Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Gastroenterology ; 163(5): 1351-1363.e15, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35810781

RESUMO

BACKGROUND & AIMS: Genes and gluten are necessary but insufficient to cause celiac disease (CeD). Altered gut microbiota has been implicated as an additional risk factor. Variability in sampling site may confound interpretation and mechanistic insight, as CeD primarily affects the small intestine. Thus, we characterized CeD microbiota along the duodenum and in feces and verified functional impact in gnotobiotic mice. METHODS: We used 16S rRNA gene sequencing (Illumina) and predicted gene function (PICRUSt2) in duodenal biopsies (D1, D2 and D3), aspirates, and stool from patients with active CeD and controls. CeD alleles were determined in consented participants. A subset of duodenal samples stratified according to similar CeD risk genotypes (controls DQ2-/- or DQ2+/- and CeD DQ2+/-) were used for further analysis and to colonize germ-free mice for gluten metabolism studies. RESULTS: Microbiota composition and predicted function in CeD was largely determined by intestinal location. In the duodenum, but not stool, there was higher abundance of Escherichia coli (D1), Prevotella salivae (D2), and Neisseria (D3) in CeD vs controls. Predicted bacterial protease and peptidase genes were altered in CeD and impaired gluten degradation was detected only in mice colonized with CeD microbiota. CONCLUSIONS: Our results showed luminal and mucosal microbial niches along the gut in CeD. We identified novel microbial proteolytic pathways involved in gluten detoxification that are impaired in CeD but not in controls carrying DQ2, suggesting an association with active duodenal inflammation. Sampling site should be considered a confounding factor in microbiome studies in CeD.


Assuntos
Doença Celíaca , Microbioma Gastrointestinal , Camundongos , Animais , Doença Celíaca/complicações , RNA Ribossômico 16S/genética , Glutens/metabolismo , Peptídeo Hidrolases
2.
J Bacteriol ; 191(11): 3553-68, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19329643

RESUMO

The LEE pathogenicity island has been acquired on multiple occasions within the different lineages of enteropathogenic and enterohemorrhagic Escherichia coli. In each lineage, LEE expression is regulated by complex networks of pathways, including core pathways shared by all lineages and lineage-specific pathways. Within the O157:H7 lineage of enterohemorrhagic E. coli, strain-to-strain variation in LEE expression has been observed, implying that expression patterns can diversify even within highly related subpopulations. Using comparative genomics of E. coli O157:H7 subpopulations, we have identified one source of strain-level variation affecting LEE expression. The variation occurs in prophage-dense regions of the genome that lie immediately adjacent to the late regions of the pch prophage carrying pchA, pchB, pchC, and a newly identified pch gene, pchX. Genomic segments extending from the holin S region to the pchA, pchB, pchC, and pchX genes of their respective prophage are highly conserved but are nonetheless embedded within adjacent genomic segments that are extraordinarily variable, termed pch adjacent genomic regions (pch AGR). Despite the remarkable degree of variation, the pattern of variation in pch AGR is highly correlated with the distribution of phylogenetic markers on the backbone of the genome. Quantitative analysis of transcription from the LEE1 promoter further revealed that variation in the pch AGR has substantial effects on absolute levels and patterns of LEE1 transcription. Variation in the pch AGR therefore serves as a mechanism to diversify LEE expression patterns, and the lineage-specific pattern of pch AGR variation could ultimately influence ecological or virulence characteristics of subpopulations within each lineage.


Assuntos
Escherichia coli O157/genética , Regulação Bacteriana da Expressão Gênica , Genoma Bacteriano/genética , Instabilidade Genômica/genética , Ilhas Genômicas/genética , Prófagos/genética , Southern Blotting , Análise de Sequência com Séries de Oligonucleotídeos , Reação em Cadeia da Polimerase
3.
Nat Commun ; 10(1): 1198, 2019 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-30867416

RESUMO

Microbe-host interactions are generally homeostatic, but when dysfunctional, they can incite food sensitivities and chronic diseases. Celiac disease (CeD) is a food sensitivity characterized by a breakdown of oral tolerance to gluten proteins in genetically predisposed individuals, although the underlying mechanisms are incompletely understood. Here we show that duodenal biopsies from patients with active CeD have increased proteolytic activity against gluten substrates that correlates with increased Proteobacteria abundance, including Pseudomonas. Using Pseudomonas aeruginosa producing elastase as a model, we show gluten-independent, PAR-2 mediated upregulation of inflammatory pathways in C57BL/6 mice without villus blunting. In mice expressing CeD risk genes, P. aeruginosa elastase synergizes with gluten to induce more severe inflammation that is associated with moderate villus blunting. These results demonstrate that proteases expressed by opportunistic pathogens impact host immune responses that are relevant to the development of food sensitivities, independently of the trigger antigen.


Assuntos
Proteínas de Bactérias/metabolismo , Doença Celíaca/imunologia , Proteínas Alimentares/imunologia , Interações entre Hospedeiro e Microrganismos/imunologia , Metaloendopeptidases/metabolismo , Receptor PAR-2/imunologia , Adulto , Idoso , Animais , Antígenos/imunologia , Antígenos/metabolismo , Proteínas de Bactérias/genética , Biópsia , Estudos de Casos e Controles , Doença Celíaca/diagnóstico por imagem , Doença Celíaca/microbiologia , Doença Celíaca/patologia , Estudos de Coortes , Colonoscopia , Proteínas Alimentares/metabolismo , Modelos Animais de Doenças , Duodeno/imunologia , Duodeno/metabolismo , Duodeno/microbiologia , Duodeno/patologia , Feminino , Microbioma Gastrointestinal/imunologia , Vida Livre de Germes , Glutens/imunologia , Glutens/metabolismo , Antígenos HLA-DQ/genética , Antígenos HLA-DQ/imunologia , Antígenos HLA-DQ/metabolismo , Humanos , Mucosa Intestinal/imunologia , Mucosa Intestinal/metabolismo , Mucosa Intestinal/microbiologia , Mucosa Intestinal/patologia , Masculino , Metaloendopeptidases/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos NOD , Camundongos Transgênicos , Pessoa de Meia-Idade , Proteólise , Pseudomonas aeruginosa/imunologia , Pseudomonas aeruginosa/metabolismo , Receptor PAR-2/metabolismo , Regulação para Cima , Adulto Jovem
4.
Infect Immun ; 76(5): 2202-11, 2008 May.
Artigo em Inglês | MEDLINE | ID: mdl-18347050

RESUMO

Vibrio parahaemolyticus is a leading cause of seafood-borne gastroenteritis; however, its virulence mechanisms are not well understood. The identification of type III secreted proteins has provided candidate virulence factors whose functions are still being elucidated. Genotypic strain variability contributes a level of complexity to understanding the role of different virulence factors. The ability of V. parahaemolyticus to inhibit Rho family GTPases and cause cytoskeletal disruption was examined with HeLa cells. After HeLa cells were infected, intracellular Rho activation was inhibited in response to external stimuli. In vitro activation of Rho, Rac, and Cdc42 isolated from infected HeLa cell lysates was also inhibited, indicating that the bacteria were specifically targeting GTPase activation. The inhibition of Rho family GTPase activation was retained for clinical and environmental isolates of V. parahaemolyticus and was dependent on a functional chromosome I type III secretion system (CI-T3SS). GTPase inhibition was independent of hemolytic toxin genotype and the chromasome II (CII)-T3SS. Rho inhibition was accompanied by a shift in the total actin pool to its monomeric form. These phenotypes were abrogated in a mutant strain lacking the CI-T3S effector Vp1686, suggesting that the inhibiting actin polymerization may be a downstream effect of Vp1686-dependent GTPase inhibition. Although Vp1686 has been previously characterized as a potential virulence factor in macrophages, our findings reveal an effect on cultured HeLa cells. The ability to inhibit Rho family GTPases independently of the CII-T3SS and the hemolytic toxins may provide insight into the mechanisms of virulence used by strains lacking these virulence factors.


Assuntos
Proteínas de Bactérias/metabolismo , Proteínas de Transporte/metabolismo , Vibrio parahaemolyticus/fisiologia , Fatores de Virulência/metabolismo , Proteínas rho de Ligação ao GTP/antagonistas & inibidores , Actinas/metabolismo , Proteínas de Bactérias/genética , Proteínas de Transporte/genética , Cromossomos Bacterianos , Células Epiteliais/microbiologia , Deleção de Genes , Células HeLa , Proteínas Hemolisinas/genética , Humanos , Vibrio parahaemolyticus/genética , Fatores de Virulência/genética , Proteína cdc42 de Ligação ao GTP/antagonistas & inibidores , Proteína cdc42 de Ligação ao GTP/isolamento & purificação , Proteínas rac de Ligação ao GTP/antagonistas & inibidores , Proteínas rac de Ligação ao GTP/isolamento & purificação , Proteínas rho de Ligação ao GTP/isolamento & purificação
5.
FEMS Microbiol Lett ; 353(2): 141-50, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24606036

RESUMO

Vibrio parahaemolyticus is an important cause of gastroenteritis resulting from the consumption of raw or undercooked shellfish. The V. parahaemolyticus genome revealed the presence of two type III secretion systems (T3SS); one on each of the two chromosomes. To date, four effectors have been identified as secreted by the chromosome 1 T3SS (T3SS1). For some effectors, efficient secretion requires a cytosolic chaperone that is often encoded in close proximity to its cognate effector. In this study, we identified VPA0451 as the specific chaperone for the T3SS1 effector, VPA0450. VPA0451 is structurally similar to known T3SS chaperones. It is required for efficient VPA0450 secretion while not affecting the secretion of other T3SS1 effectors, suggesting it is a class 1A single cargo chaperone. VPA0450 translocation into the host cell membrane requires VPA0451. VPA0451 binds directly to VPA0450, and amino acids 25-100 contribute to this activity. Taken together, we conclude that VPA0451 is the cognate chaperone for the effector VPA0450 and is the second T3SS1 chaperone identified to date.


Assuntos
Proteínas de Bactérias/metabolismo , Chaperonas Moleculares/genética , Monoéster Fosfórico Hidrolases/metabolismo , Vibrio parahaemolyticus/genética , Sequência de Aminoácidos , Proteínas de Bactérias/genética , Proteínas de Bactérias/isolamento & purificação , Sistemas de Secreção Bacterianos , Transporte Biológico , Ensaio de Imunoadsorção Enzimática , Feminino , Expressão Gênica , Células HeLa , Humanos , Chaperonas Moleculares/isolamento & purificação , Chaperonas Moleculares/metabolismo , Dados de Sequência Molecular , Ligação Proteica , Mapeamento de Interação de Proteínas , Proteínas Recombinantes de Fusão , Alinhamento de Sequência , Deleção de Sequência , Vibrio parahaemolyticus/metabolismo
6.
Mol Microbiol ; 45(5): 1191-6, 2002 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-12207688

RESUMO

The demonstration that the green fluorescent protein (GFP) from the jellyfish Aequorea victoria required no jellyfish-specific cofactors and could be expressed as a fluorescent protein in heterologous hosts including both prokaryotes and eukaryotes sparked the development of GFP as one of the most common reporters in use today. Over the past several years, the utility of GFP as a reporter has been optimized through the isolation and engineering of variants with increased folding rates, different in vivo stabilities and colour variants with altered excitation and emission spectral properties. One of the great utilities of GFP is as a probe for characterizing spatial and temporal dynamics of gene expression, protein localization and protein-protein interactions in living cells. The innovative application of GFP as a reporter in bacteria has made a significant contribution to microbial cell biology. This review will highlight recent studies that demonstrate the potential of GFP for real-time analysis of gene expression, protein localization and the dynamics of signalling transduction pathways through protein-protein interactions.


Assuntos
Bactérias/genética , Bactérias/metabolismo , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Animais , Bacillus subtilis/citologia , Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Biofilmes , Caulobacter crescentus/citologia , Caulobacter crescentus/genética , Caulobacter crescentus/metabolismo , Divisão Celular , Quimiotaxia , Escherichia coli/citologia , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Genes Reporter , Proteínas de Fluorescência Verde , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Transdução de Sinais
7.
J Bacteriol ; 185(16): 4973-82, 2003 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-12897017

RESUMO

The importance of iron to bacteria is shown by the presence of numerous iron-scavenging and transport systems and by many genes whose expression is tightly regulated by iron availability. We have taken a global approach to gene expression analysis of Salmonella enterica serovar Typhimurium in response to iron by combining efficient, high-throughput methods with sensitive, luminescent reporting of gene expression using a random promoter library. Real-time expression profiles of the library were generated under low- and high-iron conditions to identify iron-regulated promoters, including a number of previously identified genes. Our results indicate that approximately 7% of the genome may be regulated directly or indirectly by iron. Further analysis of these clones using a Fur titration assay revealed three separate classes of genes; two of these classes consist of Fur-regulated genes. A third class was Fur independent and included both negatively and positively iron-responsive genes. These may reflect new iron-dependent regulons. Iron-responsive genes included iron transporters, iron storage and mobility proteins, iron-containing proteins (redox proteins, oxidoreductases, and cytochromes), transcriptional regulators, and the energy transducer tonB. By identifying a wide variety of iron-responsive genes, we extend our understanding of the global effect of iron availability on gene expression in the bacterial cell.


Assuntos
Proteínas de Bactérias/metabolismo , Perfilação da Expressão Gênica , Regulação Bacteriana da Expressão Gênica , Genoma Bacteriano , Ferro/metabolismo , Salmonella typhimurium/metabolismo , Proteínas de Bactérias/genética , Biblioteca Gênica , Regiões Promotoras Genéticas , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Salmonella typhimurium/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA