Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 77
Filtrar
1.
BMC Genomics ; 23(1): 810, 2022 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-36476416

RESUMO

BACKGROUND: Genome editing using CRISPR/Cas9 has become a powerful tool in zebrafish to generate targeted gene knockouts models. However, its use for targeted knock-in remains challenging due to inefficient homology directed repair (HDR) pathway in zebrafish, highlighting the need for efficient and cost-effective screening methods.  RESULTS: Here, we present our fluorescent PCR and capillary electrophoresis based screening approach for knock-in using a single-stranded oligodeoxynucleotide donor (ssODN) as a repair template for the targeted insertion of epitope tags, or single nucleotide changes to recapitulate pathogenic human alleles. For the insertion of epitope tags, we took advantage of the expected change in size of the PCR product. For point mutations, we combined fluorescent PCR with restriction fragment length polymorphism (RFLP) analysis to distinguish the fish with the knock-in allele. As a proof-of-principle, we present our data on the generation of fish lines with insertion of a FLAG tag at the tcnba locus, an HA tag at the gata2b locus, and a point mutation observed in Gaucher disease patients in the gba gene. Despite the low number of germline transmitting founders (1-5%), combining our screening methods with prioritization of founder fish by fin biopsies allowed us to establish stable knock-in lines by screening 12 or less fish per gene. CONCLUSIONS: We have established a robust pipeline for the generation of zebrafish models with precise integration of small DNA sequences and point mutations at the desired sites in the genome. Our screening method is very efficient and easy to implement as it is PCR-based and only requires access to a capillary sequencer.


Assuntos
Mutação Puntual , Peixe-Zebra , Humanos , Animais , Peixe-Zebra/genética , Epitopos , Pesquisa
2.
Hum Mol Genet ; 29(13): 2109-2123, 2020 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-32186706

RESUMO

Cobalamin C (cblC) deficiency, the most common inborn error of intracellular cobalamin metabolism, is caused by mutations in MMACHC, a gene responsible for the processing and intracellular trafficking of vitamin B12. This recessive disorder is characterized by a failure to metabolize cobalamin into adenosyl- and methylcobalamin, which results in the biochemical perturbations of methylmalonic acidemia, hyperhomocysteinemia and hypomethioninemia caused by the impaired activity of the downstream enzymes, methylmalonyl-CoA mutase and methionine synthase. Cobalamin C deficiency can be accompanied by a wide spectrum of clinical manifestations, including progressive blindness, and, in mice, manifests with very early embryonic lethality. Because zebrafish harbor a full complement of cobalamin metabolic enzymes, we used genome editing to study the loss of mmachc function and to develop the first viable animal model of cblC deficiency. mmachc mutants survived the embryonic period but perished in early juvenile life. The mutants displayed the metabolic and clinical features of cblC deficiency including methylmalonic acidemia, severe growth retardation and lethality. Morphologic and metabolic parameters improved when the mutants were raised in water supplemented with small molecules used to treat patients, including hydroxocobalamin, methylcobalamin, methionine and betaine. Furthermore, mmachc mutants bred to express rod and/or cone fluorescent reporters, manifested a retinopathy and thin optic nerves (ON). Expression analysis using whole eye mRNA revealed the dysregulation of genes involved in phototransduction and cholesterol metabolism. Zebrafish with mmachc deficiency recapitulate the several of the phenotypic and biochemical features of the human disorder, including ocular pathology, and show a response to established treatments.


Assuntos
Proteínas de Transporte/genética , Morfogênese/genética , Deficiência de Vitamina B 12/genética , Vitamina B 12/genética , Proteínas de Peixe-Zebra/genética , Animais , Homocistinúria/genética , Homocistinúria/patologia , Humanos , Camundongos , Mutação/genética , Nervo Óptico/crescimento & desenvolvimento , Nervo Óptico/patologia , Oxirredutases/genética , Retina/crescimento & desenvolvimento , Retina/metabolismo , Vitamina B 12/análogos & derivados , Vitamina B 12/metabolismo , Deficiência de Vitamina B 12/metabolismo , Deficiência de Vitamina B 12/patologia , Peixe-Zebra/genética , Peixe-Zebra/crescimento & desenvolvimento
3.
N Engl J Med ; 390(14): 1347, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38598814
4.
Respir Res ; 23(1): 167, 2022 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-35739508

RESUMO

Hermansky-Pudlak syndrome (HPS) is an autosomal recessive disorder characterized by improper biogenesis of lysosome-related organelles (LROs). Lung fibrosis is the leading cause of death among adults with HPS-1 and HPS-4 genetic types, which are associated with defects in the biogenesis of lysosome-related organelles complex-3 (BLOC-3), a guanine exchange factor (GEF) for a small GTPase, Rab32. LROs are not ubiquitously present in all cell types, and specific cells utilize LROs to accomplish dedicated functions. Fibroblasts are not known to contain LROs, and the function of BLOC-3 in fibroblasts is unclear. Here, we report that lung fibroblasts isolated from patients with HPS-1 have increased migration capacity. Silencing HPS-1 in normal lung fibroblasts similarly leads to increased migration. We also show that the increased migration is driven by elevated levels of Myosin IIB. Silencing HPS1 or RAB32 in normal lung fibroblasts leads to increased MYOSIN IIB levels. MYOSIN IIB is downstream of p38-MAPK, which is a known target of angiotensin receptor signaling. Treatment with losartan, an angiotensin receptor inhibitor, decreases MYOSIN IIB levels and impedes HPS lung fibroblast migration in vitro. Furthermore, pharmacologic inhibition of angiotensin receptor with losartan seemed to decrease migration of HPS lung fibroblasts in vivo in a zebrafish xenotransplantation model. Taken together, we demonstrate that BLOC-3 plays an important role in MYOSIN IIB regulation within lung fibroblasts and contributes to fibroblast migration.


Assuntos
Síndrome de Hermanski-Pudlak , Albinismo , Animais , Movimento Celular , Fibroblastos/metabolismo , Transtornos Hemorrágicos , Síndrome de Hermanski-Pudlak/genética , Humanos , Losartan/metabolismo , Pulmão/metabolismo , Miosina não Muscular Tipo IIB/metabolismo , Receptores de Angiotensina , Peixe-Zebra
5.
Int J Mol Sci ; 23(18)2022 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-36142581

RESUMO

ZRSR2 (zinc finger CCCH-type, RNA binding motif and serine/arginine rich 2) is an essential splicing factor involved in 3' splice-site recognition as a component of both the major and minor spliceosomes that mediate the splicing of U2-type (major) and U12-type (minor) introns, respectively. Studies of ZRSR2-depleted cell lines and ZRSR2-mutated patient samples revealed its essential role in the U12-dependent minor spliceosome. However, the role of ZRSR2 during embryonic development is not clear, as its function is compensated for by Zrsr1 in mice. Here, we utilized the zebrafish model to investigate the role of zrsr2 during embryonic development. Using CRISPR/Cas9 technology, we generated a zrsr2-knockout zebrafish line, termed zrsr2hg129/hg129 (p.Trp167Argfs*9) and examined embryo development in the homozygous mutant embryos. zrsr2hg129/hg129 embryos displayed multiple developmental defects starting at 4 days post fertilization (dpf) and died after 8 dpf, suggesting that proper Zrsr2 function is required during embryonic development. The global transcriptome analysis of 3 dpf zrsr2hg129/hg129 embryos revealed that the loss of Zrsr2 results in the downregulation of essential metabolic pathways and the aberrant retention of minor introns in about one-third of all minor intron-containing genes in zebrafish. Overall, our study has demonstrated that the role of Zrsr2 as a component of the minor spliceosome is conserved and critical for proper embryonic development in zebrafish.


Assuntos
Splicing de RNA , Ribonucleoproteínas , Peixe-Zebra , Animais , Camundongos , Desenvolvimento Embrionário , Íntrons/genética , Ribonucleoproteínas/genética , Ribonucleoproteínas/metabolismo , Sítios de Splice de RNA , Splicing de RNA/genética , Fatores de Processamento de RNA/genética , Spliceossomos/metabolismo , Peixe-Zebra/genética , Peixe-Zebra/metabolismo
6.
Hum Mol Genet ; 28(24): 4173-4185, 2019 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-31691804

RESUMO

DHX15, a DEAH box containing RNA helicase, is a splicing factor required for the last step of splicing. Recent studies identified a recurrent mutational hotspot, R222G, in DHX15 in ∼ 6% of acute myeloid leukemia (AML) patients that carry the fusion protein RUNX1-RUNX1T1 produced by t (8;21) (q22;q22). Studies using yeast mutants showed that substitution of G for the residue equivalent to R222 leads to loss of its helicase function, suggesting that it is a loss-of-function mutation. To elucidate the role of DHX15 during development, we established the first vertebrate knockout model with CRISPR/Cas9 in zebrafish. Our data showed that dhx15 expression is enriched in the brain, eyes, pectoral fin primordia, liver and intestinal bulb during embryonic development. Dhx15 deficiency leads to pleiotropic morphological phenotypes in homozygous mutant embryos starting at 3 days post fertilization (dpf) that result in lethality by 7 dpf, revealing an essential role during embryonic development. RNA-seq analysis suggested important roles of Dhx15 in chromatin and nucleosome assembly and regulation of the Mdm2-p53 pathway. Interestingly, exons corresponding to the alternate transcriptional start sites for tp53 and mdm2 were preferentially expressed in the mutant embryos, leading to significant upregulation of their alternate isoforms, Δ113p53 (orthologous to Δ133p53 isoform in human) and mdm2-P2 (isoform using distal promoter P2), respectively. We speculate that these alterations in the Mdm2-p53 pathway contribute to the development of AML in patients with t(8;21) and somatically mutated DHX15.


Assuntos
Proteínas Proto-Oncogênicas c-mdm2/genética , RNA Helicases/genética , Proteína Supressora de Tumor p53/genética , Proteínas de Peixe-Zebra/genética , Processamento Alternativo , Animais , Animais Geneticamente Modificados , Humanos , Regiões Promotoras Genéticas , Isoformas de Proteínas , Proteínas Proto-Oncogênicas c-mdm2/biossíntese , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , RNA Helicases/metabolismo , Sítios de Splice de RNA , Splicing de RNA , Fatores de Processamento de RNA/genética , Sítio de Iniciação de Transcrição , Ativação Transcricional , Proteína Supressora de Tumor p53/metabolismo , Peixe-Zebra , Proteínas de Peixe-Zebra/metabolismo
7.
J Neurogenet ; 35(2): 74-83, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33970744

RESUMO

KCTD7 is a member of the potassium channel tetramerization domain-containing protein family and has been associated with progressive myoclonic epilepsy (PME), characterized by myoclonus, epilepsy, and neurological deterioration. Here we report four affected individuals from two unrelated families in which we identified KCTD7 compound heterozygous single nucleotide variants through exome sequencing. RNAseq was used to detect a non-annotated splicing junction created by a synonymous variant in the second family. Whole-cell patch-clamp analysis of neuroblastoma cells overexpressing the patients' variant alleles demonstrated aberrant potassium regulation. While all four patients experienced many of the common clinical features of PME, they also showed variable phenotypes not previously reported, including dysautonomia, brain pathology findings including a significantly reduced thalamus, and the lack of myoclonic seizures. To gain further insight into the pathogenesis of the disorder, zinc finger nucleases were used to generate kctd7 knockout zebrafish. Kctd7 homozygous mutants showed global dysregulation of gene expression and increased transcription of c-fos, which has previously been correlated with seizure activity in animal models. Together these findings expand the known phenotypic spectrum of KCTD7-associated PME, report a new animal model for future studies, and contribute valuable insights into the disease.


Assuntos
Epilepsias Mioclônicas Progressivas/genética , Canais de Potássio/genética , Animais , Criança , Pré-Escolar , Feminino , Humanos , Lactente , Masculino , Mutação , Epilepsias Mioclônicas Progressivas/fisiopatologia , Linhagem , Fenótipo , Peixe-Zebra
8.
PLoS Genet ; 14(12): e1007821, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30540754

RESUMO

Fanconi Anemia (FA) is a genomic instability syndrome resulting in aplastic anemia, developmental abnormalities, and predisposition to hematological and other solid organ malignancies. Mutations in genes that encode proteins of the FA pathway fail to orchestrate the repair of DNA damage caused by DNA interstrand crosslinks. Zebrafish harbor homologs for nearly all known FA genes. We used multiplexed CRISPR/Cas9-mediated mutagenesis to generate loss-of-function mutants for 17 FA genes: fanca, fancb, fancc, fancd1/brca2, fancd2, fance, fancf, fancg, fanci, fancj/brip1, fancl, fancm, fancn/palb2, fanco/rad51c, fancp/slx4, fancq/ercc4, fanct/ube2t, and two genes encoding FA-associated proteins: faap100 and faap24. We selected two indel mutations predicted to cause premature truncations for all but two of the genes, and a total of 36 mutant lines were generated for 19 genes. Generating two independent mutant lines for each gene was important to validate their phenotypic consequences. RT-PCR from homozygous mutant fish confirmed the presence of transcripts with indels in all genes. Interestingly, 4 of the indel mutations led to aberrant splicing, which may produce a different protein than predicted from the genomic sequence. Analysis of RNA is thus critical in proper evaluation of the consequences of the mutations introduced in zebrafish genome. We used fluorescent reporter assay, and western blots to confirm loss-of-function for several mutants. Additionally, we developed a DEB treatment assay by evaluating morphological changes in embryos and confirmed that homozygous mutants from all the FA genes that could be tested (11/17), displayed hypersensitivity and thus were indeed null alleles. Our multiplexing strategy helped us to evaluate 11 multiple gene knockout combinations without additional breeding. Homozygous zebrafish for all 19 single and 11 multi-gene knockouts were adult viable, indicating FA genes in zebrafish are generally not essential for early development. None of the mutant fish displayed gross developmental abnormalities except for fancp-/- fish, which were significantly smaller in length than their wildtype clutch mates. Complete female-to-male sex reversal was observed in knockouts for 12/17 FA genes, while partial sex reversal was seen for the other five gene knockouts. All adult females were fertile, and among the adult males, all were fertile except for the fancd1 mutants and one of the fancj mutants. We report here generation and characterization of zebrafish knockout mutants for 17 FA disease-causing genes, providing an integral resource for understanding the pathophysiology associated with the disrupted FA pathway.


Assuntos
Anemia de Fanconi/genética , Peixe-Zebra/genética , Animais , Sistemas CRISPR-Cas , Dano ao DNA , Anemia de Fanconi/fisiopatologia , Feminino , Fertilidade/genética , Fertilidade/fisiologia , Mutação da Fase de Leitura , Técnicas de Inativação de Genes , Humanos , Masculino , Fenótipo , Splicing de RNA/genética , Processos de Determinação Sexual/genética , Processos de Determinação Sexual/fisiologia , Desenvolvimento Sexual/genética , Desenvolvimento Sexual/fisiologia , Peixe-Zebra/crescimento & desenvolvimento , Peixe-Zebra/fisiologia , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/fisiologia
9.
Hum Mutat ; 41(12): 2105-2118, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32906187

RESUMO

Holoprosencephaly (HPE) is the most common congenital anomaly affecting the forebrain and face in humans and occurs as frequently as 1:250 conceptions or 1:10,000 livebirths. Sonic Hedgehog signaling molecule is one of the best characterized HPE genes that plays crucial roles in numerous developmental processes including midline neural patterning and craniofacial development. The Frizzled class G-protein coupled receptor Smoothened (SMO), whose signaling activity is tightly regulated, is the sole obligate transducer of Hedgehog-related signals. However, except for previous reports of somatic oncogenic driver mutations in human cancers (or mosaic tumors in rare syndromes), any potential disease-related role of SMO genetic variation in humans is largely unknown. To our knowledge, ours is the first report of a human hypomorphic variant revealed by functional testing of seven distinct nonsynonymous SMO variants derived from HPE molecular and clinical data. Here we describe several zebrafish bioassays developed and guided by a systems biology analysis. This analysis strategy, and detection of hypomorphic variation in human SMO, demonstrates the necessity of integrating the genomic variant findings in HPE probands with other components of the Hedgehog gene regulatory network in overall medical interpretations.


Assuntos
Holoprosencefalia/genética , Holoprosencefalia/patologia , Mutação/genética , Receptor Smoothened/química , Receptor Smoothened/genética , Sequência de Aminoácidos , Animais , Mutação com Ganho de Função/genética , Regulação da Expressão Gênica no Desenvolvimento , Redes Reguladoras de Genes , Humanos , Mutação com Perda de Função/genética , Modelos Biológicos , Morfolinos/farmacologia , Mutagênese/genética , Fenótipo , Domínios Proteicos , Peixe-Zebra/genética , Proteínas de Peixe-Zebra/genética
10.
Hum Mutat ; 41(12): 2155-2166, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32939873

RESUMO

Genetic variation in the highly conserved Sonic Hedgehog (SHH) gene is one of the most common genetic causes for the malformations of the brain and face in humans described as the holoprosencephaly clinical spectrum. However, only a minor fraction of known SHH variants have been experimentally proven to lead to abnormal function. Employing a phenotypic rescue assay with synthetic human messenger RNA variant constructs in shha-/- knockout zebrafish, we evaluated 104 clinically reported in-frame and missense SHH variants. Our data helped us to classify them into loss of function variants (31), hypomorphic variants (33), and nonpathogenic variants (40). We discuss the strengths and weaknesses of currently accepted predictors of variant deleteriousness and the American College of Medical Genetics and Genomics guidelines for variant interpretation in the context of this functional model; furthermore, we demonstrate the robustness of model systems such as zebrafish as a rapid method to resolve variants of uncertain significance.


Assuntos
Sistemas CRISPR-Cas/genética , Variação Genética , Proteínas Hedgehog/genética , Holoprosencefalia/genética , Proteínas de Peixe-Zebra/genética , Peixe-Zebra/genética , Alelos , Animais , Modelos Animais de Doenças , Família , Estudos de Associação Genética , Guias como Assunto , Humanos , Mutação com Perda de Função/genética , Mutação/genética , Fenótipo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Sociedades Científicas
11.
PLoS Genet ; 13(2): e1006481, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-28158191

RESUMO

ATP6V1H is a component of a large protein complex with vacuolar ATPase (V-ATPase) activity. We identified two generations of individuals in which short stature and osteoporosis co-segregated with a mutation in ATP6V1H. Since V-ATPases are highly conserved between human and zebrafish, we generated loss-of-function mutants in atp6v1h in zebrafish through CRISPR/Cas9-mediated gene knockout. Homozygous mutant atp6v1h zebrafish exhibited a severe reduction in the number of mature calcified bone cells and a dramatic increase in the expression of mmp9 and mmp13. Heterozygous adults showed curved vertebra that lack calcified centrum structure and reduced bone mass and density. Treatment of mutant embryos with small molecule inhibitors of MMP9 and MMP13 significantly restored bone mass in the atp6v1h mutants. These studies have uncovered a new, ATP6V1H-mediated pathway that regulates bone formation, and defines a new mechanism of disease that leads to bone loss. We propose that MMP9/MMP13 could be therapeutic targets for patients with this rare genetic disease.


Assuntos
Desenvolvimento Ósseo/genética , Metaloproteinase 13 da Matriz/genética , Metaloproteinase 9 da Matriz/genética , Osteoporose/genética , ATPases Vacuolares Próton-Translocadoras/genética , Adulto , Animais , Densidade Óssea/genética , Sistemas CRISPR-Cas , Condrócitos/metabolismo , Condrócitos/patologia , Humanos , Metaloproteinase 13 da Matriz/biossíntese , Metaloproteinase 9 da Matriz/biossíntese , Camundongos , Mutação , Osteoporose/metabolismo , Osteoporose/patologia , Transdução de Sinais/genética , ATPases Vacuolares Próton-Translocadoras/deficiência , Peixe-Zebra/genética , Peixe-Zebra/crescimento & desenvolvimento
13.
Blood ; 129(15): 2070-2082, 2017 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-28179279

RESUMO

RUNX1 is a member of the core-binding factor family of transcription factors and is indispensable for the establishment of definitive hematopoiesis in vertebrates. RUNX1 is one of the most frequently mutated genes in a variety of hematological malignancies. Germ line mutations in RUNX1 cause familial platelet disorder with associated myeloid malignancies. Somatic mutations and chromosomal rearrangements involving RUNX1 are frequently observed in myelodysplastic syndrome and leukemias of myeloid and lymphoid lineages, that is, acute myeloid leukemia, acute lymphoblastic leukemia, and chronic myelomonocytic leukemia. More recent studies suggest that the wild-type RUNX1 is required for growth and survival of certain types of leukemia cells. The purpose of this review is to discuss the current status of our understanding about the role of RUNX1 in hematological malignancies.


Assuntos
Aberrações Cromossômicas , Subunidade alfa 2 de Fator de Ligação ao Core , Neoplasias Hematológicas , Leucemia , Síndromes Mielodisplásicas , Proteínas de Neoplasias , Doença Aguda , Animais , Doença Crônica , Subunidade alfa 2 de Fator de Ligação ao Core/genética , Subunidade alfa 2 de Fator de Ligação ao Core/metabolismo , Neoplasias Hematológicas/genética , Neoplasias Hematológicas/metabolismo , Neoplasias Hematológicas/patologia , Humanos , Leucemia/genética , Leucemia/metabolismo , Leucemia/patologia , Síndromes Mielodisplásicas/genética , Síndromes Mielodisplásicas/metabolismo , Síndromes Mielodisplásicas/patologia , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo
14.
Genome Res ; 25(7): 1030-42, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26048245

RESUMO

The use of CRISPR/Cas9 as a genome-editing tool in various model organisms has radically changed targeted mutagenesis. Here, we present a high-throughput targeted mutagenesis pipeline using CRISPR/Cas9 technology in zebrafish that will make possible both saturation mutagenesis of the genome and large-scale phenotyping efforts. We describe a cloning-free single-guide RNA (sgRNA) synthesis, coupled with streamlined mutant identification methods utilizing fluorescent PCR and multiplexed, high-throughput sequencing. We report germline transmission data from 162 loci targeting 83 genes in the zebrafish genome, in which we obtained a 99% success rate for generating mutations and an average germline transmission rate of 28%. We verified 678 unique alleles from 58 genes by high-throughput sequencing. We demonstrate that our method can be used for efficient multiplexed gene targeting. We also demonstrate that phenotyping can be done in the F1 generation by inbreeding two injected founder fish, significantly reducing animal husbandry and time. This study compares germline transmission data from CRISPR/Cas9 with those of TALENs and ZFNs and shows that efficiency of CRISPR/Cas9 is sixfold more efficient than other techniques. We show that the majority of published "rules" for efficient sgRNA design do not effectively predict germline transmission rates in zebrafish, with the exception of a GG or GA dinucleotide genomic match at the 5' end of the sgRNA. Finally, we show that predicted off-target mutagenesis is of low concern for in vivo genetic studies.


Assuntos
Sistemas CRISPR-Cas , Marcação de Genes , Ensaios de Triagem em Larga Escala , Fenótipo , Alelos , Animais , Técnicas de Inativação de Genes , Marcação de Genes/métodos , Estudo de Associação Genômica Ampla , Genômica , Células Germinativas/imunologia , Humanos , Mutagênese , Locos de Características Quantitativas , RNA Guia de Cinetoplastídeos/genética , Deleção de Sequência , Peixe-Zebra
15.
Ann Rheum Dis ; 77(4): 612-619, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29358286

RESUMO

OBJECTIVES: To characterise the clinical features, immune manifestations and molecular mechanisms in a recently described autoinflammatory disease caused by mutations in TRNT1, a tRNA processing enzyme, and to explore the use of cytokine inhibitors in suppressing the inflammatory phenotype. METHODS: We studied nine patients with biallelic mutations in TRNT1 and the syndrome of congenital sideroblastic anaemia with immunodeficiency, fevers and developmental delay (SIFD). Genetic studies included whole exome sequencing (WES) and candidate gene screening. Patients' primary cells were used for deep RNA and tRNA sequencing, cytokine profiling, immunophenotyping, immunoblotting and electron microscopy (EM). RESULTS: We identified eight mutations in these nine patients, three of which have not been previously associated with SIFD. Three patients died in early childhood. Inflammatory cytokines, mainly interleukin (IL)-6, interferon gamma (IFN-γ) and IFN-induced cytokines were elevated in the serum, whereas tumour necrosis factor (TNF) and IL-1ß were present in tissue biopsies of patients with active inflammatory disease. Deep tRNA sequencing of patients' fibroblasts showed significant deficiency of mature cytosolic tRNAs. EM of bone marrow and skin biopsy samples revealed striking abnormalities across all cell types and a mix of necrotic and normal-appearing cells. By immunoprecipitation, we found evidence for dysregulation in protein clearance pathways. In 4/4 patients, treatment with a TNF inhibitor suppressed inflammation, reduced the need for blood transfusions and improved growth. CONCLUSIONS: Mutations of TRNT1 lead to a severe and often fatal syndrome, linking protein homeostasis and autoinflammation. Molecular diagnosis in early life will be crucial for initiating anti-TNF therapy, which might prevent some of the severe disease consequences.


Assuntos
Anemia Sideroblástica/genética , Anti-Inflamatórios/uso terapêutico , Doenças Genéticas Ligadas ao Cromossomo X/genética , Síndromes de Imunodeficiência/genética , Mutação , Nucleotidiltransferases/genética , RNA de Transferência/genética , Fator de Necrose Tumoral alfa/antagonistas & inibidores , Adulto , Anemia Sideroblástica/sangue , Criança , Pré-Escolar , Citocinas/sangue , Citocinas/genética , Deficiências do Desenvolvimento/genética , Feminino , Doenças Genéticas Ligadas ao Cromossomo X/sangue , Humanos , Imunofenotipagem , Masculino , Linhagem , Fenótipo , Fator de Necrose Tumoral alfa/análise , Sequenciamento do Exoma
16.
Nucleic Acids Res ; 44(D1): D822-6, 2016 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-26438539

RESUMO

CRISPRz (http://research.nhgri.nih.gov/CRISPRz/) is a database of CRISPR/Cas9 target sequences that have been experimentally validated in zebrafish. Programmable RNA-guided CRISPR/Cas9 has recently emerged as a simple and efficient genome editing method in various cell types and organisms, including zebrafish. Because the technique is so easy and efficient in zebrafish, the most valuable asset is no longer a mutated fish (which has distribution challenges), but rather a CRISPR/Cas9 target sequence to the gene confirmed to have high mutagenic efficiency. With a highly active CRISPR target, a mutant fish can be quickly replicated in any genetic background anywhere in the world. However, sgRNA's vary widely in their activity and models for predicting target activity are imperfect. Thus, it is very useful to collect in one place validated CRISPR target sequences with their relative mutagenic activities. A researcher could then select a target of interest in the database with an expected activity. Here, we report the development of CRISPRz, a database of validated zebrafish CRISPR target sites collected from published sources, as well as from our own in-house large-scale mutagenesis project. CRISPRz can be searched using multiple inputs such as ZFIN IDs, accession number, UniGene ID, or gene symbols from zebrafish, human and mouse.


Assuntos
Sistemas CRISPR-Cas , Bases de Dados Genéticas , RNA , Peixe-Zebra/genética , Animais , Marcação de Genes , Humanos , Camundongos , Mutagênese , Peixe-Zebra/embriologia
17.
Am J Med Genet A ; 173(11): 2893-2897, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28985029

RESUMO

Craniosynostosis presents either as a nonsyndromic congenital anomaly or as a finding in nearly 200 genetic syndromes. Our previous genome-wide association study of sagittal nonsyndromic craniosynostosis identified associations with variants downstream from BMP2 and intronic in BBS9. Because no coding variants in BMP2 were identified, we hypothesized that conserved non-coding regulatory elements may alter BMP2 expression. In order to identify and characterize noncoding regulatory elements near BMP2, two conserved noncoding regions near the associated region on chromosome 20 were tested for regulatory activity with a Renilla luciferase assay. For a 711 base pair noncoding fragment encompassing the most strongly associated variant, rs1884302, the luciferase assay showed that the risk allele (C) of rs1884302 drives higher expression of the reporter than the common allele (T). When this same DNA fragment was tested in zebrafish transgenesis studies, a strikingly different expression pattern of the green fluorescent reporter was observed depending on whether the transgenic fish had the risk (C) or the common (T) allele at rs1884302. The in vitro results suggest that altered BMP2 regulatory function at rs1884302 may contribute to the etiology of sagittal nonsyndromic craniosynostosis. The in vivo results indicate that differences in regulatory activity depend on the presence of a C or T allele at rs1884302.


Assuntos
Proteína Morfogenética Óssea 2/genética , Anormalidades Congênitas/genética , Craniossinostoses/genética , Predisposição Genética para Doença , Alelos , Animais , Animais Geneticamente Modificados/genética , Anormalidades Congênitas/fisiopatologia , Sequência Conservada , Regulação da Expressão Gênica/genética , Estudo de Associação Genômica Ampla , Humanos , Polimorfismo de Nucleotídeo Único , Sequências Reguladoras de Ácido Nucleico/genética , Peixe-Zebra/genética
18.
Nucleic Acids Res ; 43(22): e157, 2015 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-26253739

RESUMO

CRISPR/Cas9 has emerged as a versatile genome-engineering tool that relies on a single guide RNA (sgRNA) and the Cas9 enzyme for genome editing. Simple, fast and economical methods to generate sgRNAs have made targeted mutagenesis routine in cultured cells, mice, zebrafish and other model systems. Pre-screening of sgRNAs for target efficacy is desirable both for successful mutagenesis and minimizing wasted animal husbandry on targets with poor activity. Here, we describe an easy, quick and cost-effective fluorescent polymerase chain reaction (PCR)-based method, CRISPR Somatic Tissue Activity Test (CRISPR-STAT), to determine target-specific efficiency of sgRNA. As a proof of principle, we validated our method using 28 sgRNAs with known and varied levels of germline transmission efficiency in zebrafish by analysis of their somatic activity in injected embryos. Our data revealed a strong positive correlation between the fluorescent PCR profiles of the injected embryos and the germline transmission efficiency. Furthermore, the assay was sensitive enough to evaluate multiplex gene targeting. This method is easy to implement by laboratories with access to a capillary sequencer. Although we validated the method using CRISPR/Cas9 and zebrafish, it can be applied to other model systems and other genome targeting nucleases.


Assuntos
Sistemas CRISPR-Cas , Mutação INDEL , Reação em Cadeia da Polimerase/métodos , RNA/metabolismo , Animais , Fluorescência , Peixe-Zebra/genética
19.
Hum Mol Genet ; 23(16): 4260-71, 2014 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-24691551

RESUMO

The Maf-family leucine zipper transcription factor NRL is essential for rod photoreceptor development and functional maintenance in the mammalian retina. Mutations in NRL are associated with human retinopathies, and loss of Nrl in mice leads to a cone-only retina with the complete absence of rods. Among the highly down-regulated genes in the Nrl(-/-) retina, we identified receptor expression enhancing protein 6 (Reep6), which encodes a member of a family of proteins involved in shaping of membrane tubules and transport of G-protein coupled receptors. Here, we demonstrate the expression of a novel Reep6 isoform (termed Reep6.1) in the retina by exon-specific Taqman assay and rapid analysis of complementary deoxyribonucleic acid (cDNA) ends (5'-RACE). The REEP6.1 protein includes 27 additional amino acids encoded by exon 5 and is specifically expressed in rod photoreceptors of developing and mature retina. Chromatin immunoprecipitation assay identified NRL binding within the Reep6 intron 1. Reporter assays in cultured cells and transfections in retinal explants mapped an intronic enhancer sequence that mediated NRL-directed Reep6.1 expression. We also demonstrate that knockdown of Reep6 in mouse and zebrafish resulted in death of retinal cells. Our studies implicate REEP6.1 as a key functional target of NRL-centered transcriptional regulatory network in rod photoreceptors.


Assuntos
Fatores de Transcrição de Zíper de Leucina Básica/genética , Proteínas do Olho/genética , Proteínas de Membrana Transportadoras/química , Isoformas de Proteínas/genética , Células Fotorreceptoras Retinianas Bastonetes/metabolismo , Ativação Transcricional , Animais , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Elementos Facilitadores Genéticos , Proteínas do Olho/metabolismo , Redes Reguladoras de Genes , Células HEK293 , Humanos , Íntrons , Proteínas de Membrana , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Camundongos Endogâmicos C57BL , Especificidade de Órgãos , Isoformas de Proteínas/metabolismo , Peixe-Zebra
20.
N Engl J Med ; 369(1): 54-65, 2013 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-23738510

RESUMO

BACKGROUND: Neutrophils are the predominant phagocytes that provide protection against bacterial and fungal infections. Genetically determined neutrophil disorders confer a predisposition to severe infections and reveal novel mechanisms that control vesicular trafficking, hematopoiesis, and innate immunity. METHODS: We clinically evaluated seven children from five families who had neutropenia, neutrophil dysfunction, bone marrow fibrosis, and nephromegaly. To identify the causative gene, we performed homozygosity mapping using single-nucleotide polymorphism arrays, whole-exome sequencing, immunoblotting, immunofluorescence, electron microscopy, a real-time quantitative polymerase-chain-reaction assay, immunohistochemistry, flow cytometry, fibroblast motility assays, measurements of apoptosis, and zebrafish models. Correction experiments were performed by transfecting mutant fibroblasts with the nonmutated gene. RESULTS: All seven affected children had homozygous mutations (Thr224Asn or Glu238Lys, depending on the child's ethnic origin) in VPS45, which encodes a protein that regulates membrane trafficking through the endosomal system. The level of VPS45 protein was reduced, as were the VPS45 binding partners rabenosyn-5 and syntaxin-16. The level of ß1 integrin was reduced on the surface of VPS45-deficient neutrophils and fibroblasts. VPS45-deficient fibroblasts were characterized by impaired motility and increased apoptosis. A zebrafish model of vps45 deficiency showed a marked paucity of myeloperoxidase-positive cells (i.e., neutrophils). Transfection of patient cells with nonmutated VPS45 corrected the migration defect and decreased apoptosis. CONCLUSIONS: Defective endosomal intracellular protein trafficking due to biallelic mutations in VPS45 underlies a new immunodeficiency syndrome involving impaired neutrophil function. (Funded by the National Human Genome Research Institute and others.).


Assuntos
Síndromes de Imunodeficiência/genética , Neutropenia/congênito , Proteínas de Transporte Vesicular/genética , Animais , Criança , Endossomos/metabolismo , Homozigoto , Humanos , Síndromes de Imunodeficiência/congênito , Síndromes de Imunodeficiência/imunologia , Mutação , Neutropenia/genética , Neutrófilos/fisiologia , Fenótipo , Transporte Proteico , Proteínas de Transporte Vesicular/metabolismo , Peixe-Zebra
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA