RESUMO
OBJECTIVE: Chronic gastro-oesophageal reflux disease, where acidic bile salts (ABS) reflux into the oesophagus, is the leading risk factor for oesophageal adenocarcinoma (EAC). We investigated the role of ABS in promoting epithelial-mesenchymal transition (EMT) in EAC. DESIGN: RNA sequencing data and public databases were analysed for the EMT pathway enrichment and patients' relapse-free survival. Cell models, pL2-IL1ß transgenic mice, deidentified EAC patients' derived xenografts (PDXs) and tissues were used to investigate EMT in EAC. RESULTS: Analysis of public databases and RNA-sequencing data demonstrated significant enrichment and activation of EMT signalling in EAC. ABS induced multiple characteristics of the EMT process, such as downregulation of E-cadherin, upregulation of vimentin and activation of ß-catenin signalling and EMT-transcription factors. These were associated with morphological changes and enhancement of cell migration and invasion capabilities. Mechanistically, ABS induced E-cadherin cleavage via an MMP14-dependent proteolytic cascade. Apurinic/apyrimidinic endonuclease (APE1), also known as redox factor 1, is an essential multifunctional protein. APE1 silencing, or its redox-specific inhibitor (E3330), downregulated MMP14 and abrogated the ABS-induced EMT. APE1 and MMP14 coexpression levels were inversely correlated with E-cadherin expression in human EAC tissues and the squamocolumnar junctions of the L2-IL1ß transgenic mouse model of EAC. EAC patients with APE1high and EMThigh signatures had worse relapse-free survival than those with low levels. In addition, treatment of PDXs with E3330 restrained EMT characteristics and suppressed tumour invasion. CONCLUSION: Reflux conditions promote EMT via APE1 redox-dependent E-cadherin cleavage. APE1-redox function inhibitors can have a therapeutic role in EAC.
Assuntos
Adenocarcinoma , Refluxo Gastroesofágico , Humanos , Animais , Camundongos , Metaloproteinase 14 da Matriz/metabolismo , Adenocarcinoma/patologia , Oxirredução , Transição Epitelial-Mesenquimal , Caderinas/metabolismo , Linhagem Celular TumoralRESUMO
OBJECTIVE: Gastric cancer (GC) ranks fifth in incidence and fourth for mortality worldwide. The response to immune checkpoint blockade (ICB) therapy in GC is heterogeneous due to tumour-intrinsic and acquired immunotherapy resistance. We developed an immunophenotype-based subtyping of human GC based on immune cells infiltration to develop a novel treatment option. DESIGN: A algorithm was developed to reclassify GC into immune inflamed, excluded and desert subtypes. Bioinformatics, human and mouse GC cell lines, syngeneic murine gastric tumour model, and CTLA4 blockade were used to investigate the immunotherapeutic effects by restricting receptor tyrosine kinase (RTK) signalling in immune desert (ICB-resistant) type GC. RESULTS: Our algorithm restratified subtypes of human GC in public databases and showed that immune desert-type and excluded-type tumours are ICB-resistant compared with immune-inflamed GC. Moreover, epithelial-mesenchymal transition (EMT) signalling was highly enriched in immune desert-type GC, and syngeneic murine tumours exhibiting mesenchymal-like, compared with epithelial-like, properties are T cell-excluded and resistant to CTLA4 blockade. Our analysis further identified a panel of RTKs as potential druggable targets in the immune desert-type GC. Dovitinib, an inhibitor of multiple RTKs, strikingly repressed EMT programming in mesenchymal-like immune desert syngeneic GC models. Dovitinib activated the tumour-intrinsic SNAI1/2-IFN-γ signalling axis and impeded the EMT programme, converting immune desert-type tumours to immune inflamed-type tumours, sensitising these mesenchymal-like 'cold' tumours to CTLA4 blockade. CONCLUSION: Our findings identified potential druggable targets relevant to patient groups, especially for refractory immune desert-type/ 'cold' GC. Dovitinib, an RTK inhibitor, sensitised desert-type immune-cold GC to CTLA4 blockade by restricting EMT and recruiting T cells.
RESUMO
BACKGROUND & AIMS: Helicobacter pylori (H pylori) infection is the main risk factor for gastric cancer. The role of fibroblast growth factor receptors (FGRFs) in H pylori-mediated gastric tumorigenesis remains largely unknown. This study investigated the molecular and mechanistic links between H pylori, inflammation, and FGFR4 in gastric cancer. METHODS: Cell lines, human and mouse gastric tissue samples, and gastric organoids models were implemented. Infection with H pylori was performed using in vitro and in vivo models. Western blot, real-time quantitative reverse-transcription polymerase chain reaction, flow cytometry, immunofluorescence, immunohistochemistry, chromatin immunoprecipitation, and luciferase reporter assays were used for molecular, mechanistic, and functional studies. RESULTS: Analysis of FGFR family members using The Cancer Genome Atlas data, followed by validation, indicated that FGFR4 messenger (m)RNA was the most significantly overexpressed member in human gastric cancer tissue samples (P < .001). We also detected high levels of Fgfr4 mRNA and protein in gastric dysplasia and adenocarcinoma lesions in mouse models. Infection with J166, 7.13, and PMSS1 cytotoxin-associated gene A (CagA)+ H pylori strains induced FGFR4 mRNA and protein expression in in vitro and in vivo models. This was associated with a concordant activation of signal transducer and activator of transcription 3 (STAT3). Analysis of the FGFR4 promoter suggested several putative binding sites for STAT3. Using chromatin immunoprecipitation assay and an FGFR-promoter luciferase reporter containing putative STAT3 binding sites and their mutants, we confirmed a direct functional binding of STAT3 on the FGFR4 promoter. Mechanistically, we also discovered a feedforward activation loop between FGFR4 and STAT3 where the fibroblast growth factor 19FGFR4 axis played an essential role in activating STAT3 in a SRC proto-oncogene non-receptor tyrosine kinase dependent manner. Functionally, we found that FGFR4 protected against H pylori-induced DNA damage and cell death. CONCLUSIONS: Our findings demonstrated a link between infection, inflammation, and FGFR4 activation, where a feedforward activation loop between FGFR4 and STAT3 is established via SRC proto-oncogene non-receptor tyrosine kinase in response to H pylori infection. Given the relevance of FGFR4 to the etiology and biology of gastric cancer, we propose FGFR4 as a druggable molecular vulnerability that can be tested in patients with gastric cancer.
Assuntos
Infecções por Helicobacter , Helicobacter pylori , Receptor Tipo 4 de Fator de Crescimento de Fibroblastos/metabolismo , Receptores de Esteroides , Fator de Transcrição STAT3/metabolismo , Neoplasias Gástricas , Animais , Mucosa Gástrica/patologia , Infecções por Helicobacter/genética , Helicobacter pylori/genética , Humanos , Inflamação/metabolismo , Camundongos , RNA Mensageiro/metabolismo , Receptor Tipo 4 de Fator de Crescimento de Fibroblastos/genética , Receptores de Esteroides/metabolismo , Neoplasias Gástricas/metabolismo , Neoplasias Gástricas/patologiaRESUMO
BACKGROUND & AIMS: Helicobacter pylori infection is the predominant risk factor for gastric cancer. RAS protein activator like 2 (RASAL2) is considered a double-edged sword in carcinogenesis. Herein, we investigated the role of RASAL2 in response to H pylori infection and gastric tumorigenesis. METHODS: Bioinformatics analyses of local and public databases were applied to analyze RASAL2 expression, signaling pathways, and clinical significance. In vitro cell culture, spheroids, patient-derived organoids, and in vivo mouse models were used. Molecular assays included chromatin immunoprecipitation, co-immunoprecipitation, Western blotting, quantitative polymerase chain reaction, and immunocyto/histochemistry. RESULTS: H pylori infection induced RASAL2 expression via a nuclear factor-κB (NF-κB)-dependent mechanism whereby NF-κB was directly bound to the RASAL2 promoter activating its transcription. By gene silencing and ectopic overexpression, we found that RASAL2 upregulated ß-catenin transcriptional activity. RASAL2 inhibited protein phosphatase 2A activity through direct binding with subsequent activation of the AKT/ß-catenin signaling axis. Functionally, RASAL2 silencing decreased nuclear ß-catenin levels and impaired tumor spheroids and organoids formation. Furthermore, the depletion of RASAL2 impaired tumor growth in gastric tumor xenograft mouse models. Clinicopathological analysis indicated that abnormal overexpression of RASAL2 correlated with poor prognosis and chemoresistance in human gastric tumors. CONCLUSIONS: These studies uncovered a novel signaling axis of NF-κB/RASAL2/ß-catenin, providing a novel link between infection, inflammation and gastric tumorigenesis.
Assuntos
Infecções por Helicobacter , Helicobacter pylori , Neoplasias Gástricas , Animais , Carcinogênese/patologia , Linhagem Celular Tumoral , Transformação Celular Neoplásica/patologia , Proteínas Ativadoras de GTPase/metabolismo , Mucosa Gástrica/patologia , Infecções por Helicobacter/genética , Helicobacter pylori/metabolismo , Humanos , Camundongos , NF-kappa B/metabolismo , Neoplasias Gástricas/genética , Neoplasias Gástricas/metabolismo , beta Catenina/metabolismoRESUMO
BACKGROUND: H. pylori infection is the main risk factor for gastric cancer. In this study, we investigated H. pylori-mediated activation of STAT3 and NF-κB in gastric cancer, using in vitro and in vivo models. METHODS: To investigate the activation of NF-κB and STAT3 by H. pylori strains we used in vitro and in vivo mouse models, western blots, immunofluorescence, ChIP Assay, luciferase and quantitative real-time PCR assays. RESULTS: Following infection with H. pylori in vitro, we found an earlier phosphorylation of NF-kB-p65 (S536), followed by STAT3 (Y705). Immunofluorescence, using in vitro and in vivo models, demonstrated nuclear localization of NF-kB and STAT3, following H. pylori infection. NF-kB and STAT3 luciferase reporter assays confirmed earlier activation of NF-kB followed by STAT3. In vitro and in vivo models demonstrated induction of mRNA expression of IL-6 (p < 0.001), VEGF-α (p < 0.05), IL-17 (p < 0.001), and IL-23 (p < 0.001). Using ChIP, we confirmed co-binding of both NF-kB-p65 and STAT3 on the IL6 promoter. The reconstitution of Trefoil Factor 1 (TFF1) suppressed activation of NF-kB with reduction in IL6 levels and STAT3 activity, in response to H. pylori infection. Using pharmacologic (BAY11-7082) and genetic (IκB super repressor (IκBSR)) inhibitors of NF-kB-p65, we confirmed the requirement of NF-kB-p65 for activation of STAT3, as measured by phosphorylation, transcription activity, and nuclear localization of STAT3 in in vitro and in vivo models. CONCLUSION: Our findings suggest the presence of an early autocrine NF-kB-dependent activation of STAT3 in response to H. pylori infection. TFF1 acts as an anti-inflammatory guard against H. pylori-mediated activation of pro-inflammatory networks.
RESUMO
BACKGROUND & AIMS: microRNAs (miRNAs) are small noncoding RNAs that bind to the 3' untranslated regions of mRNAs to promote their degradation or block their translation. Mice with disruption of the trefoil factor 1 gene (Tff1) develop gastric neoplasms. We studied these mice to identify conserved miRNA networks involved in gastric carcinogenesis. METHODS: We performed next-generation miRNA sequencing analysis of normal gastric tissues (based on histology) from patients without evidence of gastric neoplasm (n = 64) and from TFF1-knockout mice (n = 22). We validated our findings using 270 normal gastric tissues (including 61 samples from patients without evidence of neoplastic lesions) and 234 gastric tumor tissues from 3 separate cohorts of patients and from mice. We performed molecular and functional assays using cell lines (MKN28, MKN45, STKM2, and AGS cells), gastric organoids, and mice with xenograft tumors. RESULTS: We identified 117 miRNAs that were significantly deregulated in mouse and human gastric tumor tissues compared with nontumor tissues. We validated changes in levels of 6 miRNAs by quantitative real-time polymerase chain reaction analyses of neoplastic gastric tissues from mice (n = 39) and 3 independent patient cohorts (n = 332 patients total). We found levels of MIR135B-5p, MIR196B-5p, and MIR92A-5p to be increased in tumor tissues, whereas levels of MIR143-3p, MIR204-5p, and MIR133-3p were decreased in tumor tissues. Levels of MIR143-3p were reduced not only in gastric cancer tissues but also in normal tissues adjacent to tumors in humans and low-grade dysplasia in mice. Transgenic expression of MIR143-3p in gastric cancer cell lines reduced their proliferation and restored their sensitivity to cisplatin. AGS cells with stable transgenic expression of MIR143-3p grew more slowly as xenograft tumors in mice than control AGS cells; tumor growth from AGS cells that expressed MIR143-3p, but not control cells, was sensitive to cisplatin. We identified and validated bromodomain containing 2 (BRD2) as a direct target of MIR143-3p; increased levels of BRD2 in gastric tumors was associated with shorter survival times for patients. CONCLUSIONS: In an analysis of miRNA profiles of gastric tumors from mice and human patients, we identified a conserved signature associated with the early stages of gastric tumorigenesis. Strategies to restore MIR143-3p or inhibit BRD2 might be developed for treatment of gastric cancer.
Assuntos
Carcinogênese/genética , Proliferação de Células/genética , Resistencia a Medicamentos Antineoplásicos/genética , MicroRNAs/genética , Neoplasias Gástricas/genética , Animais , Antineoplásicos/farmacologia , Estudos de Casos e Controles , Linhagem Celular Tumoral , Proteínas Cromossômicas não Histona/metabolismo , Cisplatino/farmacologia , Regulação para Baixo , Feminino , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Camundongos , Camundongos Knockout , MicroRNAs/análise , Transplante de Neoplasias , Organoides , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas c-myc/genética , Neoplasias Gástricas/tratamento farmacológico , Neoplasias Gástricas/metabolismo , Taxa de Sobrevida , Fatores de Transcrição , Transcrição Gênica/genética , Fator Trefoil-1/genética , Regulação para CimaRESUMO
Helicobacter pylori infection is a major risk factor for the development of gastric cancer. Aberrant expression of microRNAs is strongly implicated in gastric tumorigenesis; however, their contribution in response to H. pylori infection has not been fully elucidated. In this study, we evaluated the expression of miR-135b-5p and its role in gastric cancer. We describe the overexpression of miR-135b-5p in human gastric cancer tissue samples compared with normal tissue samples. Furthermore, we found that miR-135b-5p is also up-regulated in gastric tumors from the trefoil factor 1-knockout mouse model. Infection with H. pylori induced the expression of miR-135b-5p in the in vitro and in vivo models. miR-135b-5p induction was mediated by NF-κB. Treatment of gastric cancer cells with TNF-α induced miR-135b-5p in a NF-κB-dependent manner. Mechanistically, we found that miR-135b-5p targets Krüppel-like factor 4 (KLF4) and binds to its 3' UTR, leading to reduced KLF4 expression. Functionally, high levels of miR-135b-5p suppress apoptosis and induce cisplatin resistance. Our results uncovered a mechanistic link between H. pylori infection and miR-135b-5p-KLF4, suggesting that targeting miR-135b-5p could be a potential therapeutic approach to circumvent resistance to cisplatin.-Shao, L., Chen, Z., Soutto, M., Zhu, S., Lu, H., Romero-Gallo, J., Peek, R., Zhang, S., El-Rifai, W. Helicobacter pylori-induced miR-135b-5p promotes cisplatin resistance in gastric cancer.
Assuntos
Cisplatino/farmacologia , Resistencia a Medicamentos Antineoplásicos , Regulação Neoplásica da Expressão Gênica , Infecções por Helicobacter/complicações , Fatores de Transcrição Kruppel-Like/metabolismo , MicroRNAs/genética , Neoplasias Gástricas/patologia , Animais , Antineoplásicos/farmacologia , Apoptose , Proliferação de Células , Mucosa Gástrica/efeitos dos fármacos , Mucosa Gástrica/microbiologia , Mucosa Gástrica/patologia , Infecções por Helicobacter/microbiologia , Infecções por Helicobacter/patologia , Helicobacter pylori/isolamento & purificação , Humanos , Fator 4 Semelhante a Kruppel , Fatores de Transcrição Kruppel-Like/genética , Camundongos , Camundongos Knockout , NF-kappa B/genética , NF-kappa B/metabolismo , Prognóstico , Neoplasias Gástricas/tratamento farmacológico , Neoplasias Gástricas/genética , Neoplasias Gástricas/microbiologia , Taxa de Sobrevida , Fator Trefoil-1/fisiologia , Células Tumorais CultivadasRESUMO
Tissue inhibitor matrix metalloproteinase-1 (TIMP1) is one of four identified members of the TIMP family. We evaluated the role of TIMP1 in gastric cancer using human and mouse tissues along with gastric organoids and in vitro cell models. Using quantitative real-time RT-PCR, we detected significant overexpression of TIMP1 in the human gastric cancer samples, as compared to normal stomach samples (P < 0.01). We also detected overexpression of Timp1 in neoplastic gastric lesions of the Tff1-knockout (KO) mice, as compared to normal stomach tissues. Reconstitution of TFF1 in human gastric cancer cell lines led to a significant decrease in the mRNA expression level of TIMP1 (P < 0.05). In vitro analysis demonstrated that TIMP1 mRNA expression is induced by TNF-α and activation of NF-κB whereas inhibition of NF-κB using BAY11-7082 led to inhibition of NF-κB and downregulation of TIMP1. Western blot analysis confirmed the decrease in TIMP1 protein level following reconstitution of TFF1. By using immunofluorescence, we showed nuclear localization of NF-κB and expression of TIMP1 in gastric organoids established from the Tff1-KO stomach where reconstitution of Tff1 using recombinant protein led to a notable reduction in the expression of both NF-κB and TIMP1. Using EDU assay, as a measure of proliferating cells, we found that TIMP1 promotes cellular proliferation whereas TFF1 reconstitution leads to a significant decrease in cellular proliferation (P < 0.05). In summary, our findings demonstrate overexpression of TIMP1 in mouse and human gastric cancers through NF-kB-dependent mechanism. We also show that TFF1 suppresses NF-κB and inhibits TIMP1-mediated proliferative potential in gastric cancer.
Assuntos
Neoplasias Gástricas/metabolismo , Inibidor Tecidual de Metaloproteinase-1/metabolismo , Fator Trefoil-1/metabolismo , Animais , Técnicas de Cultura de Células , Linhagem Celular Tumoral , Proliferação de Células , Modelos Animais de Doenças , Regulação Neoplásica da Expressão Gênica , Inativação Gênica , Humanos , Camundongos , Camundongos Knockout , Modelos Biológicos , NF-kappa B , Neoplasias Gástricas/genética , Inibidor Tecidual de Metaloproteinase-1/genéticaRESUMO
Gastric cancer (GC) is a leading cause of cancer-related deaths worldwide. The Tff1 knockout (KO) mouse model develops gastric lesions that include low-grade dysplasia (LGD), high-grade dysplasia (HGD), and adenocarcinomas. In this study, we used Affymetrix microarrays gene expression platforms for analysis of molecular signatures in the mouse stomach [Tff1-KO (LGD) and Tff1 wild-type (normal)] and human gastric cancer tissues and their adjacent normal tissue samples. Combined integrated bioinformatics analysis of mouse and human datasets indicated that 172 genes were consistently deregulated in both human gastric cancer samples and Tff1-KO LGD lesions (P < .05). Using Ingenuity pathway analysis, these genes mapped to important transcription networks that include MYC, STAT3, ß-catenin, RELA, NFATC2, HIF1A, and ETS1 in both human and mouse. Further analysis demonstrated activation of FOXM1 and inhibition of TP53 transcription networks in human gastric cancers but not in Tff1-KO LGD lesions. Using real-time RT-PCR, we validated the deregulated expression of several genes (VCAM1, BGN, CLDN2, COL1A1, COL1A2, COL3A1, EpCAM, IFITM1, MMP9, MMP12, MMP14, PDGFRB, PLAU, and TIMP1) that map to altered transcription networks in both mouse and human gastric neoplasia. Our study demonstrates significant similarities in deregulated transcription networks in human gastric cancer and gastric tumorigenesis in the Tff1-KO mouse model. The data also suggest that activation of MYC, STAT3, RELA, and ß-catenin transcription networks could be an early molecular step in gastric carcinogenesis.
Assuntos
Biologia Computacional/métodos , Perfilação da Expressão Gênica/métodos , Redes Reguladoras de Genes/genética , Neoplasias Gástricas/química , Neoplasias Gástricas/metabolismo , Estômago/química , Animais , Modelos Animais de Doenças , Mucosa Gástrica/metabolismo , Humanos , Camundongos , Análise de Sequência com Séries de Oligonucleotídeos/métodos , Neoplasias Gástricas/genéticaRESUMO
OBJECTIVE: DARPP-32 is a frequently amplified and overexpressed gene that promotes several oncogenic functions in gastric cancer. Herein, we investigated the relationship between Helicobacter pylori infection, proinflammatory NF-κB activation and regulation of DARPP-32. DESIGN: The study used in vivo and in vitro experiments. Luciferase reporter, quantitative real-time PCR, immunoblot, chromatin immunoprecipitation (ChIP), cell viability, H. pylori infection, tissue microarrays and immunohistochemical assays were used. RESULTS: Our results indicated that H. pylori infection increased the DARPP-32 mRNA and protein levels in gastric cancer cell lines and gastric mucosa of mice. H. pylori infection increased the activity of NF-κB reporter and p-NF-κB (S536) protein level in vitro and in vivo. To investigate the transcriptional regulation of DARPP-32, we cloned a 3019â bp of the DARPP-32 promoter into the luciferase reporter (pGL3-Luc). Both H. pylori infection and tumour necrosis factor-α treatment induced DARPP-32 reporter activity (p<0.01). Using deletion constructs of DARPP-32 promoter and ChIP assay, we demonstrated that the sequence -996 to -1008â bp containing putative NF-κB-binding sites is the most active region. The induction of DARPP-32 expression by H. pylori infection counteracted H. pylori-induced cell death through activation of serine/threonine-specific protein kinase (AKT), as determined by ATP-Glo and clonogenic survival assays. Immunohistochemistry analysis demonstrated a significant positive correlation between NF-κB and DARPP-32 expression levels in gastric cancer tissues (r2=0.43, p<0.01). CONCLUSIONS: Given the high frequency of DARPP-32 overexpression and its prosurvival oncogenic functions, the induction of DARPP-32 expression following H. pylori infection and activation of NF-κB provides a link between infection, inflammation and gastric tumourigenesis.
Assuntos
Fosfoproteína 32 Regulada por cAMP e Dopamina/genética , Fosfoproteína 32 Regulada por cAMP e Dopamina/metabolismo , Mucosa Gástrica/metabolismo , Infecções por Helicobacter/metabolismo , Helicobacter pylori , NF-kappa B/metabolismo , RNA Mensageiro/metabolismo , Neoplasias Gástricas/química , Animais , Morte Celular , Linhagem Celular Tumoral , Sobrevivência Celular , Fosfoproteína 32 Regulada por cAMP e Dopamina/análise , Infecções por Helicobacter/genética , Humanos , Camundongos , NF-kappa B/análise , Regiões Promotoras Genéticas , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Transcrição Gênica/efeitos dos fármacos , Fator de Necrose Tumoral alfa/farmacologiaRESUMO
OBJECTIVE: Overexpression of dopamine and cAMP-regulated phosphoprotein, Mr 32000 (DARPP-32), and its truncated isoform (t-DARPP) are associated with gastric tumorigenesis. Herein, we investigated the role of DARPP-32 proteins in regulating angiopoietin 2 (ANGPT2) and promoting tumour angiogenesis. DESIGN: Quantitative real-time RT-PCR, immunoblotting, luciferase reporter, immunofluorescence, immunohistochemistry and angiogenesis assays were applied to investigate the regulation of angiogenesis by DARPP-32 proteins. RESULTS: Overexpression of DARPP-32 significantly increased the mRNA and protein levels of ANGPT2 in gastric cancer cells. The overexpression of DARPP-32 T34A mutant or the N-terminal truncated isoform, t-DARPP, led to similar effects ruling out the T34-dependent regulation of protein phosphatase 1 activity in regulating ANGPT2. DARPP-32 proteins induced a secreted form of ANGPT2, which was detectable in the media, functionally active, and able to induce angiogenesis, measured by the human umbilical vein endothelial cells tube formation assay. Antibody blocking of the secreted ANGPT2 abrogated its function. To identify the mechanism by which DARPP-32 regulates ANGPT2, we examined the activities of NF-κB and signal transducer and activator of transcription 3 (STAT3), known regulators of angiogenesis. The results ruled out NF-κB and showed induction of STAT3 phosphorylation, activation and nuclear localisation. Inhibition or knockdown of STAT3 significantly attenuated the induction of ANGPT2 by DARPP-32 proteins. In vivo xenograft models demonstrated that overexpression of DARPP-32 promotes angiogenesis and tumour growth. Analyses of human gastric cancer tissues showed a strong correlation between DARPP-32 and ANGPT2. CONCLUSIONS: Our novel findings establish the role of DARPP-32-STAT3 axis in regulating ANGPT2 in cancer cells to promote angiogenesis and tumorigenesis.
Assuntos
Angiopoietina-2/genética , Biomarcadores Tumorais/genética , Fosfoproteína 32 Regulada por cAMP e Dopamina/genética , Neoplasias Gástricas/genética , Carcinogênese/genética , Transformação Celular Neoplásica/genética , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Neovascularização Patológica/genética , Valor Preditivo dos Testes , Sensibilidade e Especificidade , Neoplasias Gástricas/metabolismoRESUMO
OBJECTIVE: In this study, we investigated the role of Trefoil factor 1 (TFF1) in regulating cell proliferation and tumour development through ß-catenin signalling using in vivo and in vitro models of gastric tumorigenesis. DESIGN: Tff1-knockout (Tff1-KO) mice, immunohistochemistry, luciferase reporter, qRT-PCR, immunoblot, and phosphatase assays were used to examine the role of TFF1 on ß-catenin signalling pathway. RESULTS: Nuclear localisation of ß-catenin with transcriptional upregulation of its target genes, c-Myc and Ccnd1, was detected in hyperplastic tissue at an early age of 4-6â weeks and maintained during all stages of gastric tumorigenesis in the Tff1-KO mice. The reconstitution of TFF1 or TFF1 conditioned media significantly inhibited the ß-catenin/T-cell factor (TCF) transcription activity in MKN28 gastric cancer cells. In agreement with these results, we detected a reduction in the levels of nuclear ß-catenin with downregulation of c-MYC and CCND1 mRNA. Analysis of signalling molecules upstream of ß-catenin revealed a decrease in phosphorylated glycogen synthase kinase 3ß (p-GSK3ß) (Ser9) and p-AKT (Ser473) protein levels following the reconstitution of TFF1 expression; this was consistent with the increase of p-ß-catenin (Ser33/37/Thr41) and decrease of p-ß-catenin (Ser552). This TFF1-induced reduction in phosphorylation of GSK3ß, and AKT was dependent on protein phosphatase 2A (PP2A) activity. The treatment with okadaic acid or knockdown of PP2A abrogated these effects. Consistent with the mouse data, we observed loss of TFF1 and an increase in nuclear localisation of ß-catenin in stages of human gastric tumorigenesis. CONCLUSIONS: Our data indicate that loss of TFF1 promotes ß-catenin activation and gastric tumorigenesis through regulation of PP2A, a major regulator of AKT-GSK3ß signalling.
Assuntos
Inibidores do Crescimento/fisiologia , Peptídeos/fisiologia , Proteína Fosfatase 2/fisiologia , Proteínas Proto-Oncogênicas c-akt/fisiologia , Neoplasias Gástricas/patologia , Neoplasias Gástricas/fisiopatologia , beta Catenina/fisiologia , Animais , Linhagem Celular Tumoral , Proliferação de Células , Regulação para Baixo/fisiologia , Quinase 3 da Glicogênio Sintase/metabolismo , Glicogênio Sintase Quinase 3 beta , Imuno-Histoquímica , Camundongos , Camundongos Knockout , Ativação Transcricional/fisiologia , Fator Trefoil-1RESUMO
BACKGROUND: Infection with Helicobacter pylori, a high-risk factor for gastric cancer, is frequently associated with chronic inflammation through activation of nuclear factor κB (NF-κB). Trefoil factor 1 (TFF1) is a constitutively expressed protein in the stomach that has tumor-suppressor functions and plays a critical role in maintaining mucosal integrity. This study investigated the role of TFF1 in regulating the proinflammatory response to H. pylori infections. METHODS: For in vitro studies, immunofluorescence, luciferase reporter assays, Western blots, and quantitative real-time polymerase chain reaction were performed to investigate the activation of NF-κB and its target genes in response to infections with H. pylori strains J166 and 7.13. In addition, Tff1-knockout (KO) and Tff1-wild-type mice were used for infections with the H. pylori strain called premouse Sydney strain 1. RESULTS: The reconstitution of TFF1 expression in gastric cancer cells significantly suppressed H. pylori-mediated increases in NF-κB-p65 nuclear staining, transcriptional activity, and expression of proinflammatory cytokine genes (tumor necrosis factor α, interleukin 1ß, chemokine [C-X-C motif] ligand 5, and interleukin 4 receptor) that were associated with reductions in the expression and phosphorylation of NF-κB-p65 and IκB kinase α/ß proteins. The in vivo studies using the Tff1-KO mouse model of gastric neoplasia confirmed the in vitro findings. Furthermore, they demonstrated increases in chronic inflammation scores and in the frequency of invasive gastric adenocarcinoma in the Tff1-KO mice infected with H. pylori versus the uninfected Tff1-KO mice. CONCLUSIONS: These findings underscore an important protective role of TFF1 in abrogating H. pylori-mediated inflammation, a crucial hallmark of gastric tumorigenesis. Therefore, loss of TFF1 expression could be an important step in H. pylori-mediated gastric carcinogenesis.
Assuntos
Adenocarcinoma/genética , Carcinogênese/genética , Mucosa Gástrica/metabolismo , Infecções por Helicobacter/genética , Peptídeos/genética , Neoplasias Gástricas/genética , Adenocarcinoma/imunologia , Adenocarcinoma/microbiologia , Animais , Quimiocina CXCL5/imunologia , Mucosa Gástrica/imunologia , Mucosa Gástrica/microbiologia , Infecções por Helicobacter/imunologia , Helicobacter pylori , Humanos , Quinase I-kappa B/metabolismo , Técnicas In Vitro , Inflamação , Interleucina-1beta/imunologia , Camundongos , Camundongos Knockout , Fosforilação , Reação em Cadeia da Polimerase em Tempo Real , Receptores de Interleucina-4/imunologia , Estômago/imunologia , Estômago/microbiologia , Neoplasias Gástricas/imunologia , Neoplasias Gástricas/microbiologia , Fator de Transcrição RelA/metabolismo , Fator Trefoil-1 , Células Tumorais Cultivadas , Fator de Necrose Tumoral alfa/imunologiaRESUMO
OBJECTIVE: To investigate the potential tumour suppressor functions of glutathione peroxidase 7 (GPX7) and examine the interplay between epigenetic and genetic events in regulating its expression in oesophageal adenocarcinomas (OAC). DESIGN: In vitro and in vivo cell models were developed to investigate the biological and molecular functions of GPX7 in OAC. RESULTS: Reconstitution of GPX7 in OAC cell lines, OE33 and FLO-1, significantly suppressed growth as shown by the growth curve, colony formation and EdU proliferation assays. Meanwhile, GPX7-expressing cells displayed significant impairment in G1/S progression and an increase in cell senescence. Concordant with the above functions, Western blot analysis displayed higher levels of p73, p27, p21 and p16 with a decrease in phosphorylated retinoblastoma protein (RB), indicating its increased tumour suppressor activities. On the contrary, knockdown of GPX7 in HET1A cells (an immortalised normal oesophageal cell line) rendered the cells growth advantage as indicated with a higher EdU rate, lower levels of p73, p27, p21 and p16 and an increase in phosphorylated RB. We confirmed the tumour suppressor function in vivo using GPX7-expressing OE33 cells in a mouse xenograft model. Pyrosequencing of the GPX7 promoter region (-162 to +138) demonstrated location-specific hypermethylation between +13 and +64 in OAC (69%, 54/78). This was significantly associated with the downregulation of GPX7 (p<0.01). Neither mutations in the coding exons of GPX7 nor DNA copy number losses were frequently present in the OAC examined (<5%). CONCLUSIONS: Our data suggest that GPX7 possesses tumour suppressor functions in OAC and is silenced by location-specific promoter DNA methylation.
Assuntos
Adenocarcinoma/enzimologia , Metilação de DNA/fisiologia , Neoplasias Esofágicas/enzimologia , Peroxidases/fisiologia , Proteínas Supressoras de Tumor/fisiologia , Adenocarcinoma/metabolismo , Adenocarcinoma/fisiopatologia , Animais , Ciclo Celular/fisiologia , Linhagem Celular Tumoral , Proliferação de Células , DNA de Neoplasias/fisiologia , Neoplasias Esofágicas/metabolismo , Neoplasias Esofágicas/fisiopatologia , Regulação Neoplásica da Expressão Gênica/fisiologia , Inativação Gênica , Glutationa Peroxidase , Humanos , Camundongos , Camundongos Nus , Transplante de Neoplasias , Peroxidases/metabolismo , Proteínas Supressoras de Tumor/metabolismoRESUMO
Esophageal adenocarcinoma (EAC) is a classic example of inflammation-associated cancer, which develops through GERD (gastroesophageal reflux disease)-Barrett's esophagus (BE)-dysplasia-adenocarcinoma sequence. The incidence of EAC has been rising rapidly in the USA and Western countries during the last few decades. The functions of glutathione peroxidase 7 (GPX7), an antioxidant enzyme frequently silenced during Barrett's tumorigenesis, remain largely uncharacterized. In this study, we investigated the potential role of GPX7 in regulating nuclear factor-kappaB (NF-κB) activity in esophageal cells. Western blot analysis, immunofluorescence and luciferase reporter assay data indicated that reconstitution of GPX7 expression in CP-A (non-dysplastic BE cells) and FLO-1 (EAC cells) abrogated tumor necrosis factor-α (TNF-α)-induced NF-κB transcriptional activity (P < 0.01) and nuclear translocation of NF-κB-p65 (P = 0.01). In addition, we detected a marked reduction in phosphorylation levels of components of NF-κB signaling pathway, p-p65 (S536), p-IκB-α (S32) and p-IKKα/ß (S176/180), as well as significant suppression in induction of NF-κB target genes [TNF-α, interleukin (IL)-6, IL-8, IL-1ß, CXCL-1 and CXCL-2] following treatment with TNF-α in GPX7-expressing FLO-1 cells as compared with control cells. We validated these effects by knockdown of GPX7 expression in HET1A (normal esophageal squamous cells). We found that GPX7-mediated suppression of NF-κB is independent of reactive oxygen species level and GPX7 antioxidant function. Further mechanistic investigations demonstrated that GPX7 promotes protein degradation of TNF-receptor 1 (TNFR1) and TNF receptor-associated factor 2 (TRAF2), suggesting that GPX7 modulates critical upstream regulators of NF-κB. We concluded that the loss of GPX7 expression is a critical step in promoting the TNF-α-induced activation of proinflammatory NF-κB signaling, a major player in GERD-associated Barrett's carcinogenesis.
Assuntos
Adenocarcinoma/patologia , Esôfago de Barrett/patologia , Transformação Celular Neoplásica/patologia , Neoplasias Esofágicas/patologia , NF-kappa B/metabolismo , Peroxidases/metabolismo , Fator de Necrose Tumoral alfa/farmacologia , Adenocarcinoma/genética , Adenocarcinoma/metabolismo , Esôfago de Barrett/genética , Esôfago de Barrett/metabolismo , Western Blotting , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/metabolismo , Células Cultivadas , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/metabolismo , Imunofluorescência , Glutationa Peroxidase , Humanos , NF-kappa B/genética , Peroxidases/antagonistas & inibidores , Peroxidases/genética , RNA Mensageiro/genética , RNA Interferente Pequeno/genética , Espécies Reativas de Oxigênio/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Receptores Tipo I de Fatores de Necrose Tumoral/genética , Receptores Tipo I de Fatores de Necrose Tumoral/metabolismo , Receptores Tipo II do Fator de Necrose Tumoral/genética , Receptores Tipo II do Fator de Necrose Tumoral/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais/efeitos dos fármacosRESUMO
BACKGROUND & AIMS: Chronic inflammation contributes to the pathogenesis of gastric tumorigenesis. The aurora kinase A (AURKA) gene is frequently amplified and overexpressed in gastrointestinal cancers. We investigated the roles of AURKA in inflammation and gastric tumorigenesis. METHODS: We used quantitative real-time reverse transcription polymerase chain reaction, immunofluorescence, immunohistochemistry, luciferase reporter, immunoblot, co-immunoprecipitation, and in vitro kinase assays to analyze AGS and MKN28 gastric cancer cells. We also analyzed Tff1(-/-) mice, growth of tumor xenografts, and human tissues. RESULTS: We correlated increased expression of AURKA with increased levels of tumor necrosis factor-α and inflammation in the gastric mucosa of Tff1(-/-) mice (r = 0.62; P = .0001). MLN8237, an investigational small-molecule selective inhibitor of AURKA, reduced nuclear staining of nuclear factor-κB (NF-κB) p65 in human gastric cancer samples and mouse epithelial cells, suppressed NF-κB reporter activity, and reduced expression of NF-κB target genes that regulate inflammation and cell survival. Inhibition of AURKA also reduced growth of xenograft tumors from human gastric cancer cells in mice and reversed the development of gastric tumors in Tff1(-/-) mice. AURKA was found to regulate NF-κB activity by binding directly and phosphorylating IκBα in cells. Premalignant and malignant lesions from the gastric mucosa of patients had increased levels of AURKA protein and nuclear NF-κB, compared with healthy gastric tissue. CONCLUSIONS: In analyses of gastric cancer cell lines, human tissue samples, and mouse models, we found AURKA to be up-regulated during chronic inflammation to promote activation of NF-κB and tumorigenesis. AURKA inhibitors might be developed as therapeutic agents for gastric cancer.
Assuntos
Adenocarcinoma/metabolismo , Aurora Quinase A/metabolismo , Carcinogênese/metabolismo , Inflamação/metabolismo , Neoplasias Gástricas/metabolismo , Regulação para Cima , Adenocarcinoma/patologia , Animais , Aurora Quinase A/antagonistas & inibidores , Aurora Quinase A/efeitos dos fármacos , Azepinas/farmacologia , Carcinogênese/efeitos dos fármacos , Carcinogênese/patologia , Linhagem Celular Tumoral , Modelos Animais de Doenças , Feminino , Mucosa Gástrica/metabolismo , Mucosa Gástrica/patologia , Xenoenxertos , Humanos , Técnicas In Vitro , Camundongos Knockout , Camundongos Nus , NF-kappa B/metabolismo , Peptídeos/deficiência , Peptídeos/genética , Peptídeos/metabolismo , Fosforilação , Inibidores de Proteínas Quinases/farmacologia , Pirimidinas/farmacologia , Neoplasias Gástricas/patologia , Fator Trefoil-1RESUMO
Helicobacter pylori (H. pylori) infection is the main risk factor for gastric cancer. The SRY-Box Transcription Factor 9 (SOX9) serves as a marker of stomach stem cells. We detected strong associations between AURKA and SOX9 expression levels in gastric cancers. Utilizing in vitro and in vivo mouse models, we demonstrated that H. pylori infection induced elevated levels of both AURKA and SOX9 proteins. Notably, the SOX9 protein and transcription activity levels were dependent on AURKA expression. AURKA knockdown led to a reduction in the number and size of gastric gland organoids. Conditional knockout of AURKA in mice resulted in a decrease in SOX9 baseline level in AURKA-knockout gastric glands, accompanied by diminished SOX9 induction following H. pylori infection. We found an AURKA-dependent increase in EIF4E and cap-dependent translation with an AURKA-EIF4E-dependent increase in SOX9 polysomal RNA levels. Immunoprecipitation assays demonstrated binding of AURKA to EIF4E with a decrease in EIF4E ubiquitination. Immunohistochemistry analysis on tissue arrays revealed moderate to strong immunostaining of AURKA and SOX9 with a significant correlation in gastric cancer tissues. These findings elucidate the mechanistic role of AURKA in regulating SOX9 levels via cap-dependent translation in response to H. pylori infection in gastric tumorigenesis.
Assuntos
Aurora Quinase A , Fator de Iniciação 4E em Eucariotos , Infecções por Helicobacter , Helicobacter pylori , Fatores de Transcrição SOX9 , Neoplasias Gástricas , Animais , Infecções por Helicobacter/metabolismo , Infecções por Helicobacter/microbiologia , Infecções por Helicobacter/genética , Fatores de Transcrição SOX9/metabolismo , Fatores de Transcrição SOX9/genética , Humanos , Neoplasias Gástricas/microbiologia , Neoplasias Gástricas/patologia , Neoplasias Gástricas/genética , Neoplasias Gástricas/metabolismo , Aurora Quinase A/metabolismo , Aurora Quinase A/genética , Fator de Iniciação 4E em Eucariotos/metabolismo , Fator de Iniciação 4E em Eucariotos/genética , Camundongos Knockout , Camundongos , Biossíntese de Proteínas , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , UbiquitinaçãoRESUMO
Helicobacter pylori (H. pylori) is the leading risk factor for gastric carcinogenesis. Fibroblast growth factor receptor 4 (FGFR4) is a member of transmembrane tyrosine kinase receptors that are activated in cancer. We investigated the role of FGFR4 in regulating the cellular response to H. pylori infection in gastric cancer. High levels of oxidative stress signature and FGFR4 expression were detected in gastric cancer samples. Gene set enrichment analysis (GSEA) demonstrated enrichment of NRF2 signature in samples with high FGFR4 levels. H. pylori infection induced reactive oxygen species (ROS) with a cellular response manifested by an increase in FGFR4 with accumulation and nuclear localization NRF2. Knocking down FGFR4 significantly reduced NRF2 protein and transcription activity levels, leading to higher levels of ROS and DNA damage following H. pylori infection. We confirmed the induction of FGFR4 and NRF2 levels using mouse models following infection with a mouse-adapted H. pyloristrain. Pharmacologic inhibition of FGFR4 using H3B-6527, or its knockdown, remarkably reduced the level of NRF2 with a reduction in the size and number of gastric cancer spheroids. Mechanistically, we detected binding between FGFR4 and P62 proteins, competing with NRF2-KEAP1 interaction, allowing NRF2 to escape KEAP1-dependent degradation with subsequent accumulation and translocation to the nucleus. These findings demonstrate a novel functional role of FGFR4 in cellular homeostasis via regulating the NRF2 levels in response to H. pylori infection in gastric carcinogenesis, calling for testing the therapeutic efficacy of FGFR4 inhibitors in gastric cancer models.
Assuntos
Neoplasias Gástricas , Animais , Camundongos , Carcinogênese/genética , Transformação Celular Neoplásica/genética , Proteína 1 Associada a ECH Semelhante a Kelch/genética , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Receptor Tipo 4 de Fator de Crescimento de Fibroblastos/genética , Receptor Tipo 4 de Fator de Crescimento de Fibroblastos/metabolismo , Neoplasias Gástricas/genética , Neoplasias Gástricas/metabolismoRESUMO
Infection with Helicobacter pylori (H. pylori) is the main risk factor for gastric cancer, a leading cause of cancer-related death worldwide. The oncogenic functions of cyclin-dependent kinase 1 (CDK1) are not fully understood in gastric tumorigenesis. Using public datasets, quantitative real-time PCR, western blot, and immunohistochemical (IHC) analyses, we detect high levels of CDK1 in human and mouse gastric tumors. H. pylori infection induces activation of nuclear factor κB (NF-κB) with a significant increase in CDK1 in in vitro and in vivo models (p < 0.01). We confirm active NF-κB binding sites on the CDK1 promoter sequence. CDK1 phosphorylates and inhibits GSK-3ß activity through direct binding with subsequent accumulation and activation of ß-catenin. CDK1 silencing or pharmacologic inhibition reverses these effects and impairs tumor organoids and spheroid formation. IHC analysis demonstrates a positive correlation between CDK1 and ß-catenin. The results demonstrate a mechanistic link between infection, inflammation, and gastric tumorigenesis where CDK1 plays a critical role.