Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Development ; 148(3)2021 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-33547203

RESUMO

In October 2020, the Keystone Symposia Global Health Series hosted a Keystone eSymposia entitled 'Tissue Plasticity: Preservation and Alteration of Cellular Identity'. The event synthesized groundbreaking research from unusually diverse fields of study, presented in various formats, including live and virtual talks, panel discussions and interactive e-poster sessions. The meeting focused on cell identity changes and plasticity in multiple tissues, species and developmental contexts, both in homeostasis and during injury. Here, we review the key themes of the meeting: (1) cell-extrinsic drivers of plasticity; (2) epigenomic regulation of cell plasticity; and (3) conserved mechanisms governing plasticity. A salient take-home conclusion was that there may be conserved mechanisms used by cells to execute plasticity, with autodegradative activity (autophagy and lysosomes) playing a crucial initial step in diverse organs and organisms.


Assuntos
Plasticidade Celular/efeitos dos fármacos , Plasticidade Celular/fisiologia , Cimentos de Resina/farmacologia , Animais , Transdiferenciação Celular/fisiologia , Reprogramação Celular/fisiologia , Homeostase , Humanos , Metaplasia
2.
EMBO Rep ; 22(9): e51806, 2021 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-34309175

RESUMO

Differentiated cells across multiple species and organs can re-enter the cell cycle to aid in injury-induced tissue regeneration by a cellular program called paligenosis. Here, we show that activating transcription factor 3 (ATF3) is induced early during paligenosis in multiple cellular contexts, transcriptionally activating the lysosomal trafficking gene Rab7b. ATF3 and RAB7B are upregulated in gastric and pancreatic digestive-enzyme-secreting cells at the onset of paligenosis Stage 1, when cells massively induce autophagic and lysosomal machinery to dismantle differentiated cell morphological features. Their expression later ebbs before cells enter mitosis during Stage 3. Atf3-/- mice fail to induce RAB7-positive autophagic and lysosomal vesicles, eventually causing increased death of cells en route to Stage 3. Finally, we observe that ATF3 is expressed in human gastric metaplasia and during paligenotic injury across multiple other organs and species. Thus, our findings indicate ATF3 is an evolutionarily conserved gene orchestrating the early paligenotic autodegradative events that must occur before cells are poised to proliferate and contribute to tissue repair.


Assuntos
Fator 3 Ativador da Transcrição , Plasticidade Celular , Fator 3 Ativador da Transcrição/genética , Animais , Ciclo Celular , Diferenciação Celular , Metaplasia/genética , Camundongos
3.
Adv Physiol Educ ; 47(4): 910-918, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37769043

RESUMO

The development of science writing and presentation skills is necessary for a successful science career. Too often these skills are not included in pre- or postsecondary science, technology, engineering, and mathematics (STEM) education, leading to a disconnect between high schoolers' expectations for college preparedness and the skills needed to succeed in college. The Young Scientist Program Summer Focus recruits high school students from historically marginalized backgrounds to participate in 8-week summer internships at Washington University in St. Louis. Students conduct hands-on biomedical research projects under the mentorship of Washington University scientists (graduate students, postdoctorates, lab staff). Here, we present the curriculum for a science communication course that accompanies this early research experience. The course is designed to strengthen students' communication skills (critical reading, writing, presenting, and peer review) through a combination of weekly lectures and active learning methods. It prepares students for the capstone of their summer internship: writing a scientific paper and presenting their results at a closing symposium. We administered pre- and postprogram surveys to four Summer Focus cohorts to determine whether the course met its learning objectives. We found significant improvements in students' self-confidence in reading, interpreting, and communicating scientific data. Thus, this course provides a successful model for introducing science literacy and communication skills that are necessary for any career in STEM. We provide a detailed outline of the course structure and content so that this training can be incorporated into any undergraduate and graduate research programs.NEW & NOTEWORTHY Strong communication skills are necessary for a successful scientific career. Here, we describe the curriculum for a science communication course designed to accompany high school students participating in a summer biomedical research program. The course aims to improve their scientific literacy and communication skills. Students learn to read and understand scientific literature, write a paper about their summer research project, present their results, and provide feedback to peers. We found significant improvements in students' self-confidence in reading, interpreting, and communicating scientific data after completing the course. This successful model serves as a guide for students participating in their first research experience and provides the skills for success in future science, technology, engineering, and mathematics education and careers. The curriculum presented here can be easily adapted for any research program, including undergraduate summer research experiences and graduate student laboratory rotations.


Assuntos
Currículo , Instituições Acadêmicas , Humanos , Estudantes , Comunicação , Redação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA