Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 127
Filtrar
1.
Cytotherapy ; 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38762805

RESUMO

BACKGROUND AIMS: Extracellular vesicles (EVs) represent a new axis of intercellular communication that can be harnessed for therapeutic purposes, as cell-free therapies. The clinical application of mesenchymal stromal cell (MSC)-derived EVs, however, is still in its infancy and faces many challenges. The heterogeneity inherent to MSCs, differences among donors, tissue sources, and variations in manufacturing conditions may influence the release of EVs and their cargo, thus potentially affecting the quality and consistency of the final product. We investigated the influence of cell culture and conditioned medium harvesting conditions on the physicochemical and proteomic profile of human umbilical cord MSC-derived EVs (hUCMSC-EVs) produced under current good manufacturing practice (cGMP) standards. We also evaluated the efficiency of the protocol in terms of yield, purity, productivity, and expression of surface markers, and assessed the biodistribution, toxicity and potential efficacy of hUCMSC-EVs in pre-clinical studies using the LPS-induced acute lung injury model. METHODS: hUCMSCs were isolated from a cord tissue, cultured, cryopreserved, and characterized at a cGMP facility. The conditioned medium was harvested at 24, 48, and 72 h after the addition of EV collection medium. Three conventional methods (nanoparticle tracking analysis, transmission electron microscopy, and nanoflow cytometry) and mass spectrometry were used to characterize hUCMSC-EVs. Safety (toxicity of single and repeated doses) and biodistribution were evaluated in naive mice after intravenous administration of the product. Efficacy was evaluated in an LPS-induced acute lung injury model. RESULTS: hUCMSC-EVs were successfully isolated using a cGMP-compliant protocol. Comparison of hUCMSC-EVs purified from multiple harvests revealed progressive EV productivity and slight changes in the proteomic profile, presenting higher homogeneity at later timepoints of conditioned medium harvesting. Pooled hUCMSC-EVs showed a non-toxic profile after single and repeated intravenous administration to naive mice. Biodistribution studies demonstrated a major concentration in liver, spleen and lungs. HUCMSC-EVs reduced lung damage and inflammation in a model of LPS-induced acute lung injury. CONCLUSIONS: hUCMSC-EVs were successfully obtained following a cGMP-compliant protocol, with consistent characteristics and pre-clinical safety profile, supporting their future clinical development as cell-free therapies.

2.
Int J Mol Sci ; 25(5)2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38473794

RESUMO

MicroRNAs (miRs) act as important post-transcriptional regulators of gene expression in glial cells and have been shown to be involved in the pathogenesis of neurodegenerative diseases, including Alzheimer's disease (AD). Here, we investigated the effects of agathisflavone, a biflavonoid purified from the leaves of Cenostigma pyramidale (Tul.), on modulating the expression of miRs and inflammatory mediators in activated microglia. C20 human microglia were exposed to oligomers of the ß-amyloid peptide (Aß, 500 nM) for 4 h or to lipopolysaccharide (LPS, 1 µg/mL) for 24 h and then treated or not with agathisflavone (1 µM) for 24 h. We observed that ß-amyloid and LPS activated microglia to an inflammatory state, with increased expression of miR-146a, miR-155, IL1-ß, IL-6, and NOS2. Treatment with agathisflavone resulted in a significant reduction in miR146a and miR-155 induced by LPS or Aß, as well as inflammatory cytokines IL1-ß, IL-6, and NOS2. In cells stimulated with Aß, there was an increase in p-STAT3 expression that was reduced by agathisflavone treatment. These data identify a role for miRs in the anti-inflammatory effect of agathisflavone on microglia in models of neuroinflammation and AD.


Assuntos
Doença de Alzheimer , Biflavonoides , MicroRNAs , Humanos , Biflavonoides/farmacologia , Microglia/metabolismo , Interleucina-6/metabolismo , Lipopolissacarídeos/farmacologia , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Citocinas/metabolismo , MicroRNAs/genética , Fator de Transcrição STAT3/metabolismo
3.
Rev Cardiovasc Med ; 23(1): 29, 2022 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-35092221

RESUMO

Type 2 diabetes mellitus (T2DM) is a multifactorial metabolic disease, and its prevalence has grown worldwide. Several pathophysiological processes contribute to the development, progression and aggravating of the disease, for example, decreased insulin synthesis and secretion, insulin resistance, inflammation, and apoptosis, all these processes are regulated by various epigenetic factors, including microRNAs (miRNAs). MiRNAs are small non-coding RNAs, which are around 20 nucleotides in length and are regulators of gene expression at the post-transcriptional level, have a specific function of inhibiting or degrading a messenger RNA target. Thus, miRNAs modulate the expression of many associated genes with the pathophysiological processes in T2DM. On the other hand, miRNAs are also modulated through physical exercise (PE), which induces a change in their expression pattern during and after exercise. Some scientific evidence shows that PE modulates miRNAs beneficially and improves the signaling pathway of insulin resistance, however, little is known about the function of PE modulating miRNAs associated with the processes of insulin secretion, inflammation, and apoptosis. Thus, the objective of this review is to identify the miRNAs expression pattern in T2DM and compare it with the exercise-induced miRNAs expression pattern, identifying the signaling pathways that these miRNAs are regulating in the processes of insulin secretion, insulin resistance, inflammation, and apoptosis in T2DM, and how PE may have a potential role in modulating these signal transduction pathways, promoting benefits for patients with T2DM.


Assuntos
Diabetes Mellitus Tipo 2 , Exercício Físico , Resistência à Insulina , MicroRNAs , Transdução de Sinais , Diabetes Mellitus Tipo 2/diagnóstico , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/terapia , Humanos , Resistência à Insulina/genética , MicroRNAs/genética
4.
Int J Mol Sci ; 22(4)2021 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-33672171

RESUMO

Type 2 diabetes mellitus (T2DM) is a metabolic disorder associated with insulin resistance and hyperglycemia. Chronic exposure to a T2DM microenvironment with hyperglycemia, hyperinsulinemia, oxidative stress and increased levels of proinflammatory mediators, has negative consequences to the cardiovascular system and mental health. Therefore, atherosclerotic cardiovascular diseases (CVD) and mental health issues have been strongly associated with T2DM. Lifestyle modifications, including physical exercise training, are necessary to prevent T2DM development and its associated complications. It is widely known that the regular practice of exercise provides several physiological benefits to subjects with T2DM, such as managing glycemic and blood pressure levels. Different types of exercise, from aerobic to resistance training, are effective to improve mental health and cognitive function in T2DM. Irisin is a myokine produced in response to exercise, which has been pointed as a relevant mechanism of action to explain the benefits of exercise on cardiovascular and mental health in T2DM patients. Here, we review emerging clinical and experimental evidence about exercise-linked irisin consequences to cardiovascular and mental health in T2DM.


Assuntos
Diabetes Mellitus Tipo 2/etiologia , Exercício Físico/fisiologia , Fibronectinas/fisiologia , Adipocinas/metabolismo , Ansiedade/etiologia , Ansiedade/prevenção & controle , Doenças Cardiovasculares/etiologia , Doenças Cardiovasculares/prevenção & controle , Cognição/fisiologia , Depressão/etiologia , Depressão/prevenção & controle , Diabetes Mellitus Tipo 2/fisiopatologia , Diabetes Mellitus Tipo 2/psicologia , Humanos , Memória/fisiologia , Saúde Mental
5.
Int J Mol Sci ; 22(7)2021 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-33804922

RESUMO

Chagas disease, caused by the parasite Trypanosoma cruzi (T. cruzi), remains a serious public health problem for which there is no effective treatment in the chronic stage. Intense cardiac fibrosis and inflammation are hallmarks of chronic Chagas disease cardiomyopathy (CCC). Previously, we identified upregulation of circulating and cardiac miR-21, a pro-fibrotic microRNA (miRNA), in subjects with CCC. Here, we explored the potential role of miR-21 as a therapeutic target in a model of chronic Chagas disease. PCR array-based 88 microRNA screening was performed in heart samples obtained from C57Bl/6 mice chronically infected with T. cruzi and serum samples collected from CCC patients. MiR-21 was found upregulated in both human and mouse samples, which was corroborated by an in silico analysis of miRNA-mRNA target prediction. In vitro miR-21 functional assays (gain-and loss-of-function) were performed in cardiac fibroblasts, showing upregulation of miR-21 and collagen expression upon transforming growth factor beta 1 (TGFß1) and T. cruzi stimulation, while miR-21 blockage reduced collagen expression. Finally, treatment of T. cruzi-infected mice with locked nucleic acid (LNA)-anti-miR-21 inhibitor promoted a significant reduction in cardiac fibrosis. Our data suggest that miR-21 is a mediator involved in the pathogenesis of cardiac fibrosis and indicates the pharmacological silencing of miR-21 as a potential therapeutic approach for CCC.


Assuntos
Cardiomiopatia Chagásica/terapia , MicroRNAs/genética , Terapêutica com RNAi/métodos , Animais , Células Cultivadas , Cardiomiopatia Chagásica/genética , Cardiomiopatia Chagásica/metabolismo , Cardiomiopatia Chagásica/patologia , Colágeno/genética , Colágeno/metabolismo , Fibrose , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , MicroRNAs/metabolismo , Miócitos Cardíacos/metabolismo , Miofibroblastos/metabolismo , Regulação para Cima
6.
Int J Mol Sci ; 21(14)2020 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-32674523

RESUMO

Alzheimer disease (AD) is one of the most common neurodegenerative diseases, affecting middle-aged and elderly individuals worldwide. AD pathophysiology involves the accumulation of beta-amyloid plaques and neurofibrillary tangles in the brain, along with chronic neuroinflammation and neurodegeneration. Physical exercise (PE) is a beneficial non-pharmacological strategy and has been described as an ally to combat cognitive decline in individuals with AD. However, the molecular mechanisms that govern the beneficial adaptations induced by PE in AD are not fully elucidated. MicroRNAs are small non-coding RNAs involved in the post-transcriptional regulation of gene expression, inhibiting or degrading their target mRNAs. MicroRNAs are involved in physiological processes that govern normal brain function and deregulated microRNA profiles are associated with the development and progression of AD. It is also known that PE changes microRNA expression profile in the circulation and in target tissues and organs. Thus, this review aimed to identify the role of deregulated microRNAs in the pathophysiology of AD and explore the possible role of the modulation of microRNAs as a molecular mechanism involved in the beneficial actions of PE in AD.


Assuntos
Doença de Alzheimer/genética , Encéfalo/fisiopatologia , Exercício Físico/fisiologia , MicroRNAs/genética , Condicionamento Físico Animal/fisiologia , Peptídeos beta-Amiloides/genética , Animais , Humanos , Placa Amiloide/genética
7.
Int J Mol Sci ; 21(18)2020 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-32899449

RESUMO

(1) Background: Activation of the PI3K-AKT pathway controls most hallmarks of cancer, and the hedgehog (HH) pathway has been associated with oral squamous cell carcinoma (OSCC) development and progression. We hypothesized that fibroblast-derived insulin-like growth factor-1 (IGF-1) acts in oral squamous cell carcinoma (OSCC) cells, leading to the non-canonical activation of the HH pathway, maintaining AKT activity and promoting tumor aggressiveness. (2) Methods: Primary fibroblasts (MF1) were genetically engineered for IGF-1 overexpression (MF1-IGF1) and CRISPR/Cas9-mediated IGF1R silencing was performed in SCC-4 cells. SCC-4 cells were co-cultured with fibroblasts or incubated with fibroblast conditioned medium (CM) or rIGF-1 for functional assays and the evaluation of AKT and HH pathways. (3) Results: Gene expression analysis confirmed IGF-1 overexpression in MF1-IGF1 and the absence of IGF-1 expression in SCC-4, while elevated IGF1R expression was detected. IGF1R silencing was associated with decreased survival of SCC-4 cells. Ihh was expressed in both MF1 and MF1-IGF1, and increased levels of GLI1 mRNA were observed in SCC-4 after stimulation with CM-MF1. Activation of both PI3K-AKT and the HH pathway (GLI1, Ihh and SMO) were identified in SCC-4 cells cultured in the presence of MF1-IGF1-CM. rIGF-1 promoted tumor cell proliferation, migration, invasion and tumorsphere formation, whereas CM-MF1 significantly stimulated angiogenesis. (4) Conclusions: IGF-1 exerts pro-tumorigenic effects by stimulating SCC-4 cell proliferation, migration, invasion and stemness. AKT and HH pathways were activated by IGF-1 in SCC-4, reinforcing its influence on the regulation of these signaling pathways.


Assuntos
Proteínas Hedgehog/metabolismo , Fator de Crescimento Insulin-Like I/farmacologia , Neoplasias Bucais/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Carcinoma de Células Escamosas de Cabeça e Pescoço/metabolismo , Carcinoma de Células Escamosas/patologia , Técnicas de Cultura de Células , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Humanos , Fator de Crescimento Insulin-Like I/metabolismo , Masculino , Neoplasias Bucais/tratamento farmacológico , Neoplasias Bucais/patologia , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Neovascularização Patológica/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Transdução de Sinais/efeitos dos fármacos , Carcinoma de Células Escamosas de Cabeça e Pescoço/tratamento farmacológico , Carcinoma de Células Escamosas de Cabeça e Pescoço/patologia
8.
Int J Mol Sci ; 20(16)2019 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-31434314

RESUMO

Chagas disease (CD) affects approximately 6-7 million people worldwide, from which 30% develop chronic Chagas cardiomyopathy (CCC), usually after being asymptomatic for years. Currently available diagnostic methods are capable of adequately identifying infected patients, but do not provide information regarding the individual risk of developing the most severe form of the disease. The identification of biomarkers that predict the progression from asymptomatic or indeterminate form to CCC, may guide early implementation of pharmacological therapy. Here, six circulating microRNAs (miR-19a-3p, miR-21-5p, miR-29b-3p, miR-30a-5p, miR-199b-5p and miR-208a-3p) were evaluated and compared among patients with CCC (n = 28), CD indeterminate form (n = 10) and healthy controls (n = 10). MiR-19a-3p, miR-21-5p, and miR-29b-3p were differentially expressed in CCC patients when compared to indeterminate form, showing a positive correlation with cardiac dysfunction, functional class, and fibrosis, and a negative correlation with ejection fraction and left ventricular strain. Cardiac tissue analysis confirmed increased expression of microRNAs in CCC patients. In vitro studies using human cells indicated the involvement of these microRNAs in the processes of cardiac hypertrophy and fibrosis. Our study suggests that miRNAs are involved in the process of cardiac fibrosis and remodeling presented in CD and indicate a group of miRNAs as potential biomarkers of disease progression in CCC.


Assuntos
Biomarcadores/metabolismo , Cardiomiopatia Chagásica/metabolismo , Cardiomiopatia Chagásica/patologia , Fibrose/patologia , MicroRNAs/metabolismo , Biomarcadores/química , Cardiomiopatia Chagásica/genética , Feminino , Fibrose/genética , Fibrose/metabolismo , Humanos , Inflamação/genética , Inflamação/metabolismo , Inflamação/patologia , Masculino , MicroRNAs/genética , Pessoa de Meia-Idade , Curva ROC , Remodelação Ventricular/genética , Remodelação Ventricular/fisiologia
9.
Am J Pathol ; 187(5): 1134-1146, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28322201

RESUMO

Chronic Chagas disease cardiomyopathy, caused by Trypanosoma cruzi infection, is a major cause of heart failure in Latin America. Galectin-3 (Gal-3) has been linked to cardiac remodeling and poor prognosis in heart failure of different etiologies. Herein, we investigated the involvement of Gal-3 in the disease pathogenesis and its role as a target for disease intervention. Gal-3 expression in mouse hearts was evaluated during T. cruzi infection by confocal microscopy and flow cytometry analysis, showing a high expression in macrophages, T cells, and fibroblasts. In vitro studies using Gal-3 knockdown in cardiac fibroblasts demonstrated that Gal-3 regulates cell survival, proliferation, and type I collagen synthesis. In vivo blockade of Gal-3 with N-acetyl-d-lactosamine in T. cruzi-infected mice led to a significant reduction of cardiac fibrosis and inflammation in the heart. Moreover, a modulation in the expression of proinflammatory genes in the heart was observed. Finally, histological analysis in human heart samples obtained from subjects with Chagas disease who underwent heart transplantation showed the expression of Gal-3 in areas of inflammation, similar to the mouse model. Our results indicate that Gal-3 plays a role in the pathogenesis of experimental chronic Chagas disease, favoring inflammation and fibrogenesis. Moreover, by demonstrating Gal-3 expression in human hearts, our finding reinforces that this protein could be a novel target for drug development for Chagas cardiomyopathy.


Assuntos
Cardiomiopatia Chagásica/metabolismo , Galectina 3/metabolismo , Miocardite/metabolismo , Miocárdio/patologia , Acetilgalactosamina/farmacologia , Animais , Proliferação de Células/fisiologia , Sobrevivência Celular/fisiologia , Doença Crônica , Colágeno Tipo I/biossíntese , Fibrose/etiologia , Fibrose/metabolismo , Galectina 3/antagonistas & inibidores , Transplante de Coração , Humanos , Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Miocardite/etiologia , Miocárdio/metabolismo , Miofibroblastos/metabolismo , Linfócitos T/metabolismo
10.
Int J Mol Sci ; 19(11)2018 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-30445764

RESUMO

MicroRNAs are small non-coding RNAs that regulate gene expression post-transcriptionally. They are involved in the regulation of physiological processes, such as adaptation to physical exercise, and also in disease settings, such as systemic arterial hypertension (SAH), type 2 diabetes mellitus (T2D), and obesity. In SAH, microRNAs play a significant role in the regulation of key signaling pathways that lead to the hyperactivation of the renin-angiotensin-aldosterone system, endothelial dysfunction, inflammation, proliferation, and phenotypic change in smooth muscle cells, and the hyperactivation of the sympathetic nervous system. MicroRNAs are also involved in the regulation of insulin signaling and blood glucose levels in T2D, and participate in lipid metabolism, adipogenesis, and adipocyte differentiation in obesity, with specific microRNA signatures involved in the pathogenesis of each disease. Many studies report the benefits promoted by exercise training in cardiovascular diseases by reducing blood pressure, glucose levels, and improving insulin signaling and lipid metabolism. The molecular mechanisms involved, however, remain poorly understood, especially regarding the participation of microRNAs in these processes. This review aimed to highlight microRNAs already known to be associated with SAH, T2D, and obesity, as well as their possible regulation by exercise training.


Assuntos
Diabetes Mellitus Tipo 2/genética , Exercício Físico/fisiologia , Hipertensão/genética , MicroRNAs/genética , Obesidade/genética , MicroRNA Circulante/genética , MicroRNA Circulante/metabolismo , Diabetes Mellitus Tipo 2/sangue , Humanos , Hipertensão/sangue , MicroRNAs/metabolismo , Obesidade/sangue
11.
Cytotherapy ; 19(10): 1189-1196, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28760352

RESUMO

BACKGROUND AIMS: The potential of cell therapies to improve neurological function in subjects with spinal cord injury (SCI) is currently under investigation. In this context, the choice of cell type, dose, route and administration regimen are key factors. Mesenchymal stromal cells (MSCs) can be easily obtained, expanded and are suitable for autologous transplantation. Here we conducted a pilot study that evaluated safety, feasibility and potential efficacy of intralesional MSCs transplantation performed through image-guided percutaneous injection, in subjects with chronic complete SCI. METHODS: Five subjects with chronic traumatic SCI (>6 months), at thoracic level, classified as American Spinal Cord Injury Association impairment scale (AIS) grade A, complete injury, were included. Somatosensory evoked potentials (SSEP), spinal magnetic resonance imaging (MRI) and urodynamics were assessed before and after treatment. Autologous MSCs were injected directly into the lesion site through percutaneous injection guided by computerized tomography (CT). RESULTS: Tomography-guided percutaneous cell transplantation was a safe procedure without adverse effects. All subjects displayed improvements in spinal cord independence measure (SCIM) scores and functional independence measure (FIM), mainly due to improvements in bowel movements and regularity. Three subjects showed improved sensitivity to tactile stimulation. Two subjects improved AIS grade to B, incomplete injury, although this was sustained in only one of them during the study follow-up. CONCLUSION: Autologous bone marrow MSC transplantation, performed through CT-guided percutaneous injection, was shown to be safe and feasible. Further studies are required to demonstrate efficacy of this therapeutic scheme.


Assuntos
Transplante de Células-Tronco Mesenquimais/métodos , Traumatismos da Medula Espinal/terapia , Adulto , Potenciais Somatossensoriais Evocados/fisiologia , Seguimentos , Humanos , Imageamento por Ressonância Magnética , Masculino , Células-Tronco Mesenquimais/fisiologia , Pessoa de Meia-Idade , Projetos Piloto , Traumatismos da Medula Espinal/diagnóstico por imagem , Tomografia Computadorizada por Raios X , Transplante Autólogo/métodos , Resultado do Tratamento
12.
Cardiology ; 136(1): 33-39, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-27548475

RESUMO

OBJECTIVES: Chagas cardiomyopathy has worse long-term outcomes than other cardiomyopathies. A biomarker strategy to refer subjects for noninvasive cardiac imaging may help in the early identification of cardiac damage in subjects with Chagas disease. Galectin-3 (Gal-3) is a mediator of cardiac fibrosis shown to be upregulated in animal models of decompensated heart failure. Here we assessed the correlation of Gal-3 with myocardial fibrosis in patients with Chagas disease. METHODS: This study comprised 61 subjects with Chagas disease. All subjects underwent clinical assessments, Doppler echocardiography and magnetic resonance imaging. Plasmatic Gal-3 was determined by ELISA. RESULTS: Delayed enhancement (DE) was identified in 37 of 61 subjects (64%). The total amount of myocardial fibrosis was 9.4% [interquartile interval (IQI): 2.4-18.4]. No differences were observed in Gal-3 concentration according to the presence or absence of myocardial fibrosis, with a median Gal-3 concentration of 11.7 ng/ml (IQI: 9.4-15) in subjects with DE versus 12.9 ng/ml (IQI: 9.2-14) in subjects without DE (p = 0.18). No correlation was found between myocardial fibrosis and Gal-3 concentration (r = 0.098; p = 0.47). CONCLUSIONS: There is no correlation between the degree of myocardial fibrosis and the concentration of Gal-3 in subjects with Chagas disease.


Assuntos
Doença de Chagas/diagnóstico , Galectina 3/sangue , Miocárdio/patologia , Adulto , Biomarcadores/sangue , Proteínas Sanguíneas , Doença de Chagas/sangue , Doença de Chagas/patologia , Fibrose Endomiocárdica/sangue , Fibrose Endomiocárdica/diagnóstico , Feminino , Fibrose/diagnóstico por imagem , Galectinas , Coração/diagnóstico por imagem , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade
13.
Neurochem Res ; 39(2): 259-68, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24343530

RESUMO

Status epilepticus (SE) is a severe clinical manifestation of epilepsy associated with intense neuronal loss and inflammation, two key factors involved in the pathophysiology of temporal lobe epilepsy. Bone marrow mononuclear cells (BMMC) attenuated the consequences of pilocarpine-induced SE, including neuronal loss, in addition to frequency and duration of seizures. Here we investigated the effects of BMMC transplanted early after the onset of SE in mice, as well as the involvement of soluble factors produced by BMMC in the effects of the cell therapy. Mice were injected with pilocarpine for SE induction and randomized into three groups: transplanted intravenously with 1 × 10(7) BMMC isolated from GFP transgenic mice, injected with BMMC lysate, and saline-treated controls. Cell tracking, neuronal counting in hippocampal subfields and cytokine analysis in the serum and brain were performed. BMMC were found in the brain 4 h following transplantation and their numbers progressively decreased until 24 h following transplantation. A reduction in hippocampal neuronal loss after SE was found in mice treated with live BMMC and BMMC lysate when compared to saline-treated, SE-induced mice. Moreover, the expression of inflammatory cytokines IL-1ß, TNF-α, IL-6 was decreased after injection of live BMMC and to a lesser extent, of BMMC lysate, when compared to SE-induced controls. In contrast, IL-10 expression was increased. Analysis of markers for microglia activation demonstrated a reduction of the expression of genes related to type 1-activation. BMMC transplantation promotes neuroprotection and mediates anti-inflammatory effects following SE in mice, possibly through the secretion of soluble factors.


Assuntos
Transplante de Medula Óssea , Fármacos Neuroprotetores , Pilocarpina/administração & dosagem , Estado Epiléptico/induzido quimicamente , Animais , Sequência de Bases , Citocinas/biossíntese , Primers do DNA , Expressão Gênica , Proteínas de Fluorescência Verde/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Microglia/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Estado Epiléptico/cirurgia
14.
Pulm Pharmacol Ther ; 27(2): 144-9, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23603459

RESUMO

Emphysema is a chronic obstructive pulmonary disease characterized abnormal dilatation of alveolar spaces, which impairs alveolar gas exchange, compromising the physical capacity of a patient due to airflow limitations. Here we tested the effects of G-CSF administration in pulmonary tissue and exercise capacity in emphysematous mice. C57Bl/6 female mice were treated with elastase intratracheally to induce emphysema. Their exercise capacities were evaluated in a treadmill. Lung histological sections were prepared to evaluate mean linear intercept measurement. Emphysematous mice were treated with G-CSF (3 cycles of 200 µg/kg/day for 5 consecutive days, with 7-day intervals) or saline and submitted to a third evaluation 8 weeks after treatment. Values of run distance and linear intercept measurement were expressed as mean ± SD and compared applying a paired t-test. Effects of treatment on these parameters were analyzed applying a Repeated Measures ANOVA, followed by Tukey's post hoc analysis. p < 0.05 was considered statistically significant. Twenty eight days later, animals ran significantly less in a treadmill compared to normal mice (549.7 ± 181.2 m and 821.7 ± 131.3 m, respectively; p < 0.01). Treatment with G-CSF significantly increased the exercise capacity of emphysematous mice (719.6 ± 200.5 m), whereas saline treatment had no effect on distance run (595.8 ± 178.5 m). The PCR cytokines genes analysis did not detect difference between experimental groups. Morphometric analyses in the lung showed that saline-treated mice had a mean linear intercept significantly higher (p < 0.01) when compared to mice treated with G-CSF, which did not significantly differ from that of normal mice. Treatment with G-CSF promoted the recovery of exercise capacity and regeneration of alveolar structural alterations in emphysematous mice.


Assuntos
Fator Estimulador de Colônias de Granulócitos/uso terapêutico , Condicionamento Físico Animal/fisiologia , Enfisema Pulmonar/tratamento farmacológico , Animais , Modelos Animais de Doenças , Feminino , Camundongos , Camundongos Endogâmicos C57BL , Enfisema Pulmonar/fisiopatologia , Corrida/fisiologia
15.
Brain Sci ; 14(1)2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38248305

RESUMO

Glioblastoma (GBM) is the most aggressive and treatment-resistant brain tumor. In the GBM microenvironment, interaction with microglia is associated with the dysregulation of cytokines, chemokines, and miRNAs, contributing to angiogenesis, proliferation, anti-apoptosis, and chemoresistance. The flavonoid rutin can inhibit glioma cell growth associated with microglial activation and production of pro-inflammatory mediators by mechanisms that are still poorly understood. The present study investigated the effect of rutin on viability, regulation of miRNA-125b, and the STAT3 expression in GBM cells, as well as the effects on the modulation of the inflammatory profile and STAT3 expression in microglia during indirect interaction with GBM cells. Human GL15-GBM cells and human C20 microglia were treated or not with rutin for 24 h. Rutin (30-50 µM) significantly reduced the viability of GL15 cells; however, it did not affect the viability of microglia. Rutin (30 µM) significantly reduced the expression of miRNA-125b in the cells and secretome and STAT3 expression. Microglia submitted to the conditioned medium from GBM cells treated with rutin showed reactive morphology associated with reduced expression of IL-6, TNF, and STAT3. These results reiterate the anti-glioma effects of the flavonoid, which may also modulate microglia towards a more responsive anti-tumor phenotype, constituting a promising molecule for adjuvant therapy to GBM.

16.
Front Pharmacol ; 15: 1400029, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38919258

RESUMO

Introduction: Cancer refers to a group of diseases characterized by the uncontrolled growth and spread of abnormal cells in the body. Due to its complexity, it has been hard to find an ideal medicine to treat all cancer types, although there is an urgent need for it. However, the cost of developing a new drug is high and time-consuming. In this sense, drug repurposing (DR) can hasten drug discovery by giving existing drugs new disease indications. Many computational methods have been applied to achieve DR, but just a few have succeeded. Therefore, this review aims to show in silico DR approaches and the gap between these strategies and their ultimate application in oncology. Methods: The scoping review was conducted according to the Arksey and O'Malley framework and the Joanna Briggs Institute recommendations. Relevant studies were identified through electronic searching of PubMed/MEDLINE, Embase, Scopus, and Web of Science databases, as well as the grey literature. We included peer-reviewed research articles involving in silico strategies applied to drug repurposing in oncology, published between 1 January 2003, and 31 December 2021. Results: We identified 238 studies for inclusion in the review. Most studies revealed that the United States, India, China, South Korea, and Italy are top publishers. Regarding cancer types, breast cancer, lymphomas and leukemias, lung, colorectal, and prostate cancer are the top investigated. Additionally, most studies solely used computational methods, and just a few assessed more complex scientific models. Lastly, molecular modeling, which includes molecular docking and molecular dynamics simulations, was the most frequently used method, followed by signature-, Machine Learning-, and network-based strategies. Discussion: DR is a trending opportunity but still demands extensive testing to ensure its safety and efficacy for the new indications. Finally, implementing DR can be challenging due to various factors, including lack of quality data, patient populations, cost, intellectual property issues, market considerations, and regulatory requirements. Despite all the hurdles, DR remains an exciting strategy for identifying new treatments for numerous diseases, including cancer types, and giving patients faster access to new medications.

17.
SLAS Discov ; 29(4): 100158, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38852983

RESUMO

3D in vitro systems offer advantages over the shortcomings of two-dimensional models by simulating the morphological and functional features of in vivo-like environments, such as cell-cell and cell-extracellular matrix interactions, as well as the co-culture of different cell types. Nevertheless, these systems present technical challenges that limit their potential in cancer research requiring cell line- and culture-dependent standardization. This protocol details the use of a magnetic 3D bioprinting method and other associated techniques (cytotoxicity assay and histological analysis) using oral squamous cell carcinoma cell line, HSC3, which offer advantages compared to existing widely used approaches. This protocol is particularly timely, as it validates magnetic bioprinting as a method for the rapid deployment of 3D cultures as a tool for compound screening and development of heterotypic cultures such as co-culture of oral squamous cell carcinoma cells with cancer-associated fibroblasts (HSC3/CAFs).


Assuntos
Bioimpressão , Carcinoma de Células Escamosas , Técnicas de Cocultura , Neoplasias Bucais , Impressão Tridimensional , Esferoides Celulares , Humanos , Neoplasias Bucais/patologia , Bioimpressão/métodos , Linhagem Celular Tumoral , Carcinoma de Células Escamosas/patologia , Técnicas de Cocultura/métodos , Esferoides Celulares/patologia , Técnicas de Cultura de Células em Três Dimensões/métodos
18.
Viruses ; 16(3)2024 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-38543835

RESUMO

The global challenge posed by the prolonged COVID-19 pandemic underscores the critical need for ongoing genomic surveillance to identify emerging variants and formulate effective public health strategies. This retrospective observational study, conducted in a reference hospital in Northeast Brazil and comprising 2116 cases, employed PCR genotyping together with epidemiological data to elucidate the impact of the Gamma variant during its emergence, revealing distinct patterns in hospitalization rates, severity of illness, and outcomes. The study emphasizes the challenges posed by the variant, particularly an increased tendency for ICU admissions and respiratory support, especially among adults aged 18 to 59 without comorbidities. Laboratory analyses further demonstrate elevated inflammatory, coagulation, and hepatic markers in the Gamma variant cohort, suggesting a more severe systemic response. Despite limitations, including a retrospective approach and single-institution data, the study underscores the importance of ongoing genomic surveillance. Overall, this research contributes valuable insights into the impact of the Gamma variant on COVID-19 dynamics, advocating for continued research and surveillance to inform effective public health strategies regarding evolving viral variants.


Assuntos
COVID-19 , SARS-CoV-2 , Adulto , Humanos , SARS-CoV-2/genética , Brasil/epidemiologia , Pandemias , Estudos Retrospectivos , COVID-19/epidemiologia , Hospitais , Hospitalização , Unidades de Terapia Intensiva
19.
Biomolecules ; 13(2)2023 01 30.
Artigo em Inglês | MEDLINE | ID: mdl-36830629

RESUMO

Autism spectrum disorders (ASD) are a group of complex neurodevelopmental disorders that affect communication and social interactions and present with restricted interests and repetitive behavior patterns. The susceptibility to ASD is strongly influenced by genetic/heritable factors; however, there is still a large gap in understanding the cellular and molecular mechanisms underlying the neurobiology of ASD. Significant progress has been made in identifying ASD risk genes and the possible convergent pathways regulated by these gene networks during development. The breakthrough of cellular reprogramming technology has allowed the generation of induced pluripotent stem cells (iPSCs) from individuals with syndromic and idiopathic ASD, providing patient-specific cell models for mechanistic studies. In the past decade, protocols for developing brain organoids from these cells have been established, leading to significant advances in the in vitro reproducibility of the early steps of human brain development. Here, we reviewed the most relevant literature regarding the application of brain organoids to the study of ASD, providing the current state of the art, and discussing the impact of such models on the field, limitations, and opportunities for future development.


Assuntos
Transtorno do Espectro Autista , Células-Tronco Pluripotentes Induzidas , Humanos , Transtorno do Espectro Autista/genética , Reprodutibilidade dos Testes , Encéfalo , Organoides
20.
Cells ; 12(19)2023 10 08.
Artigo em Inglês | MEDLINE | ID: mdl-37830632

RESUMO

Cell-in-cell (CIC) structures contribute to tumor aggressiveness and poor prognosis in oral squamous cell carcinoma (OSCC). In vitro 3D models may contribute to the understanding of the underlying molecular mechanisms of these events. We employed a spheroid model to study the CIC structures in OSCC. Spheroids were obtained from OSCC (HSC3) and cancer-associated fibroblast (CAF) lines using the Nanoshuttle-PLTM bioprinting system (Greiner Bio-One). Spheroid form, size, and reproducibility were evaluated over time (EvosTM XL; ImageJ version 1.8). Slides were assembled, stained (hematoxylin and eosin), and scanned (Axio Imager Z2/VSLIDE) using the OlyVIA System (Olympus Life Science) and ImageJ software (NIH) for cellular morphology and tumor zone formation (hypoxia and/or proliferative zones) analysis. CIC occurrence, complexity, and morphology were assessed considering the spheroid regions. Well-formed spheroids were observed within 6 h of incubation, showing the morphological aspects of the tumor microenvironment, such as hypoxic (core) and proliferative zone (periphery) formation. CIC structures were found in both homotypic and heterotypic groups, predominantly in the proliferative zone of the mixed HSC3/CAF spheroids. "Complex cannibalism" events were also noted. These results showcase the potential of this model in further studies on CIC morphology, formation, and relationship with tumor prognosis.


Assuntos
Carcinoma de Células Escamosas , Neoplasias de Cabeça e Pescoço , Neoplasias Bucais , Humanos , Carcinoma de Células Escamosas de Cabeça e Pescoço , Carcinoma de Células Escamosas/patologia , Neoplasias Bucais/patologia , Reprodutibilidade dos Testes , Microambiente Tumoral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA