Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
Opt Express ; 32(7): 11474-11490, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38570994

RESUMO

Coherent anti-Stokes Raman scattering (CARS) microscopy offers label-free chemical contrasts based on molecular vibrations. Hyperspectral CARS (HS-CARS) microscopy enables comprehensive microscale chemical characterization of biological samples. Various HS-CARS methods have been developed with individual advantages and disadvantages. We present what we believe to be a new temporally optimized and spectrally shaped (TOSS) HS-CARS method to overcome the limitations of existing techniques by providing precise control of the spatial and temporal profiles of the excitation beams for efficient and accurate measurements. This method uniquely uses Fourier transform pulse shaping based on a two-dimensional spatial light modulator to control the phase and amplitude of the excitation beams. TOSS-HS-CARS achieves fast, stable, and flexible acquisition, minimizes photodamage, and is highly adaptable to a multimodal multiphoton imaging system.

2.
Opt Lett ; 49(9): 2513-2516, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38691757

RESUMO

Hyperspectral coherent Raman scattering microscopy provides a significant improvement in acquisition time compared to spontaneous Raman scattering yet still suffers from the time required to sweep through individual wavenumbers. To address this, we present the use of a pulse shaper with a 2D spatial light modulator for phase- and amplitude-based shaping of the Stokes beam to create programmable spectrally tailored excitation envelopes. This enables collection of useful spectral information in a more rapid and efficient manner.

3.
Opt Express ; 29(23): 37759-37775, 2021 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-34808842

RESUMO

Fluorescence lifetime imaging microscopy (FLIM) characterizes samples by examining the temporal properties of fluorescence emission, providing useful contrast within samples based on the local physical and biochemical environment of fluorophores. Despite this, FLIM applications have been limited in scope by either poor accuracy or long acquisition times. Here, we present a method for computational single-photon counting of directly sampled time-domain FLIM data that is capable of accurate fluorescence lifetime and intensity measurements while acquiring over 160 Mega-counts-per-second with sub-nanosecond time resolution between consecutive photon counts. We demonstrate that our novel method of Single-photon PEak Event Detection (SPEED) is more accurate than direct pulse sampling and faster than established photon counting FLIM methods. We further show that SPEED can be implemented for imaging and quantifying samples that benefit from higher -throughput and -dynamic range imaging with real-time GPU-accelerated processing and use this capability to examine the NAD(P)H-related metabolic dynamics of apoptosis in human breast cancer cells. Computational methods for photon counting such as SPEED open up more opportunities for fast and accurate FLIM imaging and additionally provide a basis for future innovation into alternative FLIM techniques.


Assuntos
Fluorescência , Microscopia de Fluorescência/métodos , Fótons , Algoritmos , Animais , Apoptose , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Feminino , Fluoresceína , Corantes Fluorescentes , Humanos , Processamento de Imagem Assistida por Computador/métodos , Microscopia de Fluorescência/instrumentação , Modelos Animais , NADP/metabolismo , Radiometria/instrumentação , Radiometria/métodos , Ratos , Rodaminas , Fatores de Tempo
4.
Vet Surg ; 50(1): 111-120, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32916007

RESUMO

OBJECTIVE: To determine the diagnostic accuracy of optical coherence tomography (OCT) to assess surgical margins of canine soft tissue sarcoma (STS) and determine the influence of observer specialty and training. STUDY DESIGN: Blinded clinical prospective study. ANIMALS: Twenty-five dogs undergoing surgical excision of STS. METHODS: In vivo and ex vivo surgical margins were imaged with OCT after tumor resection. Representative images and videos were used to generate a training presentation and data sets. These were completed by 16 observers of four specialties (surgery, radiology, pathology, and OCT researchers). Images and videos from data sets were classified as cancerous or noncancerous. RESULTS: The overall sensitivity and specificity were 88.2% and 92.8%, respectively, for in vivo tissues and 82.5% and 93.3%, respectively, for ex vivo specimens. The overall accurate classification for all specimens was 91.4% in vivo and 89.5% ex vivo. There was no difference in accuracy of interpretation of OCT imaging by observers of different specialties or experience levels. CONCLUSION: Use of OCT to accurately assess surgical margins after STS excision was associated with a high sensitivity and specificity among various specialties. Personnel of all specialties and experience levels could effectively be trained to interpret OCT imaging. CLINICAL SIGNIFICANCE: Optical coherence tomography can be used by personnel of different specialty experience levels and from various specialties to accurately identify canine STS in vivo and ex vivo after a short training session. These encouraging results provide evidence to justify further research to assess the ability of OCT to provide real-time assessments of surgical margins and its applicability to other neoplasms.


Assuntos
Doenças do Cão/cirurgia , Margens de Excisão , Sarcoma/veterinária , Tomografia de Coerência Óptica/veterinária , Animais , Cães , Feminino , Masculino , Sarcoma/cirurgia , Sensibilidade e Especificidade , Tomografia de Coerência Óptica/métodos
5.
APL Photonics ; 9(7): 076114, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-39072189

RESUMO

The applications of ultrafast optics to biomedical microscopy have expanded rapidly in recent years, including interferometric techniques like optical coherence tomography and microscopy (OCT/OCM). The advances of ultra-high resolution OCT and the inclusion of OCT/OCM in multimodal systems combined with multiphoton microscopy have marked a transition from using pseudo-continuous broadband sources, such as superluminescent diodes, to ultrafast supercontinuum optical sources. We report anomalies in the dispersion profiles of low-coherence ultrafast pulses through long and non-identical arms of a Michelson interferometer that are well beyond group delay or third-order dispersions. This chromatic anomaly worsens the observed axial resolution and causes fringe artifacts in the reconstructed tomograms in OCT/OCM using traditional algorithms. We present DISpersion COmpensation Techniques for Evident Chromatic Anomalies (DISCOTECA) as a universal solution to address the problem of chromatic dispersion mismatch in interferometry, especially with ultrafast sources. First, we demonstrate the origin of these artifacts through the self-phase modulation of ultrafast pulses due to focusing elements in the beam path. Next, we present three solution paradigms for DISCOTECA: optical, optoelectronic, and computational, along with quantitative comparisons to traditional methods to highlight the improvements to the dynamic range and axial profile. We explain the piecewise reconstruction of the phase mismatch between the arms of the spectral-domain interferometer using a modified short-term Fourier transform algorithm inspired by spectroscopic OCT. Finally, we present a decision-making guide for evaluating the utility of DISCOTECA in interferometry and for the artifact-free reconstruction of OCT images using an ultrafast supercontinuum source for biomedical applications.

6.
J Neurosci Methods ; 408: 110171, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38777156

RESUMO

BACKGROUND: Although the effects on neural activation and glucose consumption caused by opiates such as morphine are known, the metabolic machinery underlying opioid use and misuse is not fully explored. Multiphoton microscopy (MPM) techniques have been developed for optical imaging at high spatial resolution. Despite the increased use of MPM for neural imaging, the use of intrinsic optical contrast has seen minimal use in neuroscience. NEW METHOD: We present a label-free, multimodal microscopy technique for metabolic profiling of murine brain tissue following incubation with morphine sulfate (MSO4). We evaluate two- and three-photon excited autofluorescence, and second and third harmonic generation to determine meaningful intrinsic contrast mechanisms in brain tissue using simultaneous label-free, autofluorescence multi-harmonic (SLAM) microscopy. RESULTS: Regional differences quantified in the cortex, caudate, and thalamus of the brain demonstrate region-specific changes to metabolic profiles measured from FAD intensity, along with brain-wide quantification. While the overall intensity of FAD signal significantly decreased after morphine incubation, this metabolic molecule accumulated near the nucleus accumbens. COMPARISON WITH EXISTING METHODS: Histopathology requires tissue fixation and staining to determine cell type and morphology, lacking information about cellular metabolism. Tools such as fMRI or PET imaging have been widely used, but lack cellular resolution. SLAM microscopy obviates the need for tissue preparation, permitting immediate use and imaging of tissue with subcellular resolution in its native environment. CONCLUSIONS: This study demonstrates the utility of SLAM microscopy for label-free investigations of neural metabolism, especially the intensity changes in FAD autofluorescence and structural morphology from third-harmonic generation.


Assuntos
Encéfalo , Camundongos Endogâmicos C57BL , Microscopia de Fluorescência por Excitação Multifotônica , Morfina , Animais , Morfina/farmacologia , Microscopia de Fluorescência por Excitação Multifotônica/métodos , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Encéfalo/diagnóstico por imagem , Camundongos , Masculino , Analgésicos Opioides/farmacologia , Entorpecentes/farmacologia
7.
Biomed Opt Express ; 15(4): 2048-2062, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38633095

RESUMO

The dynamic range and fluctuations of fluorescence intensities and lifetimes in biological samples are large, demanding fast, precise, and versatile techniques. Among the high-speed fluorescence lifetime imaging microscopy (FLIM) techniques, directly sampling the output of analog single-photon detectors at GHz rates combined with computational photon counting can handle a larger range of photon rates. Traditionally, the laser clock is not sampled explicitly in fast FLIM; rather the detection is synchronized to the laser clock so that the excitation pulse train can be inferred from the cumulative photon statistics of several pixels. This has two disadvantages for sparse or weakly fluorescent samples: inconsistencies in inferring the laser clock within a frame and inaccuracies in aligning the decay curves from different frames for averaging. The data throughput is also very inefficient in systems with repetition rates much larger than the fluorescence lifetime due to significant silent regions where no photons are expected. We present a method for registering the photon arrival times to the excitation using time-domain multiplexing for fast FLIM. The laser clock is multiplexed with photocurrents into the silent region. Our technique does not add to the existing data bottleneck, has the sub-nanosecond dead time of computational photon counting based fast FLIM, works with various detectors, lasers, and electronics, and eliminates the errors in lifetime estimation in photon-starved conditions. We demonstrate this concept on two multiphoton setups of different laser repetition rates for single and multichannel FLIM multiplexed into a single digitizer channel for real-time imaging of biological samples.

8.
Endocrinology ; 2024 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-39298675

RESUMO

Extracellular vesicles (EVs) serve as crucial mediators of cell-to-cell communication in normal physiology as well as in diseased states, and have been largely studied in regard to their role in cancer progression. However, the mechanisms by which their biogenesis and secretion are regulated by metabolic or endocrine factors remain unknown. Here, we delineate a mechanism by which EV secretion is regulated by a cholesterol metabolite, 27-Hydroxycholesterol (27HC), where treatment of myeloid immune cells (RAW 264.7 and J774A.1) with 27HC impairs lysosomal homeostasis, leading to shunting of multivesicular bodies (MVBs) away from lysosomal degradation, towards secretion as EVs. This altered lysosomal function is likely caused by mitochondrial dysfunction and subsequent increase in reactive oxygen species (ROS). Interestingly, cotreatment with a mitochondria-targeted antioxidant rescued the lysosomal impairment and attenuated the 27HC-mediated increase in EV secretion. Overall, our findings establish how a cholesterol metabolite regulates EV secretion and paves the way for the development of strategies to regulate cancer progression by controlling EV secretion.

9.
Redox Biol ; 75: 103280, 2024 09.
Artigo em Inglês | MEDLINE | ID: mdl-39083897

RESUMO

The DNA damage response (DDR) is a fundamental readout for evaluating efficacy of cancer therapeutics, many of which target DNA associated processes. Current techniques to evaluate DDR rely on immunostaining for phosphorylated histone H2AX (γH2AX), which is an indicator of DNA double-strand breaks. While γH2AX immunostaining can provide a snapshot of DDR in fixed cell and tissue samples, this method is technically cumbersome due to temporal monitoring of DDR requiring timepoint replicates, extensive assay development efforts for 3D cell culture samples such as organoids, and time-consuming protocols for γH2AX immunostaining and its evaluation. The goal of this current study is to reduce overall burden on assay duration and development in non-small cell lung cancer (NSCLC) organoids by leveraging label-free multiphoton imaging. In this study, simultaneous label-free autofluorescence multiharmonic (SLAM) microscopy was used to provide rich intracellular information based on endogenous contrasts. SLAM microscopy enables imaging of live samples eliminating the need to generate sacrificial sample replicates and has improved image acquisition in 3D space over conventional confocal microscopy. Predictive modeling between label-free SLAM microscopy and γH2AX immunostained images confirmed strong correlation between SLAM image features and γH2AX signal. Across multiple DNA targeting chemotherapeutics and multiple patient-derived NSCLC organoid lines, the optical redox ratio and third harmonic generation channels were used to robustly predict DDR. Imaging via SLAM microscopy can be used to more rapidly predict DDR in live 3D NSCLC organoids with minimal sample handling and without labeling.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Dano ao DNA , Histonas , Neoplasias Pulmonares , Organoides , Humanos , Carcinoma Pulmonar de Células não Pequenas/patologia , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/genética , Organoides/metabolismo , Organoides/patologia , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/genética , Histonas/metabolismo , Linhagem Celular Tumoral , Imagem Óptica/métodos , Quebras de DNA de Cadeia Dupla
10.
bioRxiv ; 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38746134

RESUMO

Extracellular vesicles (EVs) serve as crucial mediators of cell-to-cell communication in normal physiology as well as in diseased states, and have been largely studied in regard to their role in cancer progression. However, the mechanisms by which their biogenesis and secretion are regulated by metabolic or endocrine factors remain unknown. Here, we delineate a mechanism by which EV secretion is regulated by a cholesterol metabolite, 27-Hydroxycholesterol (27HC), where treatment of myeloid immune cells (RAW 264.7 and J774A.1) with 27HC impairs lysosomal homeostasis, leading to shunting of multivesicular bodies (MVBs) away from lysosomal degradation, towards secretion as EVs. This impairment of lysosomal function is caused by mitochondrial dysfunction and subsequent increase in reactive oxygen species (ROS). Interestingly, cotreatment with a mitochondria-targeted antioxidant rescued the lysosomal impairment and attenuated the 27HC-mediated increase in EV secretion. Overall, our findings establish how a cholesterol metabolite regulates EV secretion and paves the way for the development of strategies to regulate cancer progression by controlling EV secretion.

11.
Sci Rep ; 14(1): 5528, 2024 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-38448508

RESUMO

Extracellular vesicles (EVs) have been implicated in metastasis and proposed as cancer biomarkers. However, heterogeneity and small size makes assessments of EVs challenging. Often, EVs are isolated from biofluids, losing spatial and temporal context and thus lacking the ability to access EVs in situ in their native microenvironment. This work examines the capabilities of label-free nonlinear optical microscopy to extract biochemical optical metrics of EVs in ex vivo tissue and EVs isolated from biofluids in cases of human breast cancer, comparing these metrics within and between EV sources. Before surgery, fresh urine and blood serum samples were obtained from human participants scheduled for breast tumor surgery (24 malignant, 6 benign) or healthy participants scheduled for breast reduction surgery (4 control). EVs were directly imaged both in intact ex vivo tissue that was removed during surgery and in samples isolated from biofluids by differential ultracentrifugation. Isolated EVs and freshly excised ex vivo breast tissue samples were imaged with custom nonlinear optical microscopes to extract single-EV optical metabolic signatures of NAD(P)H and FAD autofluorescence. Optical metrics were significantly altered in cases of malignant breast cancer in biofluid-derived EVs and intact tissue EVs compared to control samples. Specifically, urinary isolated EVs showed elevated NAD(P)H fluorescence lifetime in cases of malignant cancer, serum-derived isolated EVs showed decreased optical redox ratio in stage II cancer, but not earlier stages, and ex vivo breast tissue showed an elevated number of EVs in cases of malignant cancer. Results further indicated significant differences in the measured optical metabolic signature based on EV source (urine, serum and tissue) within individuals.


Assuntos
Neoplasias Encefálicas , Neoplasias da Mama , Vesículas Extracelulares , Humanos , Feminino , NAD , Biópsia , Mama , Microambiente Tumoral
12.
bioRxiv ; 2023 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-37873348

RESUMO

Sample health is critical for live-cell fluorescence microscopy and has promoted light-sheet microscopy that restricts its ultraviolet-visible excitation to one plane inside a three-dimensional sample. It is thus intriguing that laser-scanning nonlinear optical microscopy, which similarly restricts its near-infrared excitation, has not broadly enabled gentle label-free molecular imaging. We hypothesize that intense near-infrared excitation induces phototoxicity via linear absorption of intrinsic biomolecules with subsequent triplet buildup, rather than the commonly assumed mechanism of nonlinear absorption. Using a reproducible phototoxicity assay based on the time-lapse elevation of auto-fluorescence (hyper-fluorescence) from a homogeneous tissue model (chicken breast), we provide strong evidence supporting this hypothesis. Our study justifies a simple imaging technique, e.g., rapidly scanned sub-80-fs excitation with full triplet-relaxation, to mitigate this ubiquitous linear-absorption-mediated phototoxicity independent of sample types. The corresponding label-free imaging can track freely moving C. elegans in real-time at an irradiance up to one-half of water optical breakdown.

13.
Commun Biol ; 6(1): 980, 2023 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-37749184

RESUMO

Pancreatic cancer is a devastating disease often detected at later stages, necessitating swift and effective chemotherapy treatment. However, chemoresistance is common and its mechanisms are poorly understood. Here, label-free multi-modal nonlinear optical microscopy was applied to study microstructural and functional features of pancreatic tumors in vivo to monitor inter- and intra-tumor heterogeneity and treatment response. Patient-derived xenografts with human pancreatic ductal adenocarcinoma were implanted into mice and characterized over five weeks of intraperitoneal chemotherapy (FIRINOX or Gem/NabP) with known responsiveness/resistance. Resistant and responsive tumors exhibited a similar initial metabolic response, but by week 5 the resistant tumor deviated significantly from the responsive tumor, indicating that a representative response may take up to five weeks to appear. This biphasic metabolic response in a chemoresistant tumor reveals the possibility of intra-tumor spatiotemporal heterogeneity of drug responsiveness. These results, though limited by small sample size, suggest the possibility for further work characterizing chemoresistance mechanisms using nonlinear optical microscopy.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Animais , Camundongos , Xenoenxertos , Neoplasias Pancreáticas/tratamento farmacológico , Carcinoma Ductal Pancreático/tratamento farmacológico , Modelos Animais de Doenças
14.
Am J Cancer Res ; 12(5): 2068-2083, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35693090

RESUMO

Extracellular vesicles (EVs) have been studied for their potential applications in cancer screening, diagnosis, and treatment monitoring. Most studies have focused on the bulk content of EVs; however, it is also informative to investigate their metabolic status, and changes under different physiological and environmental conditions. In this study, noninvasive, multimodal, label-free nonlinear optical microscopy was used to evaluate the optical redox ratio of large EVs (microvesicles) isolated from the urine of 11 dogs in three cohorts (4 healthy, 4 transitional cell carcinoma (TCC) of the bladder, and 3 prostate cancer). The optical redox ratio is a common metric comparing the autofluorescence intensities of metabolic cofactors FAD and NAD(P)H to characterize the metabolic profile of cells and tissues, and has recently been applied to EVs. The optical redox ratio revealed that dogs with TCC of the bladder had a more than 2-fold increase in NAD(P)H-rich urinary EVs (uEVs) when compared to healthy dogs, whereas dogs with prostate cancer had no significant difference. The optical redox ratio values of uEVs kept at -20°C for 48 hours were significantly different from those of freshly isolated uEVs, indicating that this parameter is more reliable when assessing freshly isolated uEVs. These results suggest that the label-free optical redox ratio of uEVs, indicating relative rates of glycolysis and oxidative phosphorylation of parent cells and tissues, may act as a potential screening biomarker for bladder cancer.

15.
J Biomed Opt ; 27(5)2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35643823

RESUMO

SIGNIFICANCE: Needle biopsy (NB) procedures are important for the initial diagnosis of many types of cancer. However, the possibility of NB specimens being unable to provide diagnostic information, (i.e., non-diagnostic sampling) and the time-consuming histological evaluation process can cause delays in diagnoses that affect patient care. AIM: We aim to demonstrate the advantages of this label-free multimodal nonlinear optical imaging (NLOI) technique as a non-destructive point-of-procedure evaluation method for NB tissue cores, for the visualization and characterization of the tissue microenvironment. APPROACH: A portable, label-free, multimodal NLOI system combined second-harmonic generation (SHG) and third-harmonic generation and two- and three-photon autofluorescence (2PF, 3PF) microscopy. It was used for intraoperative imaging of fresh NB tissue cores acquired during canine cancer surgeries, which involved liver, lung, and mammary tumors as well as soft-tissue sarcoma; in total, eight canine patients were recruited. An added tissue culture chamber enabled the use of this NLOI system for longitudinal imaging of fresh NB tissue cores taken from an induced rat mammary tumor and healthy mouse livers. RESULTS: The intraoperative NLOI system was used to assess fresh canine NB specimens during veterinary cancer surgeries. Histology-like morphological features were visualized by the combination of four NLOI modalities at the point-of-procedure. The NLOI results provided quantitative information on the tissue microenvironment such as the collagen fiber orientation using Fourier-domain SHG analysis and metabolic profiling by optical redox ratio (ORR) defined by 2PF/(2PF + 3PF). The analyses showed that the canine mammary tumor had more randomly oriented collagen fibers compared to the tumor margin, and hepatocarcinoma had a wider distribution of ORR with a lower mean value compared to the liver fibrosis and the normal-appearing liver. Moreover, the loss of metabolic information during tissue degradation of fresh murine NB specimens was shown by overall intensity decreases in all channels and an increase of mean ORR from 0.94 (standard deviation 0.099) to 0.97 (standard deviation 0.077) during 1-h longitudinal imaging of a rat mammary tumor NB specimen. The tissue response to staurosporine (STS), an apoptotic inducer, from fresh murine liver NB specimens was also observed. The mean ORR decreased from 0.86 to 0.74 in the first 40 min and then increased to 0.8 during the rest of the hour of imaging, compared to the imaging results without the addition of STS, which showed a continuous increase of ORR from 0.72 to 0.75. CONCLUSIONS: A label-free, multimodal NLOI platform reveals microstructural and metabolic information of the fresh NB cores during intraoperative cancer imaging. This system has been demonstrated on animal models to show its potential to provide a more comprehensive histological assessment and a better understanding of the unperturbed tumor microenvironment. Considering tissue degradation, or loss of viability upon fixation, this intraoperative NLOI system has the advantage of immediate assessment of freshly excised tissue specimens at the point of procedure.


Assuntos
Neoplasias da Mama , Imagem Multimodal , Animais , Biópsia por Agulha , Colágeno , Cães , Feminino , Humanos , Camundongos , Imagem Óptica , Ratos , Microambiente Tumoral
16.
ACS Photonics ; 9(8): 2748-2755, 2022 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-35996369

RESUMO

Time-resolved photon counting methods have a finite bandwidth that restricts the acquisition speed of techniques like fluorescence lifetime imaging microscopy (FLIM). To enable faster imaging, computational methods can be employed to count photons when the output of a detector is directly digitized at a high sampling rate. Here, we present computational photon counting using a hybrid photodetector in conjunction with multithreshold peak detection to count instances where one or more photons arrive at the detector within the detector response time. This method can be used to distinguish up to five photon counts per digitized point, whereas previous demonstrations of computational photon counting on data acquired with photomultiplier tubes have only counted one photon at a time. We demonstrate in both freely moving C. elegans and a human breast cancer cell line undergoing apoptosis that this novel multithreshold peak detection method can accurately characterize the intensity and fluorescence lifetime of samples producing photon rates up to 223%, higher than previously demonstrated photon counting FLIM systems.

17.
J Biophotonics ; 15(9): e202200105, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35686672

RESUMO

A recent theranostic approach to address Alzheimer's disease (AD) utilizes multifunctional targets that both tag and negate the toxicity of AD biomarkers. These compounds, which emit fluorescence with both an activation and a spectral shift in the presence of Aß, were previously characterized with traditional fluorescence imaging for binary characterization. However, these multifunctional compounds have broad and dynamic emission spectra that are dependent on factors such as the local environment, presence of Aß deposits, etc. Since quantitative multiphoton microscopy is sensitive to the binding dynamics of molecules, we characterized the performance of two such compounds, LS-4 and ZY-12-OMe, using Simultaneous Label-free Autofluorescence Multi-harmonic (SLAM) microscopy and Fast Optical Coherence, Autofluorescence Lifetime imaging and Second harmonic generation (FOCALS) microscopy. This study shows that the combination of quantitative multiphoton imaging with multifunctional tags for AD offers new insights into the interaction of these tags with AD biomarkers and the theranostic mechanisms.


Assuntos
Doença de Alzheimer , Doença de Alzheimer/diagnóstico por imagem , Biomarcadores , Corantes , Humanos , Microscopia de Fluorescência por Excitação Multifotônica/métodos , Imagem Óptica
18.
Sci Rep ; 12(1): 3438, 2022 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-35236862

RESUMO

Label-free optical microscopy has matured as a noninvasive tool for biological imaging; yet, it is criticized for its lack of specificity, slow acquisition and processing times, and weak and noisy optical signals that lead to inaccuracies in quantification. We introduce FOCALS (Fast Optical Coherence, Autofluorescence Lifetime imaging, and Second harmonic generation) microscopy capable of generating NAD(P)H fluorescence lifetime, second harmonic generation (SHG), and polarization-sensitive optical coherence microscopy (OCM) images simultaneously. Multimodal imaging generates quantitative metabolic and morphological profiles of biological samples in vitro, ex vivo, and in vivo. Fast analog detection of fluorescence lifetime and real-time processing on a graphical processing unit enables longitudinal imaging of biological dynamics. We detail the effect of optical aberrations on the accuracy of FLIM beyond the context of undistorting image features. To compensate for the sample-induced aberrations, we implemented a closed-loop single-shot sensorless adaptive optics solution, which uses computational adaptive optics of OCM for wavefront estimation within 2 s and improves the quality of quantitative fluorescence imaging in thick tissues. Multimodal imaging with complementary contrasts improves the specificity and enables multidimensional quantification of the optical signatures in vitro, ex vivo, and in vivo, fast acquisition and real-time processing improve imaging speed by 4-40 × while maintaining enough signal for quantitative nonlinear microscopy, and adaptive optics improves the overall versatility, which enable FOCALS microscopy to overcome the limits of traditional label-free imaging techniques.


Assuntos
Imagem Óptica , Óptica e Fotônica , Microscopia de Polarização
19.
Biomed Opt Express ; 12(7): 4003-4019, 2021 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-34457395

RESUMO

Two-photon fluorescence lifetime imaging microscopy (FLIM) is a widely used technique in biomedical optical imaging. Presently, many two-photon time-domain FLIM setups are limited by long acquisition and postprocessing times that decrease data throughput and inhibit the ability to image fast sub-second processes. Here, we present a versatile two-photon FLIM setup capable of video-rate (up to 25 fps) imaging with graphics processing unit (GPU)-accelerated pixelwise phasor analysis displayed and saved simultaneously with acquisition. The system uses an analog output photomultiplier tube in conjunction with 12-bit digitization at 3.2 GHz to overcome the limited maximum acceptable photon rate associated with the photon counting electronics in many FLIM systems. This allows for higher throughput FLIM acquisition and analysis, and additionally enables the user to assess sample fluorescence lifetime in real-time. We further explore the capabilities of the system to examine the kinetics of Rhodamine B uptake by human breast cancer cells and characterize the effect of pixel dwell time on the reduced nicotinamide adenine dinucleotide and reduced nicotinamide adenine dinucleotide phosphate (NAD(P)H) autofluorescence lifetime estimation accuracy.

20.
Sci Rep ; 11(1): 3308, 2021 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-33558561

RESUMO

The heterogeneous nature of extracellular vesicles (EVs) creates the need for single EV characterization techniques. However, many common biochemical and functional EV analysis techniques lack single EV resolution. Two-photon fluorescence lifetime imaging microscopy (FLIM) is widely used to functionally characterize the reduced form of nicotinamide adenine dinucleotide and nicotinamide adenine dinucleotide phosphate (NAD(P)H) in cells and tissues. Here, we demonstrate that FLIM can also be used to image and characterize NAD(P)H in single isolated EVs. EVs were isolated using standard differential ultracentrifugation techniques from multiple cell lines and imaged using a custom two-photon FLIM system. The presented data show that the NAD(P)H fluorescence lifetimes in isolated cell-derived EVs follow a wide Gaussian distribution, indicating the presence of a range of different protein-bound and free NAD(P)H species. EV NAD(P)H fluorescence lifetime distribution has a larger standard deviation than that of cells and a significantly different fluorescence lifetime distribution than the nuclei, mitochondria, and cytosol of cells. Additionally, changes in the metabolic conditions of cells were reflected in changes in the mean fluorescence lifetime of NAD(P)H in the produced EVs. These data suggest that FLIM of NAD(P)H could be a valuable tool for EV research.


Assuntos
Vesículas Extracelulares/metabolismo , Microscopia de Fluorescência por Excitação Multifotônica , Imagem Molecular , NADP/metabolismo , Animais , Linhagem Celular Tumoral , Feminino , Humanos , Camundongos , Camundongos Endogâmicos BALB C
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA