Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Tipo de documento
Ano de publicação
Intervalo de ano de publicação
1.
J Org Chem ; 85(7): 4663-4671, 2020 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-32155066

RESUMO

A density functional theory (DFT) computational analysis, using the ωB97X-D functional, of a rapid amide cleavage in 2-carboxyphthalanilic acid (2CPA), where the amide group is flanked by two catalytic carboxyls, reveals key mechanistic information: (a) General base catalysis by a carboxylate coupled to general acid catalysis by a carboxyl is not operative. (b) Nucleophilic attack by a carboxylate on the amide carbonyl coupled to general acid catalysis at the amide oxygen can also be ruled out. (c) A mechanistic pathway that remains viable involves general acid proton delivery to the amide nitrogen by a carboxyl, while the other carboxylate engages in nucleophilic attack upon the amide carbonyl; a substantially unchanged amide carbonyl in the transition state; two concurrent bond-forming events; and a spatiotemporal-base rate acceleration. This mechanism is supported by molecular dynamic simulations which confirm a persistent key intramolecular hydrogen bonding. These theoretical conclusions, although not easily verified by experiment, are consistent with a bell-shaped pH/rate profile but are at odds with hydrolysis mechanisms in the classic literature.

2.
J Phys Chem B ; 127(1): 249-260, 2023 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-36594853

RESUMO

Polycyclic aromatic hydrocarbons (PAHs) are polluting agents, produced naturally or artificially, widely dispersed in the environment and potentially carcinogenic and immunotoxic to humans and animals, mainly for marine life. Recently, a tetracationic box-shaped cyclophane (ExBox4+) was synthesized, fully characterized, and revealed to form host-guest complexes with PAHs in acetonitrile, demonstrating the potential ability for it to act as a PAHs scavenger. This work investigates, through Molecular Dynamics (MD) simulations, the binding affinity between different PAHs and ExBox4+ in different solvents: chloroform (nonpolar), acetonitrile (polar protic), and water (polar protic). An alchemical method of simultaneous decoupling-recoupling (SDR) was used and implemented in a newly developed Python program called GHOAT, which fully automates the calculation of binding free energies and invokes the AMBER 2020 simulation package. The results showed that the affinity between ExBox4+ and PAHs in water is much larger than in organic media, with free energies between -5 and -20 kcal/mol, being able to act as a PHAs scavenger with great potential for applications in environmental chemistry such as soil washing. The results also reveal a significant correlation with the experimental available ΔG values. The methodology employed presents itself as an important tool for the in silico determination of binding affinities, not only available for charged cyclophanes but also extensible to several other HG supramolecular systems in condensed media, aiding in the rational design of host-guest systems in a significant way.


Assuntos
Hidrocarbonetos Policíclicos Aromáticos , Humanos , Hidrocarbonetos Policíclicos Aromáticos/química , Solventes/química , Simulação de Dinâmica Molecular , Água , Acetonitrilas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA