genes Reporter , Células HeLa , Hepacivirus/genética , Humanos , Proteínas Luminescentes/biossíntese , Proteínas Luminescentes/genética , Biossíntese de Proteínas , RNA Mensageiro/biossíntese , RNA Mensageiro/genética , Transfecção , Proteínas Virais/biossíntese , Proteínas Virais/genética
17.
Sci Rep ; 8(1): 14215, 2018 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-30242188

RESUMO

Multiple-system atrophy (MSA) is a neurodegenerative disease characterized by autonomic failure with various combinations of parkinsonism, cerebellar ataxia, and pyramidal dysfunction. We previously reported that functionally impaired variants of COQ2, which encodes an essential enzyme in the biosynthetic pathway of coenzyme Q10, are associated with MSA. Here, we report functional deficiencies in mitochondrial respiration and the antioxidative system in induced pluripotent stem cell (iPSC)-derived neurons from an MSA patient with compound heterozygous COQ2 mutations. The functional deficiencies were rescued by site-specific CRISPR/Cas9-mediated gene corrections. We also report an increase in apoptosis of iPSC-derived neurons from MSA patients. Coenzyme Q10 reduced apoptosis of neurons from the MSA patient with compound heterozygous COQ2 mutations. Our results reveal that cellular dysfunctions attributable to decreased coenzyme Q10 levels are related to neuronal death in MSA, particularly in patients with COQ2 variants, and may contribute to the development of therapy using coenzyme Q10 supplementation.


Assuntos
Células-Tronco Pluripotentes Induzidas/metabolismo , Atrofia de Múltiplos Sistemas/metabolismo , Atrofia de Múltiplos Sistemas/patologia , Neurônios/metabolismo , Ubiquinona/análogos & derivados , Adulto , Alquil e Aril Transferases/metabolismo , Sequência de Aminoácidos , Atrofia/metabolismo , Atrofia/patologia , Sequência de Bases , Feminino , Humanos , Células-Tronco Pluripotentes Induzidas/patologia , Masculino , Pessoa de Meia-Idade , Mitocôndrias/metabolismo , Mutação/genética , Neurônios/patologia , Ubiquinona/metabolismo
18.
Stem Cell Reports ; 11(5): 1171-1184, 2018 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-30344006

RESUMO

Parkinson disease (PD) is a progressive neurological disease caused by selective degeneration of dopaminergic (DA) neurons in the substantia nigra. Although most cases of PD are sporadic cases, familial PD provides a versatile research model for basic mechanistic insights into the pathogenesis of PD. In this study, we generated DA neurons from PARK2 patient-specific, isogenic PARK2 null and PARK6 patient-specific induced pluripotent stem cells and found that these neurons exhibited more apoptosis and greater susceptibility to rotenone-induced mitochondrial stress. From phenotypic screening with an FDA-approved drug library, one voltage-gated calcium channel antagonist, benidipine, was found to suppress rotenone-induced apoptosis. Furthermore, we demonstrated the dysregulation of calcium homeostasis and increased susceptibility to rotenone-induced stress in PD, which is prevented by T-type calcium channel knockdown or antagonists. These findings suggest that calcium homeostasis in DA neurons might be a useful target for developing new drugs for PD patients.


Assuntos
Canais de Cálcio Tipo T/metabolismo , Neurônios Dopaminérgicos/patologia , Mitocôndrias/metabolismo , Estresse Oxidativo , Doença de Parkinson/metabolismo , Doença de Parkinson/patologia , Apoptose/efeitos dos fármacos , Cálcio/metabolismo , Bloqueadores dos Canais de Cálcio/química , Bloqueadores dos Canais de Cálcio/farmacologia , Linhagem Celular , Neurônios Dopaminérgicos/metabolismo , Homeostase/efeitos dos fármacos , Humanos , Células-Tronco Pluripotentes Induzidas , Mitocôndrias/efeitos dos fármacos , Modelos Biológicos , Crescimento Neuronal/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Proteínas Quinases/metabolismo , Rotenona/toxicidade , Ubiquitina-Proteína Ligases/metabolismo
19.
Stem Cell Res ; 28: 100-104, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29453127

RESUMO

Dravet syndrome (DS) is an infantile epileptic encephalopathy mainly caused by de novo mutations in the SCN1A gene encoding the α1 subunit of the voltage-gated sodium channel Nav1.1. As an in vitro model of this disease, we previously generated an induced pluripotent stem cell (iPSC) line from a patient with DS carrying a c.4933C>T (p.R1645*) substitution in SCN1A. Here, we describe developing a genome-edited control cell line from this DS iPSC line by substituting the point mutation with the wild-type residue. This artificial control iPSC line will be a powerful tool for research into the pathology of DS.


Assuntos
Técnicas de Cultura de Células/métodos , Epilepsias Mioclônicas/patologia , Edição de Genes , Canal de Sódio Disparado por Voltagem NAV1.1/genética , Nucleases dos Efetores Semelhantes a Ativadores de Transcrição/metabolismo , Adulto , Sequência de Bases , Linhagem Celular , Feminino , Humanos , Células-Tronco Pluripotentes Induzidas , Repetições de Microssatélites/genética , Mycoplasma/isolamento & purificação
20.
Mol Brain ; 11(1): 6, 2018 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-29458391

RESUMO

Ghrelin exerts a wide range of physiological actions throughout the body and appears to be a promising target for disease therapy. Endogenous ghrelin receptors (GHSRs) are present in extrahypothalamic sites including the substantia nigra pars compacta (SNc), which is related to phenotypic dysregulation or frank degeneration in Parkinson's disease (PD). Here we found a dramatic decrease in the expression of GHSR in PD-specific induced pluripotent stem cell (iPSC)-derived dopaminergic (DAnergic) neurons generated from patients carrying parkin gene (PARK2) mutations compared to those from healthy controls. Consistently, a significant decrease in the expression of GHSR was found in DAnergic neurons of isogenic PARK2-iPSC lines that mimicked loss of function of the PARK2 gene through CRISPR Cas9 technology. Furthermore, either intracerebroventricular injection or microinjection into the SNc of the selective GHSR1a antagonist [D-Lys3]-GHRP6 in normal mice produced cataleptic behaviors related to dysfunction of motor coordination. These findings suggest that the down-regulation of GHSRs in SNc-DA neurons induced the initial dysfunction of DA neurons, leading to extrapyramidal disorder under PD.


Assuntos
Neurônios Dopaminérgicos/metabolismo , Regulação para Baixo , Atividade Motora , Doença de Parkinson/patologia , Doença de Parkinson/fisiopatologia , Receptores de Grelina/genética , Substância Negra/metabolismo , Substância Negra/patologia , Animais , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular , Neurônios Dopaminérgicos/efeitos dos fármacos , Regulação para Baixo/efeitos dos fármacos , Técnicas de Introdução de Genes , Técnicas de Inativação de Genes , Humanos , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Células-Tronco Pluripotentes Induzidas/metabolismo , Injeções Intraventriculares , Masculino , Camundongos Endogâmicos C57BL , Atividade Motora/efeitos dos fármacos , Oligopeptídeos/farmacologia , Doença de Parkinson/metabolismo , Receptores de Grelina/antagonistas & inibidores , Receptores de Grelina/metabolismo , Ubiquitina-Proteína Ligases/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA