Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 110
Filtrar
1.
Proc Natl Acad Sci U S A ; 120(39): e2307899120, 2023 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-37733740

RESUMO

The human blood-brain barrier (BBB) comprises a single layer of brain microvascular endothelial cells (HBMECs) protecting the brain from bloodborne pathogens. Meningitis is among the most serious diseases, but the mechanisms by which major meningitis-causing bacterial pathogens cross the BBB to reach the brain remain poorly understood. We found that Streptococcus pneumoniae, group B Streptococcus, and neonatal meningitis Escherichia coli commonly exploit a unique vesicle fusion mechanism to hitchhike on transferrin receptor (TfR) transcytosis to cross the BBB and illustrated the details of this process in human BBB model in vitro and mouse model. Toll-like receptor signals emanating from bacteria-containing vesicles (BCVs) trigger K33-linked polyubiquitination at Lys168 and Lys181 of the innate immune regulator TRAF3 and then activate the formation of a protein complex containing the guanine nucleotide exchange factor RCC2, the small GTPase RalA and exocyst subcomplex I (SC I) on BCVs. The distinct function of SEC6 in SC I, interacting directly with RalA on BCVs and the SNARE protein SNAP23 on TfR vesicles, tethers these two vesicles and initiates the fusion. Our results reveal that innate immunity triggers a unique modification of TRAF3 and the formation of the HBMEC-specific protein complex on BCVs to authenticate the precise recognition and selection of TfR vesicles to fuse with and facilitate bacterial penetration of the BBB.


Assuntos
Barreira Hematoencefálica , Células Endoteliais , Humanos , Animais , Camundongos , Recém-Nascido , Fator 3 Associado a Receptor de TNF , Transcitose , Bactérias , Receptores da Transferrina
2.
Proc Natl Acad Sci U S A ; 120(15): e2210808120, 2023 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-37023125

RESUMO

African swine fever virus (ASFV) is a large, double-stranded DNA virus that causes a fatal disease in pigs, posing a threat to the global pig industry. Whereas some ASFV proteins have been found to play important roles in ASFV-host interaction, the functional roles of many proteins are still largely unknown. In this study, we identified I73R, an early viral gene in the replication cycle of ASFV, as a key virulence factor. Our findings demonstrate that pI73R suppresses the host innate immune response by broadly inhibiting the synthesis of host proteins, including antiviral proteins. Crystallization and structural characterization results suggest that pI73R is a nucleic-acid-binding protein containing a Zα domain. It localizes in the nucleus and inhibits host protein synthesis by suppressing the nuclear export of cellular messenger RNA (mRNAs). While pI73R promotes viral replication, the deletion of the gene showed that it is a nonessential gene for virus replication. In vivo safety and immunogenicity evaluation results demonstrate that the deletion mutant ASFV-GZΔI73R is completely nonpathogenic and provides effective protection to pigs against wild-type ASFV. These results reveal I73R as a virulence-related gene critical for ASFV pathogenesis and suggest that it is a potential target for virus attenuation. Accordingly, the deletion mutant ASFV-GZΔI73R can be a potent live-attenuated vaccine candidate.


Assuntos
Vírus da Febre Suína Africana , Febre Suína Africana , Suínos , Animais , Vírus da Febre Suína Africana/genética , Virulência/genética , Febre Suína Africana/prevenção & controle , Fatores de Virulência/genética , Fatores de Virulência/metabolismo , Genes Virais
3.
Methods ; 222: 142-151, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38242383

RESUMO

Protein-protein interactions play an important role in various biological processes. Interaction among proteins has a wide range of applications. Therefore, the correct identification of protein-protein interactions sites is crucial. In this paper, we propose a novel predictor for protein-protein interactions sites, AGF-PPIS, where we utilize a multi-head self-attention mechanism (introducing a graph structure), graph convolutional network, and feed-forward neural network. We use the Euclidean distance between each protein residue to generate the corresponding protein graph as the input of AGF-PPIS. On the independent test dataset Test_60, AGF-PPIS achieves superior performance over comparative methods in terms of seven different evaluation metrics (ACC, precision, recall, F1-score, MCC, AUROC, AUPRC), which fully demonstrates the validity and superiority of the proposed AGF-PPIS model. The source codes and the steps for usage of AGF-PPIS are available at https://github.com/fxh1001/AGF-PPIS.


Assuntos
Benchmarking , Inibidores da Bomba de Prótons , Redes Neurais de Computação , Software
4.
BMC Plant Biol ; 24(1): 30, 2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-38182981

RESUMO

BACKGROUND: Potato late blight, caused by Phytophthora infestans, is the most devastating disease on potato. Dissecting critical immune components in potato will be supportive for engineering P. infestans resistance. Upon pathogens attack, plant Ca2+ signature is generated and decoded by an array of Ca2+ sensors, among which calcineurin B-like proteins (CBLs) coupled with plant specific CBL-interacting protein kinases (CIPKs) are much less explored in plant immunity. RESULTS: In this study, we identified that two differential potato CBL-CIPK modules regulate plant defense responses against Phytophthora and ROS production, respectively. By deploying virus-induced gene silencing (VIGS) system-based pathogen inoculation assays, StCBL3 was shown to negatively regulate Phytophthora resistance. Consistently, StCBL3 was further found to negatively regulate PTI and ETI responses in Nicotiana benthamiana. Furthermore, StCIPK7 was identified to act together with StCBL3 to negatively regulate Phytophthora resistance. StCIPK7 physically interacts with StCBL3 and phosphorylates StCBL3 in a Ca2+-dependent manner. StCBL3 promotes StCIPK7 kinase activity. On the other hand, another StCBL3-interacting kinase StCIPK24 negatively modulating flg22-triggered accumulation of reactive oxygen species (ROS) by interacting with StRBOHB. CONCLUSIONS: Together, these findings demonstrate that the StCBL3-StCIPK7 complex negatively modulates Phytophthora resistance and StCBL3-StCIPK24 complex negatively regulate ROS production. Our results offer new insights into the roles of potato CBL-CIPK in plant immunity and provide valuable gene resources to engineer the disease resistance potato in the future.


Assuntos
Phytophthora infestans , Solanum tuberosum , Cálcio , Solanum tuberosum/genética , Espécies Reativas de Oxigênio , Imunidade Vegetal/genética , Proteínas de Plantas/genética
5.
Small ; : e2400252, 2024 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-38461522

RESUMO

Owing to the high economic efficiency and energy density potential, manganese-based layer-structured oxides have attracted great interests as cathode materials for potassium ion batteries. In order to alleviate the continuous phase transition and K+ re-embedding from Jahn-Teller distortion, the [Mn-Co-Mo]O6 octahedra are introduced into P3-K0.45 MnO2 herein to optimize the local electron structure. Based on the experimental and computational results, the octahedral center metal molybdenum in [MoO6 ] octahedra proposes a smaller ionic radius and higher oxidation state to induce second-order JTE (pseudo-JTE) distortion in the adjacent [MnO6 ] octahedra. This distortion compresses the [MnO6 ] octahedra along the c-axis, leading to an increased interlayer spacing in the K+ layer. Meanwhile, the Mn3+ /Mn4+ is balanced by [CoO6 ] octahedra and the K+ diffusion pathway is optimized as well. The proposed P3-K0.45 Mn0.9 Co0.05 Mo0.05 O2 cathode material shows an enhanced cycling stability and rate performance. It demonstrates a high capacity of 80.2 mAh g-1 at 100 mAh g-1 and 77.3 mAh g-1 at 500 mAh g-1 . Furthermore, it showcases a 2000 cycles stability with a 59.6% capacity retention. This work presents a promising solution to the challenges faced by manganese-based layered oxide cathodes and offers a deep mechanism understanding and improved electrochemical performance.

6.
Biomacromolecules ; 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38829675

RESUMO

Despite great progress in the hydrogel hemostats and dressings, they generally lack resistant vascular bursting pressure and intrinsic bioactivity to meet arterial massive hemorrhage and proheal wounds. To address the problems, we design a kind of biomimetic and wound microenvironment-modulating PEGylated glycopolypeptide hydrogels that can be easily injected and gelled in ∼10 s. Those glycopolypeptide hydrogels have suitable tissue adhesion of ∼20 kPa, high resistant bursting pressure of ∼150 mmHg, large microporosity of ∼15 µm, and excellent biocompatibility with ∼1% hemolysis ratio and negligible inflammation. They performed better hemostasis in rat liver and rat and rabbit femoral artery bleeding models than Fibrin glue, Gauze, and other hydrogels, achieving fast arterial hemostasis of <20 s and lower blood loss of 5-13%. As confirmed by in vivo wound healing, immunofluorescent imaging, and immunohistochemical and histological analyses, the mannose-modified hydrogels could highly boost the polarization of anti-inflammatory M2 phenotype and downregulate pro-inflammatory tumor necrosis factor-α to relieve inflammation, achieving complete full-thickness healing with thick dermis, dense hair follicles, and 90% collagen deposition. Importantly, this study provides a versatile strategy to construct biomimetic glycopolypeptide hydrogels that can not only resist vascular bursting pressure for arterial massive hemorrhage but also modulate inflammatory microenvironment for wound prohealing.

7.
Org Biomol Chem ; 22(22): 4521-4527, 2024 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-38752482

RESUMO

Ten azaphilones including one pair of new epimers and three new ones, penineulones A-E (1-5) with the same structural core of angular deflectin, were obtained from a deep-sea derived Penicillium sp. SCSIO41030 fermented on a liquid medium. Their structures including absolute configurations were elucidated using chiral-phase HPLC analysis, extensive NMR spectroscopic and HRESIMS data, ECD and NMR calculations, and by comparing NMR data with literature data. Biological assays showed that the azaphilones possessed no antitumor and anti-viral (HSV-1/2) activities at concentrations of 5.0 µM and 20 µM, respectively. In addition, azaphilones 8 and 9 showed neuroprotective effects against Aß25-35-induced neurotoxicity in primary cultured cortical neurons at a concentration of 10 µM. Azaphilones 8 and 9 dramatically promoted axonal regrowth against Aß25-35-induced axonal atrophy. Our study indicated that azaphilones could be promising lead compounds for neuroprotection.


Assuntos
Benzopiranos , Fármacos Neuroprotetores , Penicillium , Penicillium/química , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/química , Fármacos Neuroprotetores/isolamento & purificação , Benzopiranos/farmacologia , Benzopiranos/química , Benzopiranos/isolamento & purificação , Animais , Peptídeos beta-Amiloides/antagonistas & inibidores , Peptídeos beta-Amiloides/metabolismo , Peptídeos beta-Amiloides/farmacologia , Pigmentos Biológicos/farmacologia , Pigmentos Biológicos/química , Pigmentos Biológicos/isolamento & purificação , Humanos , Neurônios/efeitos dos fármacos , Fragmentos de Peptídeos/farmacologia , Fragmentos de Peptídeos/química , Estrutura Molecular
8.
Ecotoxicol Environ Saf ; 270: 115865, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38134640

RESUMO

The improvement of crop resistance to insect using endophytic fungi is an environmentally friendly and sustainable strategy for agricultural pest control. Clarifying the efficacy and mechanism of endophytic fungi in improving crop resistance to pest offers the opportunity for biological control. In this study, changes in the transcriptome and defense compounds of wheat inoculated with endophytic fungal strains (i.e., YC and BB) were evaluated, and the efficacy of endophytic fungi in improving wheat resistance to Rhopalosiphum padi was studied. The results showed that the numbers of upregulated differentially-expressed genes (DEGs) in wheat plants inoculated with endophytic fungal strains YC and BB were higher than those of the downregulated DEGs, irrespective of R. padi infestation. Defense-related metabolic pathways, such as plant hormone signal transduction and secondary metabolite biosynthesis pathways were significantly enriched. Endophytic fungal strains YC and BB significantly increased jasmonic acid, DIMBOA (2,4-dihydroxy-7-methoxy-1,4-benzoxazin-3-one), total flavone, and tannin contents in wheat plants (P < 0.05) but decreased salicylic acid content. Variations in the contents of defense compounds were significantly correlated with decreased feeding, development, and reproduction of R. padi fed on wheat plants inoculated with strains YC and BB (|r| = 0.68-0.91, P < 0.05). The results suggested that endophytic fungi significantly decreased the feeding efficiency and population fitness [YC: (-11.13%) - (-22.07%); BB: (-10.98%) - (-22.20%)] of R. padi by altering the phytohormone pathway and secondary metabolite biosynthesis in wheat plants. This study helps in understanding of the efficacy of endophytic fungi in improving wheat resistance to insect and will be conducive to integrated pest management.


Assuntos
Aptidão Genética , Triticum , Reguladores de Crescimento de Plantas , Fungos/fisiologia
9.
Int J Mol Sci ; 25(7)2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38612691

RESUMO

Plant annexins constitute a conserved protein family that plays crucial roles in regulating plant growth and development, as well as in responses to both biotic and abiotic stresses. In this study, a total of 144 annexin genes were identified in the barley pan-genome, comprising 12 reference genomes, including cultivated barley, landraces, and wild barley. Their chromosomal locations, physical-chemical characteristics, gene structures, conserved domains, and subcellular localizations were systematically analyzed to reveal the certain differences between wild and cultivated populations. Through a cis-acting element analysis, co-expression network, and large-scale transcriptome analysis, their involvement in growth, development, and responses to various stressors was highlighted. It is worth noting that HvMOREXann5 is only expressed in pistils and anthers, indicating its crucial role in reproductive development. Based on the resequencing data from 282 barley accessions worldwide, genetic variations in thefamily were investigated, and the results showed that 5 out of the 12 identified HvMOREXanns were affected by selection pressure. Genetic diversity and haplotype frequency showed notable reductions between wild and domesticated barley, suggesting that a genetic bottleneck occurred on the annexin family during the barley domestication process. Finally, qRT-PCR analysis confirmed the up-regulation of HvMOREXann7 under drought stress, along with significant differences between wild accessions and varieties. This study provides some insights into the genome organization and genetic characteristics of the annexin gene family in barley at the pan-genome level, which will contribute to better understanding its evolution and function in barley and other crops.


Assuntos
Hordeum , Procedimentos de Cirurgia Plástica , Hordeum/genética , Anexinas/genética , Domesticação , Produtos Agrícolas
10.
J Virol ; 96(4): e0191921, 2022 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-34908441

RESUMO

African swine fever is one of the most serious viral diseases caused by African swine fever virus (ASFV). The metabolic changes induced by ASFV infection remain unknown. Here, porcine alveolar macrophages (PAMs) infected with ASFV was analyzed by ultrahigh-performance liquid chromatography-quadrupole time-of-flight tandem mass spectrometry (UHPLC-QTOF-MS) in combination with multivariate statistical analysis. A total of 90 metabolites were significantly changed after ASFV infection, and most of them were amino acids and tricarboxylic acid (TCA) cycle intermediates. ASFV infection induced an increase in most of amino acids in the host during the early stages of infection, and amino acids decreased in the late stages of infection. ASFV infection did not significantly affect the glycolysis pathway, whereas it induced increases in citrate, succinate, α-ketoglutarate, and oxaloacetate levels in the TCA cycle, suggesting that ASFV infection promoted the TCA cycle. The activities of aspartate aminotransferase and glutamate production were significantly elevated in ASFV-infected cells and pigs, resulting in reversible transition between TCA cycle and amino acid synthesis. Aspartate, glutamate, and TCA cycle were essential for ASFV replication. In addition, ASFV infection induced an increase in lactate level using lactate dehydrogenase, which led to low expression of beta interferon (IFN-ß) and increased ASFV replication. Our data, for the first time, indicate that ASFV infection controls IFN-ß production through RIG-I-mediated signaling pathways. These data identified a novel mechanism evolved by ASFV to inhibit host innate immune responses and provide insights for development of new preventive or therapeutic strategies targeting the altered metabolic pathways. IMPORTANCE In order to promote viral replication, viruses often cause severe immunosuppression and seize organelles to synthesize a large number of metabolites required for self-replication. African swine fever virus (ASFV) has developed many strategies to evade host innate immune responses. However, the impact of ASFV infection on host cellular metabolism remains unknown. Here, for the first time, we analyzed the metabolomic profiles of ASFV-infected PAMs. ASFV infection increased host TCA cycle and amino acid metabolism. Aspartate, glutamate, and TCA cycle promoted ASFV replication. ASFV infection also induced the increase of lactate production to inhibit innate immune responses for self-replication. This study identified novel immune evasion mechanisms utilized by ASFV and provided insights into ASFV-host interactions, which is critical for guiding the design of new prevention strategies against ASFV targeting the altered metabolic pathways.


Assuntos
Vírus da Febre Suína Africana/fisiologia , Febre Suína Africana/metabolismo , Aminoácidos/metabolismo , Metabolismo Energético , Replicação Viral/fisiologia , Febre Suína Africana/virologia , Vírus da Febre Suína Africana/patogenicidade , Animais , Ácido Aspártico/metabolismo , Ciclo do Ácido Cítrico , Ácido Glutâmico/metabolismo , Interações Hospedeiro-Patógeno , Ácido Láctico/metabolismo , Macrófagos Alveolares/metabolismo , Macrófagos Alveolares/virologia , Metabolômica , Suínos
11.
J Nat Prod ; 86(5): 1171-1178, 2023 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-36726314

RESUMO

Seven new tanzawaic acid derivatives, steckwaic acids E-K (1-7), and one new benzene derivate (8), together with seven known tanzawaic acid analogues (9-16) were isolated from the marine algicolous fungus Penicillium steckii SCSIO 41040. The structures and absolute configurations of these new compounds (1-8) were determined by spectroscopic analyses, X-ray diffraction, and comparison of ECD spectra to calculations. Compounds 2, 10, and 15 inhibited lipopolysaccharide (LPS)-induced nuclear factor kappa-B (NF-κB) with IC50 values of 10.4, 18.6, and 15.2 µM, respectively. Compound 2 could suppress the receptor activator of NF-κB ligand (RANKL)-induced osteoclast differentiation in bone marrow macrophage cells (BMMCs). To the best of our knowledge, this is the first report of osteoclastogenesis inhibitory activity for tanzawaic acid derivatives.


Assuntos
Osteogênese , Penicillium , Diferenciação Celular , Macrófagos , NF-kappa B , Osteoclastos , Penicillium/química , Ligante RANK/farmacologia , Policetídeos/química , Policetídeos/farmacologia
12.
BMC Ophthalmol ; 23(1): 442, 2023 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-37919665

RESUMO

INTRODUCTION: The tamponade of silicone oil (SO) can affect both the structure and blood flow of the retina. However, there are few studies on the effect of SO tamponade on choroidal blood flow. Our study aimed to compare the effects of SO tamponade on the choroidal vascular index (CVI) and choroidal thickness (CT) in patients with unilateral rhegmatogenous retinal detachment (RRD) with operated eyes and fellow healthy eyes. METHODS: We retrospectively collected demographic and clinical data from 36 patients who underwent 23G pars plana vitrectomy and SO tamponade for unilateral complicated RRD. Enhanced depth imaging-optical coherence tomography (EDI-OCT) scans were performed both within 1 week before SO removal and at the last follow-up visit after SO removal. Using ImageJ software, images were binarized to segment the total choroidal area, luminal area, and stromal area, respectively. The CVI was calculated as CVI=(luminal area)/(total choroidal area), and CT was also evaluated. RESULTS: During SO tamponade, the CVI and luminal area in operated eyes were significantly lower compared to fellow eyes (57.616 ± 0.030 vs. 60.042 ± 0.019, P < 0.0001; 0.909 [0.694; 1.185] vs. 1.091 [0.785; 1.296], P = 0.007). Even after SO removal, the CVI remained lower in operated eyes than in fellow eyes (59.530 ± 0.018 vs. 60.319 ± 0.020, P = 0.031). Both CVI and luminal area were lower in operated eyes before SO removal than after SO removal (57.616 ± 0.030 vs. 59.530 ± 0.018, P = 0.0003; 0.909 [0.694; 1.185] vs. 0.994 [0.712; 1.348], P = 0.028). The duration of SO tamponade was positively correlated with the difference in CVI between fellow eyes and operated eyes during SO tamponade (P = 0.035). Total choroidal area, stromal area, and CT did not differ significantly between fellow eyes and operated eyes or between pre- and post-SO removal. CONCLUSIONS: SO tamponade reduces CVI and decreases choroidal blood circulation in patients with retinal detachments required vitrectomy combined with SO tamponade. The longer the SO tamponade time, the more CVI reduction. In future work, we will aim to reduce these side effects by shortening the duration of silicone oil filling.


Assuntos
Descolamento Retiniano , Humanos , Vitrectomia/métodos , Óleos de Silicone/farmacologia , Estudos Retrospectivos , Retina , Tomografia de Coerência Óptica/métodos
13.
Mar Drugs ; 21(2)2023 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-36827104

RESUMO

Marine natural products (MNPs) play an important role in the discovery and development of new drugs. The Beibu Gulf of South China Sea harbors four representative marine ecosystems, including coral reefs, mangroves, seaweed beds, and coastal wetlands, which are rich in underexplored marine biological resources that produce a plethora of diversified MNPs. In our ongoing efforts to discover novel and biologically active MNPs from the Beibu Gulf, we provide a systematic overview of the sources, chemical structures, and bioactive properties of a total of 477 new MNPs derived from the Beibu Gulf, citing 133 references and covering the literature from the first report in November 2003 up to September 2022. These reviewed MNPs were structurally classified into polyketides (43%), terpenoids (40%), nitrogen-containing compounds (12%), and glucosides (5%), which mainly originated from microorganisms (52%) and macroorganisms (48%). Notably, they were predominantly found with cytotoxic, antibacterial, and anti-inflammatory activities. This review will shed light on these untapped Beibu Gulf-derived MNPs as promising lead compounds for the development of new drugs.


Assuntos
Produtos Biológicos , Produtos Biológicos/química , China , Recifes de Corais , Ecossistema , Áreas Alagadas
14.
Mar Drugs ; 21(10)2023 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-37888468

RESUMO

Five new fusarin derivatives, steckfusarins A-E (1-5), and two known natural products (6, 7), were isolated and identified from the marine algicolous fungus Penicillium steckii SCSIO 41040. The new compounds, including absolute configurations, were determined by spectroscopic analyses and calculated electronic circular dichroism (ECD). All new compounds were evaluated for their antioxidant, antibacterial, antifungal, antiviral, cytotoxic, anti-inflammatory, antioxidant, cholesterol-lowering, acetyl cholinesterase (AChE) enzyme and 6-phosphofructo-2-kinase (PFKFB3) and phosphatidylinositol-3-kinase (PI3K) inhibitory activities. The biological evaluation results revealed that compound 1 exhibited radical scavenging activity against 2,2-diphenyl-1-picrylhydrazylhydrate (DPPH), with an IC50 value of 74.5 µg/mL. In addition, compound 1 also showed weak anti-inflammatory activity at a concentration of 20 µM.


Assuntos
Antioxidantes , Penicillium , Estrutura Molecular , Antioxidantes/farmacologia , Fungos/química , Penicillium/química , Dicroísmo Circular , Anti-Inflamatórios/farmacologia
15.
J Environ Manage ; 344: 118700, 2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37573698

RESUMO

Using dredged sediments as substrate for aquatic plants is a low-cost and ecological friendly way for in situ aquatic ecological restoration. However, the limited information available about how aquatic plant restoration affects the microbial ecology and nutrients in dredged sediments. In this study, nutrient contents, enzyme activities, and bacterial and archaeal communities in vertical sediment layers were determined in bulk and reed zones of wetlands constructed with dredged sediments in west Lake Taihu for three years. Reed restoration significantly decreased total nitrogen, total phosphorus, and organic carbon contents and increased alkaline phosphatase, urease, and sucrase activities compared to bulk area. Bacterial communities in vertical sediment layers had higher similarity in reed zone in comparison to bulk zone, and many bacterial and archaeal genera were only detected in reed rhizosphere zones. Compared with the bulk zone, the reed restoration area has a higher abundance of phylum Actinobacteriota, Hydrothermarchaeota, and class α-proteobacteria. The assembly process of the bacterial and archaeal communities was primarily shaped by dispersal limitation (67.03% and 32.97%, respectively), and stochastic processes were enhanced in the reed recovery area. Network analysis show that there were more complicated interactions among bacteria and archaea and low-abundance taxa were crucial in maintaining the microbial community stability in rhizosphere of reed zone. PICRUST2 analysis demonstrate that reed restoration promotes metabolic pathways related to C and N cycle in dredged sediments. These data highlight that using dredged sediments as substrates for aquatic plants can transform waste material into a valuable resource, enhancing the benefits to the environment.


Assuntos
Microbiota , Rizosfera , Áreas Alagadas , Bactérias , Archaea , Plantas , Nutrientes , Sedimentos Geológicos/química
16.
Molecules ; 28(5)2023 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-36903558

RESUMO

The separation of dimethyl carbonate (DMC) and methanol is of great significance in industry. In this study, ionic liquids (ILs) were employed as extractants for the efficient separation of methanol from DMC. Using the COSMO-RS model, the extraction performance of ILs consisting of 22 anions and 15 cations was calculated, and the results showed that the extraction performance of ILs with hydroxylamine as the cation was much better. The extraction mechanism of these functionalized ILs was analyzed by molecular interaction and the σ-profile method. The results showed that the hydrogen bonding energy dominated the interaction force between the IL and methanol, and the molecular interaction between the IL and DMC was mainly Van der Waals force. The molecular interaction changes with the type of anion and cation, which in turn affects the extraction performance of ILs. Five hydroxyl ammonium ILs were screened and synthesized for extraction experiments to verify the reliability of the COSMO-RS model. The results showed that the order of selectivity of ILs predicted by the COSMO-RS model was consistent with the experimental results, and ethanolamine acetate ([MEA][Ac]) had the best extraction performance. After four regeneration and reuse cycles, the extraction performance of [MEA][Ac] was not notably reduced, and it is expected to have industrial applications in the separation of methanol and DMC.

17.
J Cell Mol Med ; 26(14): 3995-4006, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35713152

RESUMO

Mounting evidence indicates that hepatic de novo lipogenesis is a common abnormality in non-alcoholic fatty liver disease (NAFLD) patients. We investigated whether a selective COX-2 inhibitor, celecoxib, alleviates hepatic steatosis by targeting an Akt-driven lipogenic pathway. We estimated the efficacy of celecoxib in a novel Akt-driven NAFLD mouse model established via hydrodynamic transfection of activated forms of AKT and in fructose-fed NAFLD mice that exhibited increased insulin-independent hepatic lipogenesis. AKT-transfected and insulin-stimulated human hepatoma cells were used for the in vitro experiments. Haematoxylin and eosin staining, immunohistochemistry and immunoblotting were performed for mechanistic studies. The results revealed that celecoxib ameliorated hepatic steatosis in the AKT-triggered NAFLD mice. Mechanistically, celecoxib effectively suppressed AKT/mTORC1 signalling and its downstream lipogenic cascade in the Akt-driven NAFLD mice and in vitro. Furthermore, celecoxib had limited efficacy in alleviating hepatic lipid accumulation and showed no influence on lipogenic proteins associated with hepatic lipogenesis in fructose-administered mice. This study suggests that celecoxib may be favourable for the treatment of NAFLD, especially in the subset with Akt-triggered hepatic lipogenesis.


Assuntos
Insulinas , Hepatopatia Gordurosa não Alcoólica , Animais , Celecoxib/farmacologia , Frutose/metabolismo , Frutose/farmacologia , Humanos , Insulinas/metabolismo , Lipogênese , Fígado/metabolismo , Camundongos , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Hepatopatia Gordurosa não Alcoólica/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo
18.
Fish Shellfish Immunol ; 130: 428-435, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36176225

RESUMO

Yeast culture (YC), as a member of probiotics family is a natural product produced from yeast fermentation, affects of improving immunity. However, the intestine and liver injury and immunosuppression mechanism caused by SBA in fish are unclear and more functions of YC supplement in the diet need to be developed. Soybean agglutinin (SBA) is an anti-nutritional factor in soybean and leads to growth-inhibitory effect in feeding of the high proportion of soybean meal replacing fish meal (FM). Therefore, one hundred and thirty-five Pseudobagrus ussuriensis (6.5 ± 0.27 g) were randomly selected and divided into three groups (Control, SBA and YC+SBA groups). For the model, fish were fed with 2% YC for 8 weeks and then given intragastric administration of 0.2-mL SBA solution for 20 days. The results showed that SBA damaged the immune and antioxidant capacity, causing an inflammatory reaction, leading to abnormal expression of cytokines in the intestine and liver of Pseudobagrus ussuriensis. YC could effectively attenuate intestinal and liver damage and downregulate the TLR2/MyD88/NF-κB signaling pathway and suppress oxidative stress in Pseudobagrus ussuriensis. Besides, YC had obvious immune advantage, which could improve the immune ability. In summary, these results showed that YC could reduce immunosuppression and intestinal-liver injury by inhibiting the TLR2/MyD88/NF-κB signal pathway and oxidative stress induced by SBA. This study provided some explanations for the problems of fish diet caused by anti-nutritional factors from soybean meal and provided a theoretical basis for the function development of YC in aquaculture.


Assuntos
Produtos Biológicos , Peixes-Gato , Ração Animal/análise , Animais , Antioxidantes/farmacologia , Peixes-Gato/metabolismo , Citocinas/metabolismo , Dieta/veterinária , Intestinos , Fator 88 de Diferenciação Mieloide/metabolismo , NF-kappa B/metabolismo , Transdução de Sinais , Glycine max/metabolismo , Receptor 2 Toll-Like/metabolismo
19.
Ecotoxicol Environ Saf ; 248: 114296, 2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-36399994

RESUMO

Elevated atmospheric carbon dioxide (eCO2) concentrations can alter the carbon:nitrogen ratio and palatability of host plants for herbivorous insects, but rhizobacteria likely mitigate the alteration and influence physiological adaptation of insects. In this study, we conducted transcriptomic analysis of maize (Zea mays) response to Azotobacter chroococcum (AC) inoculation under eCO2 conditions in contrast to ambient CO2 (aCO2), and studied the effects of plant-defense change of maize under eCO2 on the oriental armyworm, Mythimna separata. Results showed that there were 16, 14, 16 and 135 differentially expressed genes that were associated with plant-defense response in maize leaves between aCO2-CK and aCO2-AC, eCO2-CK and eCO2-AC, aCO2-CK and eCO2-CK, aCO2-AC and eCO2-AC, respectively. Moreover, A. chroococcum inoculation and eCO2 influenced plant hormone signal transduction of maize. Interestingly, A. chroococcum inoculation significantly decreased the contents of JA (jasmonic acid) and JA-Ile (isoleucine conjugate of JA) in leaves, but eCO2 markedly increased contents of JA-Ile, JA and SA (salicylic acid). Compared to aCO2, eCO2 significantly decreased activity of protective enzyme (catalase), and increased activities of digestive (lipase and protease), protective (peroxidase) and detoxifying enzymes (carboxylesterase, Mixed-functional oxidase and glutathione s-transferase), prolonged developmental time, and decreased survival rate and body weight of larvae (P < 0.05). A. chroococcum inoculation significantly increased the activity of protective enzyme (catalase), and decreased the activities of detoxifying enzymes (carboxylesterase, glutathione s-transferase and mixed-functional oxidase), thus increased the growth rate and body weight of larvae in comparison with no-inoculation of A. chroococcum (P < 0.05). The indices of M. separata were significantly correlated with the foliar contents of JA, JA-Ile and SA (|r| = 0.44-0.85, P < 0.05), indicating that A. chroococcum inoculation altered the physiological adaptation of M. separata under eCO2 by disturbing defense substances in maize. Our results in understanding effects of A. chroococcum inoculation on maize resistance to herbivorous insects will be valuable for agricultural pest control in the future at eCO2 conditions.


Assuntos
Dióxido de Carbono , Zea mays , Animais , Zea mays/genética , Catalase , Dióxido de Carbono/farmacologia , Spodoptera , Glutationa Transferase , Hidrolases de Éster Carboxílico
20.
Int J Mol Sci ; 23(6)2022 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-35328358

RESUMO

Sessile plants are constantly exposed to myriads of unfavorable invading organisms with different lifestyles. To survive, plants have evolved plasma membrane-resident pattern recognition receptors (PRRs) and intracellular nucleotide-binding domain leucine-rich repeat receptors (NLRs) to initiate sophisticated downstream immune responses. Ubiquitination serves as one of the most important and prevalent posttranslational modifications (PTMs) to fine-tune plant immune responses. Over the last decade, remarkable progress has been made in delineating the critical roles of ubiquitination in plant immunity. In this review, we highlight recent advances in the understanding of ubiquitination in the modulation of plant immunity, with a particular focus on ubiquitination in the regulation of receptorsomes, and discuss how ubiquitination and other PTMs act in concert to ensure rapid, proper, and robust immune responses.


Assuntos
Imunidade Vegetal , Transdução de Sinais , Plantas/metabolismo , Receptores de Reconhecimento de Padrão/metabolismo , Ubiquitinação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA