Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 253
Filtrar
1.
Nature ; 629(8014): 1021-1026, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38750362

RESUMO

Nanoscale structures can produce extreme strain that enables unprecedented material properties, such as tailored electronic bandgap1-5, elevated superconducting temperature6,7 and enhanced electrocatalytic activity8,9. While uniform strains are known to elicit limited effects on heat flow10-15, the impact of inhomogeneous strains has remained elusive owing to the coexistence of interfaces16-20 and defects21-23. Here we address this gap by introducing inhomogeneous strain through bending individual silicon nanoribbons on a custom-fabricated microdevice and measuring its effect on thermal transport while characterizing the strain-dependent vibrational spectra with sub-nanometre resolution. Our results show that a strain gradient of 0.112% per nanometre could lead to a drastic thermal conductivity reduction of 34 ± 5%, in clear contrast to the nearly constant values measured under uniform strains10,12,14,15. We further map the local lattice vibrational spectra using electron energy-loss spectroscopy, which reveals phonon peak shifts of several millielectron-volts along the strain gradient. This unique phonon spectra broadening effect intensifies phonon scattering and substantially impedes thermal transport, as evidenced by first-principles calculations. Our work uncovers a crucial piece of the long-standing puzzle of lattice dynamics under inhomogeneous strain, which is absent under uniform strain and eludes conventional understanding.

2.
Proc Natl Acad Sci U S A ; 121(21): e2317495121, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38753506

RESUMO

Myogenic regeneration relies on the proliferation and differentiation of satellite cells. TECRL (trans-2,3-enoyl-CoA reductase like) is an endoplasmic reticulum protein only expressed in cardiac and skeletal muscle. However, its role in myogenesis remains unknown. We show that TECRL expression is increased in response to injury. Satellite cell-specific deletion of TECRL enhances muscle repair by increasing the expression of EGR2 through the activation of the ERK1/2 signaling pathway, which in turn promotes the expression of PAX7. We further show that TECRL deletion led to the upregulation of the histone acetyltransferase general control nonderepressible 5, which enhances the transcription of EGR2 through acetylation. Importantly, we showed that AAV9-mediated TECRL silencing improved muscle repair in mice. These findings shed light on myogenic regeneration and muscle repair.


Assuntos
Proteína 2 de Resposta de Crescimento Precoce , Desenvolvimento Muscular , Músculo Esquelético , Regeneração , Animais , Camundongos , Músculo Esquelético/metabolismo , Proteína 2 de Resposta de Crescimento Precoce/metabolismo , Proteína 2 de Resposta de Crescimento Precoce/genética , Desenvolvimento Muscular/genética , Regeneração/genética , Regulação para Cima , Células Satélites de Músculo Esquelético/metabolismo , Fator de Transcrição PAX7/metabolismo , Fator de Transcrição PAX7/genética , Sistema de Sinalização das MAP Quinases , Camundongos Knockout , Diferenciação Celular
3.
Proc Natl Acad Sci U S A ; 121(6): e2315990121, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38289960

RESUMO

Immune-mediated necrotizing myopathy (IMNM) is an autoimmune disorder associated with the presence of autoantibodies, characterized by severe clinical presentation with rapidly progressive muscular weakness and elevated levels of creatine kinase, while traditional pharmacological approaches possess varying and often limited effects. Considering the pathogenic role of autoantibodies, chimeric antigen receptor (CAR)-T cells targeting B cell maturation antigen (BCMA) have emerged as a promising therapeutic strategy. We reported here a patient with anti-signal recognition particle IMNM refractory to multiple available therapies, who was treated with BCMA-targeting CAR-T cells, exhibited favorable safety profiles, sustained reduction in pathogenic autoantibodies, and persistent clinical improvements over 18 mo. Longitudinal single-cell RNA, B cell receptor, T cell receptor sequencing analysis presented the normalization of immune microenvironment after CAR-T cell infusion, including reconstitution of B cell lineages, replacement of T cell subclusters, and suppression of overactivated immune cells. Analysis on characteristics of CAR-T cells in IMNM demonstrated a more active expansion of CD8+ CAR-T cells, with a dynamic phenotype shifting pattern similar in CD4+ and CD8+ CAR-T cells. A comparison of CD8+ CAR-T cells in patients with IMNM and those with malignancies collected at different timepoints revealed a more NK-like phenotype with enhanced tendency of cell death and neuroinflammation and inhibited proliferating ability of CD8+ CAR-T cells in IMNM while neuroinflammation might be the distinct characteristics. Further studies are warranted to define the molecular features of CAR-T cells in autoimmunity and to seek higher efficiency and longer persistence of CAR-T cells in treating autoimmune disorders.


Assuntos
Doenças Autoimunes , Mieloma Múltiplo , Doenças Musculares , Receptores de Antígenos Quiméricos , Humanos , Mieloma Múltiplo/tratamento farmacológico , Antígeno de Maturação de Linfócitos B , Doenças Neuroinflamatórias , Imunoterapia Adotiva , Doenças Autoimunes/terapia , Autoanticorpos , Doenças Musculares/terapia , Análise de Célula Única , Terapia Baseada em Transplante de Células e Tecidos , Microambiente Tumoral
4.
Small ; : e2402523, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38747010

RESUMO

A 44.610.8 topology hybrid ultramicroporous material (HUM), {[Cu1.5F(SiF6)(L)2.5]·G}n, (L = 4,4'-bisimidazolylbiphenyl, G = guest molecules), 1, formed by cross-linking interpenetrated 3D four-connected CdSO4-type nets with hexafluorosilicate anions is synthesized and evaluated in the context of gas sorption and separation herein. 1 is the first HUM functionalized with two different types of fluorinated sites (SiF6 2- and F- anions) lining along the pore surface. The optimal pore size (≈5 Å) combining mixed and high-density electronegative fluorinated sites enable 1 to preferentially adsorb C2H2 over CO2 and C2H4 by hydrogen bonding interactions with a high C2H2 isosteric heat of adsorption (Qst) of ≈42.3 kJ mol-1 at zero loading. The pronounced discriminatory sorption behaviors lead to excellent separation performance for C2H2/CO2 and C2H2/C2H4 that surpasses many well-known sorbents. Dynamic breakthrough experiments are conducted to confirm the practical separation capability of 1, which reveal an impressive separation factor of 6.1 for equimolar C2H2/CO2 mixture. Furthermore, molecular simulation and density functional theory (DFT) calculations validate the strong binding of C2H2 stems from the chelating fix of C2H2 between SiF6 2- anion and coordinated F- anion.

5.
Inorg Chem ; 63(5): 2418-2430, 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38264973

RESUMO

Uranyl cation, as an emerging photocatalyst, has been successfully applied to synthetic chemistry in recent years and displayed remarkable catalytic ability under visible light. However, the molecular-level reaction mechanisms of uranyl photocatalysis are unclear. Here, we explore the mechanism of the stepwise benzylic C-H oxygenation of typical alkyl-substituted aromatics (i.e., toluene, ethylbenzene, and cumene) via uranyl photocatalysis using theoretical and experimental methods. Theoretical calculation results show that the most favorable reaction path for uranyl photocatalytic oxidation is as follows: first, hydrogen atom transfer (HAT) from the benzyl position to form a carbon radical ([R•]), then oxygen addition ([R•] + O2 → [ROO•]), then radical-radical combination ([ROO•] + [R•] → [ROOR] → 2[RO•]), and eventually [RO•] reduction to produce alcohols, of which 2° alcohol would further be oxidized to ketones and 1° would be stepwise-oxygenated to acids. The results of the designed verification experiments and the capture of reactive intermediates were consistent with those of theoretical calculations and the previously reported research that the active benzylic C-H would be stepwise-oxygenated in the presence of uranyl. This work deepens our understanding of the HAT mechanism of uranyl photocatalysis and provides important theoretical support for the relevant application of uranyl photocatalysts in organic transformation.

6.
J Chem Phys ; 161(1)2024 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-38949595

RESUMO

Machine learned potentials (MLPs) have been widely employed in molecular dynamics simulations to study thermal transport. However, the literature results indicate that MLPs generally underestimate the lattice thermal conductivity (LTC) of typical solids. Here, we quantitatively analyze this underestimation in the context of the neuroevolution potential (NEP), which is a representative MLP that balances efficiency and accuracy. Taking crystalline silicon, gallium arsenide, graphene, and lead telluride as examples, we reveal that the fitting errors in the machine-learned forces against the reference ones are responsible for the underestimated LTC as they constitute external perturbations to the interatomic forces. Since the force errors of a NEP model and the random forces in the Langevin thermostat both follow a Gaussian distribution, we propose an approach to correcting the LTC by intentionally introducing different levels of force noises via the Langevin thermostat and then extrapolating to the limit of zero force error. Excellent agreement with experiments is obtained by using this correction for all the prototypical materials over a wide range of temperatures. Based on spectral analyses, we find that the LTC underestimation mainly arises from increased phonon scatterings in the low-frequency region caused by the random force errors.

7.
Angew Chem Int Ed Engl ; : e202404084, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38863431

RESUMO

Stimuli-responsive physisorbents that undergo reversible structural transformations induced by external stimuli (e.g. light, guests, or heat) offer the promise of utility in gas storage and separation. Whereas reports on guest or light-responsive sorbents have increased in recent years, we are unaware of reports on sorbents that exhibit both light and guest-induced structural transformations. Herein, we report that the square lattice, sql, topology coordination network Zn(fba)(bis) ⋅ 2DMF (sql-5,6-Zn-α, 5=trans-4,4'-bis(1-imidazolyl)stilbene=bis, 6=2,2-bis(4-carboxyphenyl)hexafluoropropane=H2fba) underwent single-crystal-to-single-crystal transformation (SCSC) upon activation, affording nonporous sql-5,6-Zn-ß. Parallel alignment at 3.23 Šof olefinic moieties on adjacent bis ligands in sql-5,6-Zn-α enabled SCSC [2+2] photocycloaddition upon exposure to UV light (365 nm) or sunlight. sql-5,6-Zn-α thereby transformed to mot-5,6-Zn-α, which was subsequently activated to the narrow pore phase mot-5,6-Zn-ß. sql-5,6-Zn-ß and mot-5,6-Zn-ß both exhibited S-shaped adsorption isotherms characteristic of guest-induced structural changes when exposed to CO2 at 195 K (type-F-IV and type F-I, respectively). Cycling experiments conducted upon sql-5,6-Zn-ß reduced particle size after cycle 1 and induced transformation into a rare example of a shape memory coordination network, sql-5,6-Zn-γ. Insight into this smorgasbord of SCSC phase changes was gained from in situ PXRD, single crystal XRD and 1H NMR spectroscopy experiments.

8.
J Am Chem Soc ; 145(21): 11837-11845, 2023 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-37204941

RESUMO

Ultramicroporous materials can be highly effective at trace gas separations when they offer a high density of selective binding sites. Herein, we report that sql-NbOFFIVE-bpe-Cu, a new variant of a previously reported ultramicroporous square lattice, sql, topology material, sql-SIFSIX-bpe-Zn, can exist in two polymorphs. These polymorphs, sql-NbOFFIVE-bpe-Cu-AA (AA) and sql-NbOFFIVE-bpe-Cu-AB (AB), exhibit AAAA and ABAB packing of the sql layers, respectively. Whereas NbOFFIVE-bpe-Cu-AA (AA) is isostructural with sql-SIFSIX-bpe-Zn, each exhibiting intrinsic 1D channels, sql-NbOFFIVE-bpe-Cu-AB (AB) has two types of channels, the intrinsic channels and extrinsic channels between the sql networks. Gas and temperature induced transformations of the two polymorphs of sql-NbOFFIVE-bpe-Cu were investigated by pure gas sorption, single-crystal X-ray diffraction (SCXRD), variable temperature powder X-ray diffraction (VT-PXRD), and synchrotron PXRD. We observed that the extrinsic pore structure of AB resulted in properties with potential for selective C3H4/C3H6 separation. Subsequent dynamic gas breakthrough measurements revealed exceptional experimental C3H4/C3H6 selectivity (270) and a new benchmark for productivity (118 mmol g-1) of polymer grade C3H6 (purity >99.99%) from a 1:99 C3H4/C3H6 mixture. Structural analysis, gas sorption studies, and gas adsorption kinetics enabled us to determine that a binding "sweet spot" for C3H4 in the extrinsic pores is behind the benchmark separation performance. Density-functional theory (DFT) calculations and Canonical Monte Carlo (CMC) simulations provided further insight into the binding sites of C3H4 and C3H6 molecules within these two hybrid ultramicroporous materials, HUMs. These results highlight, to our knowledge for the first time, how pore engineering through the study of packing polymorphism in layered materials can dramatically change the separation performance of a physisorbent.

9.
Br J Haematol ; 202(3): 539-549, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37246158

RESUMO

Fms-like tyrosine kinase 3 (FLT3) is frequently mutated in haematological malignancies. Although canonical FLT3 mutations including internal tandem duplications (ITDs) and tyrosine kinase domains (TKDs) have been extensively studied, little is known about the clinical significance of non-canonical FLT3 mutations. Here, we first profiled the spectrum of FLT3 mutations in 869 consecutively newly diagnosed acute myeloid leukaemia (AML), myelodysplastic syndrome and acute lymphoblastic leukaemia patients. Our results showed four types of non-canonical FLT3 mutations depending on the affected protein structure: namely non-canonical point mutations (NCPMs) (19.2%), deletion (0.7%), frameshift (0.8%) and ITD outside the juxtamembrane domain (JMD) and TKD1 regions (0.5%). Furthermore, we found that the survival of patients with high-frequency (>1%) FLT3-NCPM in AML was comparable to those with canonical TKD. In vitro studies using seven representative FLT3-deletion or frameshift mutant constructs showed that the deletion mutants of TKD1 and the FLT3-ITD mutant of TKD2 had significantly higher kinase activity than wild-type FLT3, whereas the deletion mutants of JMD had phosphorylation levels comparable with wild-type FLT3. All tested deletion mutations and ITD were sensitive to AC220 and sorafenib. Collectively, these data enrich our understanding of FLT3 non-canonical mutations in haematological malignancies. Our results may also facilitate prognostic stratification and targeted therapy of AML with FLT3 non-canonical mutations.


Assuntos
Neoplasias Hematológicas , Leucemia Mieloide Aguda , Humanos , Tirosina Quinase 3 Semelhante a fms/genética , Mutação , Leucemia Mieloide Aguda/genética , Mutação Puntual
10.
Cancer Cell Int ; 23(1): 117, 2023 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-37328842

RESUMO

BACKGROUND: As a core member of the FA complex, in the Fanconi anemia pathway, FAAP24 plays an important role in DNA damage repair. However, the association between FAAP24 and patient prognosis in AML and immune infiltration remains unclear. The purpose of this study was to explore its expression characteristics, immune infiltration pattern, prognostic value and biological function using TCGA-AML and to verify it in the Beat AML cohort. METHODS: In this study, we examined the expression and prognostic value of FAAP24 across cancers using data from TCGA, TARGET, GTEx, and GEPIA2. To further investigate the prognosis in AML, development and validation of a nomogram containing FAAP24 were performed. GO/KEGG, ssGSEA, GSVA and xCell were utilized to explore the functional enrichment and immunological features of FAAP24 in AML. Drug sensitivity analysis used data from the CellMiner website, and the results were confirmed in vitro. RESULTS: Integrated analysis of the TCGA, TARGET and GTEx databases showed that FAAP24 is upregulated in AML; meanwhile, high FAAP24 expression was associated with poor prognosis according to GEPIA2. Gene set enrichment analysis revealed that FAAP24 is implicated in pathways involved in DNA damage repair, the cell cycle and cancer. Components of the immune microenvironment using xCell indicate that FAAP24 shapes an immunosuppressive tumor microenvironment (TME) in AML, which helps to promote AML progression. Drug sensitivity analysis showed a significant correlation between high FAAP24 expression and chelerythrine resistance. In conclusion, FAAP24 could serve as a novel prognostic biomarker and play an immunomodulatory role in AML. CONCLUSIONS: In summary, FAAP24 is a promising prognostic biomarker in AML that requires further exploration and confirmation.

11.
Neuroendocrinology ; 113(5): 563-576, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36587608

RESUMO

INTRODUCTION: Accumulating evidence indicates that abnormalities in the composition of gastrointestinal (GI) microbiota play a vital role in stress-related disorders. Both human beings and animals perceive stressful events differently, i.e., resilience or susceptibility. However, the role of GI microbiota in stress resilience/susceptibility and the underlying mechanisms remain largely unknown. METHODS AND RESULTS: Sixty male C57BL/6J mice were exposed to 10-day chronic social defeat stress (CSDS), and 28 were found to be resilient to CSDS. We next analyzed microbiota compositions in the cecum using 16S rDNA gene sequencing, which revealed a significant increase in the relative abundance of Lactobacillus at the genus level in the resilient mice. In subsequent experiments, we found that oral administration of a strain of Lactobacillus (Lactobacillus murinus) for 2 weeks attenuated the increased levels of stress-induced corticosterone and anxiety-like behavior in stress-susceptible mice. The mRNA expression of tryptophan hydroxylase 2 (a rate-limiting enzyme in serotonin [5-HT] synthesis) was also significantly increased in the dorsal raphe nucleus (DR) of stress-susceptible mice. CONCLUSIONS: Lactobacillus contributes to stress resilience, and the DR 5-HT system may play an important role during this process. The above results suggest that certain organisms in the GI tract may play an essential role in stress response and be useful in the prevention and treatment of some stress-related psychiatric disorders, such as depression.


Assuntos
Serotonina , Derrota Social , Humanos , Camundongos , Masculino , Animais , Camundongos Endogâmicos C57BL , Estresse Psicológico/metabolismo , Lactobacillus
12.
Inorg Chem ; 62(23): 9099-9110, 2023 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-37227733

RESUMO

Na4Fe3(PO4)2(P2O7) (NFPP) is an attractive candidate for Na+ batteries (SIBs) and Li+ batteries (LIBs). However, the real implementation of NFPP has been critically restrained by the inferior intrinsic electronic conductivity. Herein, in situ carbon-coated mesoporous NFPP, obtained via freeze drying and heat treatment, demonstrates highly reversible insertion/extraction of Na+/Li+. Mechanically, the electronic transmission and structural stabilities of NFPP are significantly enhanced by the graphitized carbon coating layer. Chemically, the porous nanosized structure shortens Na+/Li+ diffusion paths and increases the contact area between the electrolyte and NFPP, ultimately rendering fast ion diffusion. Greatly, long-lasting cyclability (88.5% capacity retention for over 5000 cycles), decent thermal stability at 60 °C, and impressive electrochemical performances are demonstrated in LIBs. The insertion/extraction mechanisms of NFPP in both SIBs and LIBs are systematically investigated, confirming its small volume expansion and high reversibility. The superior electrochemical performances and the insertion/extraction mechanism investigation confirm the feasibility of utilizing NFPP as a cathode material for Na+/Li+ batteries.

13.
Nanotechnology ; 34(14)2023 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-36634354

RESUMO

The graphene-like wrapped Ni@C catalysts were facilely synthesized by a modified sol-gel method. Nickel nitrate and citric acid (CA) were adopted as the raw materials to form sol-gel mixture. Under the circumstances, the additive CA were employed not only as a complexing agent but also as a carbon source. It is found that the calcination temperature and the mole ratios between Ni and CA are the key factors affecting the physical property and the catalytic performance of catalysts in the conversion of nitroarenes into corresponding anilines. The results show that the Ni@C-500(1:1) catalyst exhibited the best performance in the hydrogenation ofo-chloronitrobenzenes (o-CNB) too-chloroanilines (o-CAN). The yield ofo-CAN was achieved at 100% wheno-CNB was completely converted at 40.0 °C under 2.0 MPa H2for 2.0 h. Furthermore, the Ni@C-500(1:1) catalyst could be separated and recovered easily after reaction by an external magnetic field. The investigated results indicate that the Ni@C-500(1:1) catalyst remained higher activity after using twelve times. More importantly, this kind of catalyst is also active for the selective hydrogenation of other nitroarenes into the corresponding anilines. This new synthetic method may pave a way for producing low-cost Ni@C catalysts on a large scale, which is attractive for industrial anilines applications.

14.
Acta Math Appl Sin ; 39(2): 211-221, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37082350

RESUMO

A four-dimensional delay differential equations (DDEs) model of malaria with standard incidence rate is proposed. By utilizing the limiting system of the model and Lyapunov direct method, the global stability of equilibria of the model is obtained with respect to the basic reproduction number R 0. Specifically, it shows that the disease-free equilibrium E 0 is globally asymptotically stable (GAS) for R 0 < 1, and globally attractive (GA) for R 0 = 1, while the endemic equilibrium E* is GAS and E 0 is unstable for R 0 > 1. Especially, to obtain the global stability of the equilibrium E* for R 0 > 1, the weak persistence of the model is proved by some analysis techniques.

15.
Angew Chem Int Ed Engl ; 62(38): e202309601, 2023 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-37548132

RESUMO

High-voltage aqueous rechargeable energy storage devices with safety and high specific energy are hopeful candidates for the future energy storage system. However, the electrochemical stability window of aqueous electrolytes is a great challenge. Herein, inspired by density functional theory (DFT), polyethylene glycol (PEG) can interact strongly with water molecules, effectively reconstructing the hydrogen bond network. In addition, N, N-dimethylformamide (DMF) can coordinate with Zn2+ , assisting in the rapid desolvation of Zn2+ and stable plating/stripping process. Remarkably, by introducing PEG400 and DMF as co-solvents into the electrolyte, a wide electrochemical window of 4.27 V can be achieved. The shift in spectra indicate the transformation in the number and strength of hydrogen bonds, verifying the reconstruction of hydrogen bond network, which can largely inhibit the activity of water molecule, according well with the molecular dynamics simulations (MD) and online electrochemical mass spectroscopy (OEMS). Based on this electrolyte, symmetric Zn cells survived up to 5000 h at 1 mA cm-2 , and high voltage aqueous zinc ion supercapacitors assembled with Zn anode and activated carbon cathode achieved 800 cycles at 0.1 A g-1 . This work provides a feasible approach for constructing high-voltage alkali metal ion supercapacitors through reconstruction strategy of hydrogen bond network.

16.
Angew Chem Int Ed Engl ; 62(47): e202309985, 2023 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-37770385

RESUMO

We report that linker ligand substitution involving just one atom induces a shape-memory effect in a flexible coordination network. Specifically, whereas SIFSIX-23-Cu, [Cu(SiF6 )(L)2 ]n , (L=1,4-bis(1-imidazolyl)benzene, SiF6 2- =SIFSIX) has been previously reported to exhibit reversible switching between closed and open phases, the activated phase of SIFSIX-23-CuN , [Cu(SiF6 )(LN )2 ]n (LN =2,5-bis(1-imidazolyl)pyridine), transformed to a kinetically stable porous phase with strong affinity for CO2 . As-synthesized SIFSIX-23-CuN , α, transformed to less open, γ, and closed, ß, phases during activation. ß did not adsorb N2 (77 K), rather it reverted to α induced by CO2 at 195, 273 and 298 K. CO2 desorption resulted in α', a shape-memory phase which subsequently exhibited type-I isotherms for N2 (77 K) and CO2 as well as strong performance for separation of CO2 /N2 (15/85) at 298 K and 1 bar driven by strong binding (Qst =45-51 kJ/mol) and excellent CO2 /N2 selectivity (up to 700). Interestingly, α' reverted to ß after re-solvation/desolvation. Molecular simulations and density functional theory (DFT) calculations provide insight into the properties of SIFSIX-23-CuN .

17.
J Am Chem Soc ; 144(45): 20903-20914, 2022 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-36342400

RESUMO

A deeply ingrained assumption in the conventional understanding and practice of organometallic chemistry is that an unactivated aliphatic C(sp3)-H bond is less reactive than an aromatic C(sp2)-H bond within the same molecule given that they are at positions unbiasedly accessible for activation. Herein, we demonstrate that a pincer-ligated iridium complex catalyzes intramolecular dehydrogenative silylation of the unactivated δ-C(sp3)-H (δ to the Si atom) with exclusive site selectivity over typically more reactive ortho δ-C(sp2)-H bonds. A variety of tertiary hydrosilanes undergo δ-C(sp3)-H silylation to form 5-membered silolanes, including chiral silolanes, which can undergo further oxidation to produce enantiopure ß-aryl-substituted 1,4-diols. Combined computational and experimental studies reveal that the silylation occurs via the Si-H addition to a 14-electron Ir(I) fragment to give an Ir(III) silyl hydride complex, which then activates the C(sp3)-H bond to form a 7-coordinate, 18-electron Ir(V) dihydride silyl intermediate, followed by sequential reductive elimination of H2 and silolane. The unprecedented site selectivity is governed by the distortion energy difference between the rate-determining δ-C(sp3)-H and δ-C(sp2)-H activation, although the activation at sp2 sites is much more favorable than sp3 sites by the interaction energy.


Assuntos
Álcoois , Irídio , Catálise , Irídio/química , Álcoois/química , Elétrons , Oxirredução
18.
Cardiol Young ; 32(1): 36-41, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33906700

RESUMO

OBJECTIVES: Anomalous origin of the left coronary artery from the pulmonary artery is associated with high mortality if not timely surgery. We reviewed our experience with anomalous origin of the left coronary artery from the pulmonary artery to assess the preoperative variables predictive of outcome and post-operative recovery of left ventricular function. METHODS: A retrospective review was conducted and collected data from patients who underwent anomalous origin of the left coronary artery from the pulmonary artery repair at our institute from April 2005 to December 2019. Left ventricular function was assessed by ejection fraction and the left ventricular end-diastolic dimension index. The outcomes of reimplantation repair were analysed. RESULTS: A total of 30 consecutive patients underwent anomalous origin of the left coronary artery from the pulmonary artery repair, with a median age of 14.7 months (range, 1.5-59.6 months), including 14 females (46.67%). Surgery was performed with direct coronary reimplantation in 12 patients (40%) and the coronary lengthening technique in 18 (60%). Twelve patients had concomitant mitral annuloplasty. There were two in-hospital deaths (6.67%), no patients required mechanical support, and no late deaths occurred. Follow-up echocardiograms demonstrated significant improvement between the post-operative time point and the last follow-up in ejection fraction (49.43%±19.92% vs 60.21%±8.27%, p < 0.01) and in moderate or more severe mitral regurgitation (19/30 vs 5/28, p < 0.01). The left ventricular end-diastolic dimension index decreased from 101.91 ± 23.07 to 65.06 ± 12.82 (p < 0.01). CONCLUSIONS: Surgical repair of anomalous origin of the left coronary artery from the pulmonary artery has good mid-term results with low mortality and reintervention rates. The coronary lengthening technique has good operability and leads to excellent cardiac recovery. The decision to concomitantly correct mitral regurgitation should be flexible and be based on the pathological changes of the mitral valve and the degree of mitral regurgitation.


Assuntos
Anomalias dos Vasos Coronários , Insuficiência da Valva Mitral , Pré-Escolar , Anomalias dos Vasos Coronários/diagnóstico , Anomalias dos Vasos Coronários/cirurgia , Feminino , Humanos , Lactente , Masculino , Insuficiência da Valva Mitral/cirurgia , Artéria Pulmonar/diagnóstico por imagem , Artéria Pulmonar/cirurgia , Estudos Retrospectivos , Resultado do Tratamento
19.
Br J Clin Pharmacol ; 87(4): 1890-1902, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33010043

RESUMO

AIMS: Voriconazole is a broad-spectrum antifungal agent for the treatment of invasive fungal infections. There is limited information about the pharmacokinetics and appropriate dosage of voriconazole in patients with liver dysfunction. This study aimed to explore the relationship between voriconazole trough concentration (Ctrough ) and toxicity, identify the factors significantly associated with voriconazole pharmacokinetic parameters and propose an optimised voriconazole dosing regimen for patients with liver dysfunction. METHODS: The study prospectively enrolled 51 patients with 272 voriconazole concentrations. Receiver operating characteristic curves were used to explore the relationship between voriconazole Ctrough and toxicity. The pharmacokinetic data was analysed with nonlinear mixed-effects method. Dosing simulations stratified by total bilirubin (TBIL, TBIL-1: TBIL < 51 µmol/L; TBIL-2: 51 µmol/L ≤ TBIL < 171 µmol/L; TBIL-3: TBIL ≥ 171 µmol/L) were performed. RESULTS: Receiver operating characteristic curve analysis revealed that voriconazole Ctrough of ≤ 5.1 mg/L were associated with significantly lower the incidence of adverse events. A 1-compartment pharmacokinetic model with first-order absorption and elimination was used to describe the data. Population pharmacokinetic parameters of clearance, volume of distribution and oral bioavailability were 0.88 L/h, 148.8 L and 88.4%, respectively. Voriconazole clearance was significantly associated with TBIL and platelet count. The volume of distribution increased with body weight. Patients with TBIL-1 could be treated with a loading dose of 400 mg every 12 hours (q12h) for first day, followed by a maintenance dose of 100 mg q12h administered orally or intravenously. TBIL-2 and TBIL-3 patients could be treated with a loading dose of 200 mg q12h and maintenance doses of 50 mg q12h or 100 mg once daily and 50 mg once daily orally or intravenously, respectively. CONCLUSIONS: Lower doses and longer dosing intervals should be considered for patients with liver dysfunction. TBIL-based dosing regimens provide a practical strategy for achieving voriconazole therapeutic range and therefore maximizing treatment outcomes.


Assuntos
Infecções Fúngicas Invasivas , Hepatopatias , Antifúngicos/efeitos adversos , Humanos , Infecções Fúngicas Invasivas/tratamento farmacológico , Hepatopatias/tratamento farmacológico , Estudos Prospectivos , Voriconazol/efeitos adversos
20.
Nature ; 528(7582): 387-91, 2015 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-26641312

RESUMO

Radiative transfer of energy at the nanometre length scale is of great importance to a variety of technologies including heat-assisted magnetic recording, near-field thermophotovoltaics and lithography. Although experimental advances have enabled elucidation of near-field radiative heat transfer in gaps as small as 20-30 nanometres (refs 4-6), quantitative analysis in the extreme near field (less than 10 nanometres) has been greatly limited by experimental challenges. Moreover, the results of pioneering measurements differed from theoretical predictions by orders of magnitude. Here we use custom-fabricated scanning probes with embedded thermocouples, in conjunction with new microdevices capable of periodic temperature modulation, to measure radiative heat transfer down to gaps as small as two nanometres. For our experiments we deposited suitably chosen metal or dielectric layers on the scanning probes and microdevices, enabling direct study of extreme near-field radiation between silica-silica, silicon nitride-silicon nitride and gold-gold surfaces to reveal marked, gap-size-dependent enhancements of radiative heat transfer. Furthermore, our state-of-the-art calculations of radiative heat transfer, performed within the theoretical framework of fluctuational electrodynamics, are in excellent agreement with our experimental results, providing unambiguous evidence that confirms the validity of this theory for modelling radiative heat transfer in gaps as small as a few nanometres. This work lays the foundations required for the rational design of novel technologies that leverage nanoscale radiative heat transfer.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA