Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
Mais filtros

Base de dados
Tipo de documento
País/Região como assunto
Intervalo de ano de publicação
1.
Bioprocess Biosyst Eng ; 44(4): 891-899, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33486578

RESUMO

Cadaverine, 1,5-diaminopentane, is one of the most promising chemicals for biobased-polyamide production and it has been successfully produced up to molar concentration. Pyridoxal 5'-phosphate (PLP) is a critical cofactor for inducible lysine decarboxylase (CadA) and is required up to micromolar concentration level. Previously the regeneration of PLP in cadaverine bioconversion has been studied and salvage pathway pyridoxal kinase (PdxY) was successfully introduced; however, this system also required a continuous supply of adenosine 5'-triphosphate (ATP) for PLP regeneration from pyridoxal (PL) which add in cost. Herein, to improve the process further a method of ATP regeneration was established by applying baker's yeast with jhAY strain harboring CadA and PdxY, and demonstrated that providing a moderate amount of adenosine 5'-triphosphate (ATP) with the simple addition of baker's yeast could increase cadaverine production dramatically. After optimization of reaction conditions, such as PL, adenosine 5'-diphosphate, MgCl2, and phosphate buffer, we able to achieve high production (1740 mM, 87% yield) from 2 M L-lysine. Moreover, this approach could give averaged 80.4% of cadaverine yield after three times reactions with baker's yeast and jhAY strain. It is expected that baker's yeast could be applied to other reactions requiring an ATP regeneration system.


Assuntos
Trifosfato de Adenosina/metabolismo , Cadaverina/química , Escherichia coli/metabolismo , Fosfato de Piridoxal/metabolismo , Saccharomyces cerevisiae , Ágar/química , Biotecnologia/métodos , Biotransformação , Cadaverina/metabolismo , Carboxiliases , Fermentação , Microbiologia Industrial/instrumentação , Microbiologia Industrial/métodos , Lisina/química , Lisina/metabolismo , Polímeros/química , Piridoxal , Regeneração
2.
Anal Biochem ; 597: 113688, 2020 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-32194075

RESUMO

Glutaric acid is a precursor of a plasticizer that can be used for the production of polyester amides, ester plasticizer, corrosion inhibitor, and others. Glutaric acid can be produced either via bioconversion or chemical synthesis, and some metabolites and intermediates are produced during the reaction. To ensure reaction efficiency, the substrates, intermediates, and products, especially in the bioconversion system, should be closely monitored. Until now, high performance liquid chromatography (HPLC) has generally been used to analyze the glutaric acid-related metabolites, although it demands separate time-consuming derivatization and non-derivatization analyses. To substitute for this unreasonable analytical method, we applied herein a gas chromatography - mass spectrometry (GC-MS) method with ethyl chloroformate (ECF) derivatization to simultaneously monitor the major metabolites. We determined the suitability of GC-MS analysis using defined concentrations of six metabolites (l-lysine, cadaverine, 5-aminovaleric acid, 2-oxoglutaric acid, glutamate, and glutaric acid) and their mass chromatograms, regression equations, regression coefficient values (R2), dynamic ranges (mM), and retention times (RT). This method successfully monitored the production process in complex fermentation broth.


Assuntos
Ésteres do Ácido Fórmico/metabolismo , Glutaratos/metabolismo , Lisina/metabolismo , Cromatografia Líquida de Alta Pressão , Fermentação , Ésteres do Ácido Fórmico/química , Cromatografia Gasosa-Espectrometria de Massas , Glutaratos/química , Lisina/química , Estrutura Molecular
3.
J Ind Microbiol Biotechnol ; 47(12): 1045-1057, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33259029

RESUMO

Psychrophilic bacteria, living at low and mild temperatures, can contribute significantly to our understanding of microbial responses to temperature, markedly occurring in the bacterial membrane. Here, a newly isolated strain, Pseudomonas sp. B14-6, was found to dynamically change its unsaturated fatty acid and cyclic fatty acid content depending on temperature which was revealed by phospholipid fatty acid (PLFA) analysis. Genome sequencing yielded the sequences of the genes Δ-9-fatty acid desaturase (desA) and cyclopropane-fatty acid-acyl-phospholipid synthase (cfa). Overexpression of desA in Escherichia coli led to an increase in the levels of unsaturated fatty acids, resulting in decreased membrane hydrophobicity and increased fluidity. Cfa proteins from different species were all found to promote bacterial growth, despite their sequence diversity. In conclusion, PLFA analysis and genome sequencing unraveled the temperature-related behavior of Pseudomonas sp. B14-6 and the functions of two membrane-related enzymes. Our results shed new light on temperature-dependent microbial behaviors and might allow to predict the consequences of global warming on microbial communities.


Assuntos
Ácidos Graxos Insaturados , Pseudomonas , Sequência de Aminoácidos , Bactérias/metabolismo , Sequência de Bases , Ciclopropanos , Escherichia coli/metabolismo , Ácidos Graxos Dessaturases/genética , Ácidos Graxos Dessaturases/metabolismo , Ácido Graxo Sintases/genética , Ácidos Graxos/análise , Ácidos Graxos Insaturados/metabolismo , Pseudomonas/metabolismo , Temperatura
4.
Bioprocess Biosyst Eng ; 43(5): 909-918, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-31989256

RESUMO

Bacteria have evolved a defense system to resist external stressors, such as heat, pH, and salt, so as to facilitate survival in changing or harsh environments. However, the specific mechanisms by which bacteria respond to such environmental changes are not completely elucidated. Here, we used halotolerant bacteria as a model to understand the mechanism conferring high tolerance to NaCl. We screened for genes related to halotolerance in Halomonas socia, which can provide guidance for practical application. Phospholipid fatty acid analysis showed that H. socia cultured under high osmotic pressure produced a high portion of cyclopropane fatty acid derivatives, encoded by the cyclopropane-fatty acid-acyl phospholipid synthase gene (cfa). Therefore, H. socia cfa was cloned and introduced into Escherichia coli for expression. The cfa-overexpressing E. coli strain showed better growth, compared with the control strain under normal cultivation condition as well as under osmotic pressure (> 3% salinity). Moreover, the cfa-overexpressing E. coli strain showed 1.58-, 1.78-, 3.3-, and 2.19-fold higher growth than the control strain in the presence of the inhibitors furfural, 4-hydroxybenzaldehyde, vanillin, and acetate from lignocellulosic biomass pretreatment, respectively. From a practical application perspective, cfa was co-expressed in E. coli with the polyhydroxyalkanoate (PHA) synthetic operon of Ralstonia eutropha using synthetic and biosugar media, resulting in a 1.5-fold higher in PHA production than that of the control strain. Overall, this study demonstrates the potential of the cfa gene to boost cell growth and production even in heterologous strains under stress conditions.


Assuntos
Proteínas de Bactérias , Escherichia coli , Expressão Gênica , Metiltransferases , Microrganismos Geneticamente Modificados , Pressão Osmótica/efeitos dos fármacos , Cloreto de Sódio/farmacologia , Proteínas de Bactérias/biossíntese , Proteínas de Bactérias/genética , Cupriavidus necator/enzimologia , Cupriavidus necator/genética , Escherichia coli/enzimologia , Escherichia coli/genética , Halomonas/enzimologia , Halomonas/genética , Metiltransferases/biossíntese , Metiltransferases/genética , Microrganismos Geneticamente Modificados/enzimologia , Microrganismos Geneticamente Modificados/genética , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/genética
5.
Bioprocess Biosyst Eng ; 42(4): 603-610, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30617415

RESUMO

Polyhydroxybutyrates (PHB) are biodegradable polymers that are produced by various microbes, including Ralstonia, Pseudomonas, and Bacillus species. In this study, a Vibrio proteolyticus strain, which produces a high level of polyhydroxyalkanoate (PHA), was isolated from the Korean marine environment. To determine optimal growth and production conditions, environments with different salinity, carbon sources, and nitrogen sources were evaluated. We found that the use of a medium containing 2% (w/v) fructose, 0.3% (w/v) yeast extract, and 5% (w/v) sodium chloride (NaCl) in M9 minimal medium resulted in high PHA content (54.7%) and biomass (4.94 g/L) over 48 h. Addition of propionate resulted in the production of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (P(HB-co-HV)) copolymer as propionate acts as a precursor for the HV unit. In these conditions, the bacteria produced poly(3-hydroxybutyrate-co-3-hydroxyvalerate) containing a 15.8% 3HV fraction with 0.3% propionate added as the substrate. To examine the possibility of using unsterilized media with high NaCl content for PHB production, V. proteolyticus was cultured in sterilized and unsterilized conditions. Our results indicated a higher growth, leading to a dominant population in unsterilized conditions and higher PHB production. This study showed the conditions for halophilic PHA producers to be later implemented at a larger scale.


Assuntos
Organismos Aquáticos , Poli-Hidroxialcanoatos/biossíntese , Água do Mar/microbiologia , Vibrio , Microbiologia da Água , Organismos Aquáticos/crescimento & desenvolvimento , Organismos Aquáticos/isolamento & purificação , Coreia (Geográfico) , Vibrio/genética , Vibrio/isolamento & purificação
6.
Biotechnol Bioeng ; 115(8): 1971-1978, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29663332

RESUMO

Acetic acid is an abundant material that can be used as a carbon source by microorganisms. Despite its abundance, its toxicity and low energy content make it hard to utilize as a sole carbon source for biochemical production. To increase acetate utilization and isobutanol production with engineered Escherichia coli, the feasibility of utilizing acetate and metabolic engineering was investigated. The expression of acs, pckA, and maeB increased isobutanol production by up to 26%, and the addition of TCA cycle intermediates indicated that the intermediates can enhance isobutanol production. For isobutanol production from acetate, acetate uptake rates and the NADPH pool were not limiting factors compared to glucose as a carbon source. This work represents the first approach to produce isobutanol from acetate with pyruvate flux optimization to extend the applicability of acetate. This technique suggests a strategy for biochemical production utilizing acetate as the sole carbon source.


Assuntos
Acetato-CoA Ligase/biossíntese , Acetato-CoA Ligase/metabolismo , Acetatos/metabolismo , Butanóis/metabolismo , Escherichia coli/metabolismo , Expressão Gênica , Engenharia Metabólica/métodos , Acetato-CoA Ligase/genética , Escherichia coli/genética
7.
Bioprocess Biosyst Eng ; 41(8): 1195-1204, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29737409

RESUMO

n-Butanol is considered as the next-generation biofuel, because its physiochemical properties are very similar to fossil fuels and it could be produced by Clostridia under anaerobic culture. Due to the difficulties of strict anaerobic culture, a host which can be used with facultative environment was being searched for n-butanol production. As an alternative, Shewanella oneidensis MR-1, which is known as facultative bacteria, was selected as a host and studied. A plasmid containing adhE2 encoding alcohol dehydrogenase, various CoA transferases (ctfAB, atoAD, pct, and ACT), and acs encoding acetyl-CoA synthetase were introduced and examined to S. oneidensis MR-1 to produce n-butanol. As a result, ctfAB, acs, and adhE2 overexpression in S. oneidensis-pJM102 showed the highest n-butanol production in the presence of 2% of N-acetylglucosamine (NAG), 0.3% of butyrate, and 0.1 mM of IPTG for 96 h under microaerobic condition. When more NAG and butyrate were fed, n-butanol production was enhanced, producing up to 160 mg/L of n-butanol. When metal ions or extra electrons were added to S. oneidensis-pJM102 for n-butanol production, metal ion as electron acceptor or supply of extra electron showed no significant effect on n-butanol production. Overall, we made a newly engineered S. oneidensis that could utilize NAG and butyrate to produce n-butanol. It could be used in further microaerobic condition and electricity supply studies.


Assuntos
1-Butanol/metabolismo , Proteínas de Bactérias , Butiratos/metabolismo , Microrganismos Geneticamente Modificados , Plasmídeos , Shewanella , Proteínas de Bactérias/biossíntese , Proteínas de Bactérias/genética , Clostridium/genética , Microrganismos Geneticamente Modificados/crescimento & desenvolvimento , Microrganismos Geneticamente Modificados/metabolismo , Plasmídeos/genética , Plasmídeos/metabolismo , Shewanella/genética , Shewanella/crescimento & desenvolvimento
8.
Bioprocess Biosyst Eng ; 40(10): 1573-1580, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28730324

RESUMO

Streptomyces, which produces many pharmaceutical antibiotics and anticancer agents, is a genus of soil-dwelling bacteria with numerous regulators that control both primary and secondary metabolism. NdgR is highly conserved in Streptomyces spp. and is known to be involved in antibiotic production, tolerance against shock and physical stress, nitrogen metabolism, leucine metabolism, and N-acetylglucosamine metabolism. As another function of NdgR, we report the involvement of NdgR in glycerol metabolism in S. coelicolor. Initially, a glycerol utilization operon containing gylCABX was found to be up-regulated in an ndgR deletion mutant (BG11) grown in N-acetylglucosamine solid minimal media compared with wild-type strain (M145). BG11 produced more antibiotics with a small amount of glycerol and increased glycerol utilization, yielding higher concentrations of lactate and acetate per cell. Moreover, fatty acid production was also changed in BG11 to produce longer chain fatty acids, phenolic compounds, alkanes, and fatty alcohols. Using a gel retardation assay, NdgR was found to bind the upstream region of gylC, working as a repressor. NdgR is a second regulator of a glycerol utilization operon, for which only one regulator, GylR was previously known.


Assuntos
Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica/fisiologia , Glicerol/metabolismo , Óperon/fisiologia , Streptomyces coelicolor/metabolismo , Fatores de Transcrição/metabolismo , Regulação para Cima/fisiologia , Proteínas de Bactérias/genética , Streptomyces coelicolor/genética , Fatores de Transcrição/genética
9.
J Ind Microbiol Biotechnol ; 43(1): 37-44, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26660478

RESUMO

Furfural is a toxic by-product formulated from pretreatment processes of lignocellulosic biomass. In order to utilize the lignocellulosic biomass on isobutanol production, inhibitory effect of the furfural on isobutanol production was investigated and combinatorial application of two oxidoreductases, FucO and YqhD, was suggested as an alternative strategy. Furfural decreased cell growth and isobutanol production when only YqhD or FucO was employed as an isobutyraldehyde oxidoreductase. However, combinatorial overexpression of FucO and YqhD could overcome the inhibitory effect of furfural giving higher isobutanol production by 110% compared with overexpression of YqhD. The combinatorial oxidoreductases increased furfural detoxification rate 2.1-fold and also accelerated glucose consumption 1.4-fold. When it compares to another known system increasing furfural tolerance, membrane-bound transhydrogenase (pntAB), the combinatorial aldehyde oxidoreductases were better on cell growth and production. Thus, to control oxidoreductases is important to produce isobutanol using furfural-containing biomass and the combinatorial overexpression of FucO and YqhD can be an alternative strategy.


Assuntos
Aldeído Oxirredutases/metabolismo , Butanóis/metabolismo , Escherichia coli/metabolismo , Furaldeído/metabolismo , Aldeídos/metabolismo , Biomassa , Divisão Celular/efeitos dos fármacos , Escherichia coli/citologia , Escherichia coli/efeitos dos fármacos , Escherichia coli/genética , Furaldeído/farmacologia , Glucose/metabolismo , NADP Trans-Hidrogenases/metabolismo
10.
Bioprocess Biosyst Eng ; 38(11): 2147-54, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26280214

RESUMO

Shewanella oneidensis MR-1 is one of the most well-known metal-reducing bacteria and it has been extensively studied for microbial fuel cell and bioremediation aspects. In this study, we have examined S. oneidensis MR-1 as an isobutanol-producing host by assessing three key factors such as isobutanol synthetic genes, carbon sources, and electron supply systems. Heterologous Ehrlich pathway genes, kivD encoding ketoisovalerate decarboxylase and adh encoding alcohol dehydrogenase, were constructed in S. oneidensis MR-1. Among the composition of carbon sources examined, 2% of N-acetylglucosamine, 1.5% of pyruvate and 2% of lactate were found to be the most optimal nutrients and resulted in 10.3 mg/L of isobutanol production with 48 h of microaerobic incubation. Finally, the effects of metal ions (electron acceptor) and direct electron transfer systems on isobutanol production were investigated, and Fe(2+) ions increased the isobutanol production up to 35%. Interestingly, deletion of mtrA and mtrB, genes responsible for membrane transport systems, did not have significant impact on isobutanol production. Finally, we applied engineered S. oneidensis to a bioelectrical reactor system to investigate the effect of a direct electron supply system on isobutanol production, and it resulted in an increased growth and isobutanol production (up to 19.3 mg/L). This report showed the feasibility of S. oneidensis MR-1 as a genetic host to produce valuable biochemicals and combine an electron-supplying system with biotechnological applications.


Assuntos
Butanóis/metabolismo , Engenharia Metabólica/métodos , Shewanella/metabolismo , Proteínas de Bactérias/biossíntese , Proteínas de Bactérias/genética , Shewanella/genética
11.
Bioresour Technol ; 324: 124674, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33445012

RESUMO

In the present study, an exopolysaccharide (EPS)-producing bacterial strain was isolated from the Eastern Sea (Sokcho Beach) of South Korea and identified as Sphingobium yanoikuyae BBL01. Media optimization was performed using response surface design, and a yield of 2.63 ± 0.02 g/L EPS was achieved. Purified EPS produced using lactose as the main carbon source was analyzed by GC-MS and found to be composed of α-D-xylopyranose (28.6 ± 2.0%), ß-D-glucopyranose (21.0 ± 1.6%), α-D-mannopyranose (18.5 ± 1.2%), ß-d-mannopyranose (13.1 ± 1.4%), ß-D-xylopyranose (10.2 ± 2.1%), α-d-talopyranose (5.9 ± 1.1%), and ß-d-galacturonic acid (2.43 ± 0.8%). Interestingly, different carbon sources (glucose, galactose, glycerol, lactose, sucrose, and xylose) showed no effect on EPS monomer composition, with a slight change in the mass percentage of various monosaccharides. Purified EPS was stable up to 233 °C, indicating its possible suitability as a thickening and gelling agent for food-related applications. EPS also showed considerable emulsifying, flocculating, free-radical scavenging, and metal-complexion activity, suggesting various biotechnological applications.


Assuntos
Bioprospecção , Polissacarídeos Bacterianos , Monossacarídeos , República da Coreia , Sphingomonadaceae
12.
Sci Total Environ ; 781: 146636, 2021 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-33784526

RESUMO

The present investigation deals with the adsorptive removal of crude petroleum oil from the water surface using coconut oil-modified pinewood biochar. Biochar generated at higher pyrolysis temperature (700 °C) revealed higher fatty acid-binding efficiency responsible for the excellent hydrophobicity of the biochar. Fatty acids composition attached to the biochar produced at 700 °C was (mg g-1 BC) lauric acid (9.024), myristic acid (5.065), palmitic acid (2.769), capric acid (1.639), oleic acid (1.362), stearic acid (1.114), and linoleic acid (0.130). Simulation of the experimental adsorption data of pristine and modified pinewood biochar generated at 700 °C offered the best fit to pseudo-first-order kinetics (R2 > 0.97) and Langmuir isotherm model (R2 > 0.99) based on the highest regression coefficients. Consequently, the adsorption process was mainly driven by surface hydrophobic interactions including π-π electron-donor-acceptor between electron-rich (π-donor) polycyclic aromatic hydrocarbons from the crude oil and biochar (π-acceptor). A maximum adsorption capacity (Qmax) of 5.315 g g-1 was achieved by modified floating biochar within 60 min. Whereas the reusability testing revealed 49.39% and 51.40% was the adsorption efficiency of pristine and modified biochar at the fifth adsorption-desorption cycle.


Assuntos
Petróleo , Pinus , Poluentes Químicos da Água , Adsorção , Carvão Vegetal , Óleo de Coco , Ácidos Graxos , Cinética , Ácidos Láuricos , Água , Poluentes Químicos da Água/análise
13.
Int J Biol Macromol ; 177: 413-421, 2021 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-33607129

RESUMO

Poly(3-hydroxybutyrate) (PHB) is a biobased and biodegradable plastic. Considering the environmental issues of petroleum-based plastics, PHB is promising as it can be degraded in a relatively short time by bacteria to water and carbon dioxide. Substantial efforts have been made to identify PHB-degrading bacteria. To identify PHB-degrading bacteria, solid-based growth or clear zone assays using PHB as the sole carbon source are the easiest methods; however, PHB is difficult to dissolve and distribute evenly, and bacteria grow slowly on PHB plates. Here, we suggest an improved PHB plate assay using cell-grown PHB produced by Halomonas sp. and recovered by sodium dodecyl sulfate (SDS). Preparation using SDS resulted in evenly distributed PHB plates that could be used for sensitive depolymerase activity screening in less time compared with solvent-melted pellet or cell-grown PHB. With this method, we identified 15 new strains. One strain, Cutibacterium sp. SOL05 (98.4% 16S rRNA similarity to Cutibacterium acne), showed high PHB depolymerase activity in solid and liquid conditions. PHB degradation was confirmed by clear zone size, liquid culture, scanning electron microscopy, and Fourier-transform infrared spectroscopy. The results indicate this method can be used to easily identify PHB-degrading bacteria from various sources to strengthen the benefits of bioplastics.


Assuntos
Propionibacteriaceae , Dodecilsulfato de Sódio/química , Hidroxibutiratos/química , Hidroxibutiratos/metabolismo , Poliésteres/química , Poliésteres/metabolismo , Propionibacteriaceae/classificação , Propionibacteriaceae/genética , Propionibacteriaceae/crescimento & desenvolvimento , Propionibacteriaceae/isolamento & purificação
14.
Int J Biol Macromol ; 167: 151-159, 2021 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-33249160

RESUMO

Poly(3-hydroxybutyrate) (PHB) is a common polyhydroxyalkanoate (PHA) with potential as an alternative for petroleum-based plastics. Previously, we reported a new strain, Halomonas sp. YLGW01, which hyperproduces PHB with 94% yield using fructose. In this study, we examined the PHB production machinery of Halomonas sp. YLGW01 in more detail by deep-genome sequencing, which revealed a 3,453,067-bp genome with 65.1% guanine-cytosine content and 3054 genes. We found two acetyl-CoA acetyltransferases (Acetoacetyl-CoA thiolase, PhaA), one acetoacetyl-CoA reductase (PhaB), two PHB synthases (PhaC1, PhaC2), PHB depolymerase (PhaZ), and Enoyl-CoA hydratase (PhaJ) in the genome, along with two fructose kinases and fructose transporter systems, including the phosphotransferase system (PTS) and ATP-binding transport genes. We then examined the PHB production by Halomonas sp. YLGW01 using high-fructose corn syrup (HFCS) containing fructose, glucose, and sucrose in sea water medium, resulting in 7.95 ± 0.11 g/L PHB (content, 67.39 ± 0.34%). PHB was recovered from Halomonas sp. YLGW01 using different detergents; the use of Tween 20 and SDS yielded micro-sized granules with high purity. Overall, these results reveal the distribution of PHB synthetic genes and the sugar utilization system in Halomonas sp. YLGW01 and suggest a possible method for PHB recovery.


Assuntos
Meios de Cultura , Fermentação , Halomonas/metabolismo , Hidroxibutiratos/metabolismo , Poliésteres/metabolismo , Açúcares/química , Açúcares/metabolismo , Biomassa , Vias Biossintéticas/genética , Biologia Computacional/métodos , Genoma Bacteriano , Halomonas/genética , Anotação de Sequência Molecular , Sequenciamento Completo do Genoma
15.
J Microbiol Biotechnol ; 31(1): 115-122, 2021 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-33046680

RESUMO

Phenol-soluble modulins (PSMs) are responsible for regulating biofilm formation, persister cell formation, pmtR expression, host cell lysis, and anti-bacterial effects. To determine the effect of psm deletion on methicillin-resistant Staphylococcus aureus, we investigated psm deletion mutants including Δpsmα, Δpsmß, and Δpsmαß;. These mutants exhibited increased ß-lactam antibiotic resistance to ampicillin and oxacillin that was shown to be caused by increased Nacetylmannosamine kinase (nanK) mRNA expression, which regulates persister cell formation, leading to changes in the pattern of phospholipid fatty acids resulting in increased anteiso-C15:0, and increased membrane hydrophobicity with the deletion of PSMs. When synthetic PSMs were applied to Δpsmα and Δpsmß mutants, treatment of Δpsmα with PSMα1-4 and Δpsmß with PSMß1-2 restored the sensitivity to oxacillin and slightly reduced the biofilm formation. Addition of a single fragment showed that α1, α2, α3, and ß2 had an inhibiting effect on biofilms in Δpsmα; however, ß1 showed an enhancing effect on biofilms in Δpsmß. This study demonstrates a possible reason for the increased antibiotic resistance in psm mutants and the effect of PSMs on biofilm formation.


Assuntos
Toxinas Bacterianas/farmacologia , Farmacorresistência Bacteriana/efeitos dos fármacos , Farmacorresistência Bacteriana/genética , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Staphylococcus aureus Resistente à Meticilina/genética , Antibacterianos/farmacologia , Biofilmes/efeitos dos fármacos , Biofilmes/crescimento & desenvolvimento , Genes Bacterianos/genética , Mutação , Infecções Estafilocócicas
16.
Polymers (Basel) ; 13(7)2021 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-33805577

RESUMO

Polyhydroxyalkanoates (PHAs) are attractive new bioplastics for the replacement of plastics derived from fossil fuels. With their biodegradable properties, they have also recently been applied to the medical field. As poly(3-hydroxybutyrate) produced by wild-type Ralstonia eutropha has limitations with regard to its physical properties, it is advantageous to synthesize co- or terpolymers with medium-chain-length monomers. In this study, tung oil, which has antioxidant activity due to its 80% α-eleostearic acid content, was used as a carbon source and terpolymer P(53 mol% 3-hydroxybytyrate-co-2 mol% 3-hydroxyvalerate-co-45 mol% 3-hydroxyhexanoate) with a high proportion of 3-hydroxyhexanoate was produced in R. eutropha Re2133/pCB81. To avail the benefits of α-eleostearic acid in the tung oil-based medium, we performed partial harvesting of PHA by using a mild water wash to recover PHA and residual tung oil on the PHA film. This resulted in a film coated with residual tung oil, showing antioxidant activity. Here, we report the first application of tung oil as a substrate for PHA production, introducing a high proportion of hydroxyhexanoate monomer into the terpolymer. Additionally, the residual tung oil was used as an antioxidant coating, resulting in the production of bioactive PHA, expanding the applicability to the medical field.

17.
J Microbiol Biotechnol ; 31(8): 1060-1068, 2021 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-34226408

RESUMO

Community-associated Methicillin-Resistant Staphylococcus aureus (CA-MRSA) is notorious as a leading cause of soft tissue infections. Despite several studies on the Agr regulator, the mechanisms of action of Agr on the virulence factors in different strains are still unknown. To reveal the role of Agr in different CA-MRSA, we investigated the LACΔagr mutant and the MW2Δagr mutant by comparing LAC (USA300), MW2 (USA400), and Δagr mutants. The changes of Δagr mutants in sensitivity to oxacillin and several virulence factors such as biofilm formation, pigmentation, motility, and membrane properties were monitored. LACΔagr and MW2Δagr mutants showed different oxacillin sensitivity and biofilm formation compared to the LAC and MW2 strains. Regardless of the strain, the motility was reduced in Δagr mutants. And there was an increase in the long chain fatty acid in phospholipid fatty acid composition of Δagr mutants. Other properties such as biofilm formation, pigmentation, motility, and membrane properties were different in both Δagr mutants. The Agr regulator may have a common role like the control of motility and straindependent roles such as antibiotic resistance, biofilm formation, change of membrane, and pigment production. It does not seem easy to control all MRSA by targeting the Agr regulator only as it showed strain-dependent behaviors.


Assuntos
Proteínas de Bactérias/metabolismo , Staphylococcus aureus Resistente à Meticilina/fisiologia , Transativadores/metabolismo , Proteínas de Bactérias/genética , Biofilmes/crescimento & desenvolvimento , Membrana Celular/química , Membrana Celular/metabolismo , Infecções Comunitárias Adquiridas/microbiologia , Farmacorresistência Bacteriana/genética , Ácidos Graxos/química , Locomoção/genética , Staphylococcus aureus Resistente à Meticilina/genética , Staphylococcus aureus Resistente à Meticilina/metabolismo , Mutação , Fosfolipídeos/química , Pigmentação/genética , Infecções Estafilocócicas/microbiologia , Transativadores/genética
18.
Int J Biol Macromol ; 183: 1669-1675, 2021 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-34023371

RESUMO

Polyhydroxybutyrate (PHB) is a biodegradable plastic with physical properties similar to petrochemically derived plastics. Here, Shewanella marisflavi BBL25 was engineered by inserting the pLW487 vector containing polyhydroxyalkanoates synthesis genes from Ralstonia eutropha H16. Under optimal conditions, the engineered S. marisflavi BBL25 produced 1.99 ± 0.05 g/L PHB from galactose. The strain showed high tolerance to various inhibitors and could utilize lignocellulosic biomass for PHB production. When barley straw hydrolysates were used as a carbon source, PHB production was 3.27 ± 0.19 g/L. In addition, PHB production under the microbial fuel cell system was performed to confirm electricity coproduction. The maximum electricity current output density was 1.71 mA/cm2, and dry cell weight (DCW) and PHB production were 11.4 g/L and 6.31 g/L, respectively. Our results demonstrated PHB production using various lignocellulosic biomass and the feasibility of PHB and electricity production, simultaneously, and it is the first example of PHB production in engineered Shewanella.


Assuntos
Cupriavidus necator/genética , Engenharia Genética/métodos , Hidroxibutiratos/metabolismo , Poli-Hidroxialcanoatos/genética , Shewanella/crescimento & desenvolvimento , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Biomassa , Galactose/metabolismo , Hordeum/química , Hidrólise , Plasmídeos/genética , Poli-Hidroxialcanoatos/biossíntese , Shewanella/genética
19.
Polymers (Basel) ; 13(9)2021 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-33925903

RESUMO

Arctic bacteria employ various mechanisms to survive harsh conditions, one of which is to accumulate carbon and energy inside the cell in the form of polyhydroxyalkanoate (PHA). Whole-genome sequencing of a new Arctic soil bacterium Pseudomonas sp. B14-6 revealed two PHA-production-related gene clusters containing four PHA synthase genes (phaC). Pseudomonas sp. B14-6 produced poly(6% 3-hydroxybutyrate-co-94% 3-hydroxyalkanoate) from various carbon sources, containing short-chain-length PHA (scl-PHA) and medium-chain-length PHA (mcl-PHA) composed of various monomers analyzed by GC-MS, such as 3-hydroxybutyrate, 3-hydroxyhexanoate, 3-hydroxyoctanoate, 3-hydroxydecanoate, 3-hydroxydodecenoic acid, 3-hydroxydodecanoic acid, and 3-hydroxytetradecanoic acid. By optimizing the PHA production media, we achieved 34.6% PHA content using 5% fructose, and 23.7% PHA content using 5% fructose syrup. Differential scanning calorimetry of the scl-co-mcl PHA determined a glass transition temperature (Tg) of 15.3 °C, melting temperature of 112.8 °C, crystallization temperature of 86.8 °C, and 3.82% crystallinity. In addition, gel permeation chromatography revealed a number average molecular weight of 3.6 × 104, weight average molecular weight of 9.1 × 104, and polydispersity index value of 2.5. Overall, the novel Pseudomonas sp. B14-6 produced a polymer with high medium-chain-length content, low Tg, and low crystallinity, indicating its potential use in medical applications.

20.
J Microbiol Biotechnol ; 31(2): 250-258, 2021 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-33148940

RESUMO

Among various species of marine bacteria, those belonging to the genus Halomonas have several promising applications and have been studied well. However, not much information has been available on their antibiotic resistance. In our efforts to learn about the antibiotic resistance of strain Halomonas socia CKY01, which showed production of various hydrolases and growth promotion by osmolytes in previous study, we found that it exhibited resistance to multiple antibiotics including kanamycin, ampicillin, oxacillin, carbenicillin, gentamicin, apramycin, tetracycline, and spectinomycin. However, the H. socia CKY01 resistance pattern to kanamycin, gentamicin, apramycin, tetracycline, and spectinomycin differed in the presence of 10% NaCl and 1% NaCl in the culture medium. To determine the mechanism underlying this NaCl concentration-dependent antibiotic resistance, we compared four aminoglycoside resistance genes under different salt conditions while also performing time-dependent reverse transcription PCR. We found that the aph2 gene encoding aminoglycoside phosphotransferase showed increased expression under the 10% rather than 1% NaCl conditions. When these genes were overexpressed in an Escherichia coli strain, pETDuet-1::aph2 showed a smaller inhibition zone in the presence of kanamycin, gentamicin, and apramycin than the respective control, suggesting aph2 was involved in aminoglycoside resistance. Our results demonstrated a more direct link between NaCl and aminoglycoside resistance exhibited by the H. socia CKY01 strain.


Assuntos
Aminoglicosídeos/farmacologia , Antibacterianos/farmacologia , Proteínas de Bactérias/genética , Halomonas/efeitos dos fármacos , Cloreto de Sódio/metabolismo , Aminoglicosídeos/análise , Antibacterianos/análise , Proteínas de Bactérias/metabolismo , Farmacorresistência Bacteriana , Regulação Bacteriana da Expressão Gênica , Gentamicinas/farmacologia , Halomonas/genética , Halomonas/metabolismo , Canamicina/farmacologia , Canamicina Quinase/genética , Canamicina Quinase/metabolismo , Nebramicina/análogos & derivados , Nebramicina/farmacologia , Cloreto de Sódio/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA