Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Tipo de documento
Ano de publicação
Intervalo de ano de publicação
1.
Chaos ; 34(6)2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38885069

RESUMO

In the phenomenon of mixed-mode oscillations, transitions between large-amplitude and small-amplitude oscillations may lead to anomalous jitter in the probe of a tapping mode atomic force microscope (TM-AFM) during the scanning process, thereby affecting the accuracy and clarity of the topographical images of the tested sample's surface. This work delves deeply into various mixed-mode oscillations and the corresponding formation mechanisms in TM-AFM under low-frequency resonant excitation. Through a detailed analysis of bifurcation sets of the fast subsystem, we found that the system's mixed-mode oscillations encompass the typical two coexisting branches and the novel three coexisting branches of equilibrium point attractors. In the stable case, a certain transition pattern in phase trajectory can be observed involving two jumps and four jumps, switching between quiescent and spiking states. In the bi-stable case, the trajectory undergoes distinct transitions decided by whether to pass through or crossover the middle branch of attractors when bifurcation occurs. By applying basin of attraction and fast-slow analysis methods, we unfold the dynamic mechanism of mixed-mode oscillations with distinct switching patterns. Our research contributes to a better understanding of complex oscillations of TM-AFM and provides valuable insights for improving image quality and measurement precision while mitigating detrimental oscillations.

2.
Sensors (Basel) ; 24(1)2023 Dec 25.
Artigo em Inglês | MEDLINE | ID: mdl-38202969

RESUMO

Alterations in the dynamical properties of an atomic force microscope microcantilever beam system in tapping mode can appreciably impact its measurement precision. Understanding the influence mechanism of dynamic parameter changes on the system's motion characteristics is vital to improve the accuracy of the atomic force microscope in tapping mode (AFM-TM). In this study, we categorize the mathematical model of the AFM-TM microcantilever beam system into systems 1 and 2 based on actual working conditions. Then, we analyze the alterations in the dynamic properties of both systems due to external excitation variations using bifurcation diagrams, phase trajectories, Lyapunov indices, and attraction domains. The numerical simulation results show that when the dimensionless external excitation g < 0.183, the motion state of system 2 is period 1. When g < 0.9, the motion state of system 1 is period 1 motion. Finally, we develop the equivalent circuit model of the AFM-TM microcantilever beam and perform related software simulations, along with practical circuit experiments. Our experimental results indicate that the constructed equivalent circuit can effectively analyze the dynamic characteristics of the AFM-TM microcantilever beam system in the presence of complex external environmental factors. It is observed that the practical circuit simulation attenuates high-frequency signals, resulting in a 31.4% reduction in excitation amplitude compared to numerical simulation results. This provides an essential theoretical foundation for selecting external excitation parameters for AFM-TM cantilever beams and offers a novel method for analyzing the dynamics of micro- and nanomechanical systems, as well as other nonlinear systems.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA