Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 176
Filtrar
1.
J Neurosci ; 43(19): 3456-3476, 2023 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-37001994

RESUMO

The functional topography of the human primary somatosensory cortex hand area is a widely studied model system to understand sensory organization and plasticity. It is so far unclear whether the underlying 3D structural architecture also shows a topographic organization. We used 7 Tesla (7T) magnetic resonance imaging (MRI) data to quantify layer-specific myelin, iron, and mineralization in relation to population receptive field maps of individual finger representations in Brodman area 3b (BA 3b) of human S1 in female and male younger adults. This 3D description allowed us to identify a characteristic profile of layer-specific myelin and iron deposition in the BA 3b hand area, but revealed an absence of structural differences, an absence of low-myelin borders, and high similarity of 3D microstructure profiles between individual fingers. However, structural differences and borders were detected between the hand and face areas. We conclude that the 3D structural architecture of the human hand area is nontopographic, unlike in some monkey species, which suggests a high degree of flexibility for functional finger organization and a new perspective on human topographic plasticity.SIGNIFICANCE STATEMENT Using ultra-high-field MRI, we provide the first comprehensive in vivo description of the 3D structural architecture of the human BA 3b hand area in relation to functional population receptive field maps. High similarity of precise finger-specific 3D profiles, together with an absence of structural differences and an absence of low-myelin borders between individual fingers, reveals the 3D structural architecture of the human hand area to be nontopographic. This suggests reduced structural limitations to cortical plasticity and reorganization and allows for shared representational features across fingers.


Assuntos
Mãos , Córtex Somatossensorial , Adulto , Humanos , Masculino , Feminino , Dedos , Córtex Cerebral , Imageamento por Ressonância Magnética , Mapeamento Encefálico/métodos
2.
Magn Reson Med ; 91(4): 1659-1675, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38031517

RESUMO

PURPOSE: To investigate safety and performance aspects of parallel-transmit (pTx) RF control-modes for a body coil at B 0 ≤ 3 T $$ {B}_0\le 3\mathrm{T} $$ . METHODS: Electromagnetic simulations of 11 human voxel models in cardiac imaging position were conducted for B 0 = 0.5 T $$ {B}_0=0.5\mathrm{T} $$ , 1.5 T $$ 1.5\mathrm{T} $$ and 3 T $$ 3\mathrm{T} $$ and a body coil with a configurable number of transmit channels (1, 2, 4, 8, 16). Three safety modes were considered: the 'SAR-controlled mode' (SCM), where specific absorption rate (SAR) is limited directly, a 'phase agnostic SAR-controlled mode' (PASCM), where phase information is neglected, and a 'power-controlled mode' (PCM), where the voltage amplitude for each channel is limited. For either mode, safety limits were established based on a set of 'anchor' simulations and then evaluated in 'target' simulations on previously unseen models. The comparison allowed to derive safety factors accounting for varying patient anatomies. All control modes were compared in terms of the B 1 + $$ {B}_1^{+} $$ amplitude and homogeneity they permit under their respective safety requirements. RESULTS: Large safety factors (approximately five) are needed if only one or two anchor models are investigated but they shrink with increasing number of anchors. The achievable B 1 + $$ {B}_1^{+} $$ is highest for SCM but this advantage is reduced when the safety factor is included. PCM appears to be more robust against variations of subjects. PASCM performance is mostly in between SCM and PCM. Compared to standard circularly polarized (CP) excitation, pTx offers minor B 1 + $$ {B}_1^{+} $$ improvements if local SAR limits are always enforced. CONCLUSION: PTx body coils can safely be used at B 0 ≤ 3 T $$ {B}_0\le 3\mathrm{T} $$ . Uncertainties in patient anatomy must be accounted for, however, by simulating many models.


Assuntos
Coração , Imageamento por Ressonância Magnética , Humanos , Imageamento por Ressonância Magnética/métodos , Simulação por Computador , Coração/diagnóstico por imagem , Imagens de Fantasmas , Ondas de Rádio
3.
Neuroimage ; 283: 120430, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37923281

RESUMO

The primary somatosensory cortex (SI) contains fine-grained tactile representations of the body, arranged in an orderly fashion. The use of ultra-high resolution fMRI data to detect group differences, for example between younger and older adults' SI maps, is challenging, because group alignment often does not preserve the high spatial detail of the data. Here, we use robust-shared response modeling (rSRM) that allows group analyses by mapping individual stimulus-driven responses to a lower dimensional shared feature space, to detect age-related differences in tactile representations between younger and older adults using 7T-fMRI data. Using this method, we show that finger representations are more precise in Brodmann-Area (BA) 3b and BA1 compared to BA2 and motor areas, and that this hierarchical processing is preserved across age groups. By combining rSRM with column-based decoding (C-SRM), we further show that the number of columns that optimally describes finger maps in SI is higher in younger compared to older adults in BA1, indicating a greater columnar size in older adults' SI. Taken together, we conclude that rSRM is suitable for finding fine-grained group differences in ultra-high resolution fMRI data, and we provide first evidence that the columnar architecture in SI changes with increasing age.


Assuntos
Mapeamento Encefálico , Córtex Somatossensorial , Humanos , Idoso , Mapeamento Encefálico/métodos , Córtex Somatossensorial/diagnóstico por imagem , Córtex Somatossensorial/fisiologia , Dedos/fisiologia , Imageamento por Ressonância Magnética/métodos , Tato/fisiologia
4.
Neuroimage ; 274: 120094, 2023 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-37028734

RESUMO

The association between cerebral blood supply and cognition has been widely discussed in the recent literature. One focus of this discussion has been the anatomical variability of the circle of Willis, with morphological differences being present in more than half of the general population. While previous studies have attempted to classify these differences and explore their contribution to hippocampal blood supply and cognition, results have been controversial. To disentangle these previously inconsistent findings, we introduce Vessel Distance Mapping (VDM) as a novel methodology for evaluating blood supply, which allows for obtaining vessel pattern metrics with respect to the surrounding structures, extending the previously established binary classification into a continuous spectrum. To accomplish this, we manually segmented hippocampal vessels obtained from high-resolution 7T time-of-flight MR angiographic imaging in older adults with and without cerebral small vessel disease, generating vessel distance maps by computing the distances of each voxel to its nearest vessel. Greater values of VDM-metrics, which reflected higher vessel distances, were associated with poorer cognitive outcomes in subjects affected by vascular pathology, while this relation was not observed in healthy controls. Therefore, a mixed contribution of vessel pattern and vessel density is proposed to confer cognitive resilience, consistent with previous research findings. In conclusion, VDM provides a novel platform, based on a statistically robust and quantitative method of vascular mapping, for addressing a variety of clinical research questions.


Assuntos
Doenças de Pequenos Vasos Cerebrais , Imageamento por Ressonância Magnética , Humanos , Idoso , Imageamento por Ressonância Magnética/métodos , Cognição , Doenças de Pequenos Vasos Cerebrais/patologia , Hipocampo/patologia
5.
NMR Biomed ; 36(7): e4900, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36624556

RESUMO

To protect implant carriers in MRI from excessive radiofrequency (RF) heating it has previously been suggested to assess that hazard via sensors on the implant. Other work recommended parallel transmission (pTx) to actively mitigate implant-related heating. Here, both ideas are integrated into one comprehensive safety concept where native pTx safety (without implant) is ensured by state-of-the-art field simulations and the implant-specific hazard is quantified in situ using physical sensors. The concept is demonstrated by electromagnetic simulations performed on a human voxel model with a simplified spinal-cord implant in an eight-channel pTx body coil at 3 T . To integrate implant and native safety, the sensor signal must be calibrated in terms of an established safety metric (e.g., specific absorption rate [SAR]). Virtual experiments show that E -field and implant-current sensors are well suited for this purpose, while temperature sensors require some caution, and B 1 probes are inadequate. Based on an implant sensor matrix Q s , constructed in situ from sensor readings, and precomputed native SAR limits, a vector space of safe RF excitations is determined where both global (native) and local (implant-related) safety requirements are satisfied. Within this safe-excitation subspace, the solution with the best image quality in terms of B 1 + magnitude and homogeneity is then found by a straightforward optimization algorithm. In the investigated example, the optimized pTx shim provides a 3-fold higher mean B 1 + magnitude compared with circularly polarized excitation for a maximum implant-related temperature increase ∆ T imp ≤ 1 K . To date, sensor-equipped implants interfaced to a pTx scanner exist as demonstrator items in research labs, but commercial devices are not yet within sight. This paper aims to demonstrate the significant benefits of such an approach and how this could impact implant-related RF safety in MRI. Today, the responsibility for safe implant scanning lies with the implant manufacturer and the MRI operator; within the sensor concept, the MRI manufacturer would assume much of the operator's current responsibility.


Assuntos
Temperatura Alta , Ondas de Rádio , Humanos , Simulação por Computador , Imagens de Fantasmas , Imageamento por Ressonância Magnética/métodos
6.
Brain ; 145(4): 1473-1485, 2022 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-35352105

RESUMO

We investigated whether the impact of tau-pathology on memory performance and on hippocampal/medial temporal memory function in non-demented individuals depends on the presence of amyloid pathology, irrespective of diagnostic clinical stage. We conducted a cross-sectional analysis of the observational, multicentric DZNE-Longitudinal Cognitive Impairment and Dementia Study (DELCODE). Two hundred and thirty-five participants completed task functional MRI and provided CSF (92 cognitively unimpaired, 100 experiencing subjective cognitive decline and 43 with mild cognitive impairment). Presence (A+) and absence (A-) of amyloid pathology was defined by CSF amyloid-ß42 (Aß42) levels. Free recall performance in the Free and Cued Selective Reminding Test, scene recognition memory accuracy and hippocampal/medial temporal functional MRI novelty responses to scene images were related to CSF total-tau and phospho-tau levels separately for A+ and A- individuals. We found that total-tau and phospho-tau levels were negatively associated with memory performance in both tasks and with novelty responses in the hippocampus and amygdala, in interaction with Aß42 levels. Subgroup analyses showed that these relationships were only present in A+ and remained stable when very high levels of tau (>700 pg/ml) and phospho-tau (>100 pg/ml) were excluded. These relationships were significant with diagnosis, age, education, sex, assessment site and Aß42 levels as covariates. They also remained significant after propensity score based matching of phospho-tau levels across A+ and A- groups. After classifying this matched sample for phospho-tau pathology (T-/T+), individuals with A+/T+ were significantly more memory-impaired than A-/T+ despite the fact that both groups had the same amount of phospho-tau pathology. ApoE status (presence of the E4 allele), a known genetic risk factor for Alzheimer's disease, did not mediate the relationship between tau pathology and hippocampal function and memory performance. Thus, our data show that the presence of amyloid pathology is associated with a linear relationship between tau pathology, hippocampal dysfunction and memory impairment, although the actual severity of amyloid pathology is uncorrelated. Our data therefore indicate that the presence of amyloid pathology provides a permissive state for tau-related hippocampal dysfunction and hippocampus-dependent recognition and recall impairment. This raises the possibility that in the predementia stage of Alzheimer's disease, removing the negative impact of amyloid pathology could improve memory and hippocampal function even if the amount of tau-pathology in CSF is not changed, whereas reducing increased CSF tau-pathology in amyloid-negative individuals may not proportionally improve memory function.


Assuntos
Doença de Alzheimer , Amiloidose , Disfunção Cognitiva , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/metabolismo , Proteínas Amiloidogênicas , Apolipoproteínas E/genética , Biomarcadores , Disfunção Cognitiva/diagnóstico , Disfunção Cognitiva/genética , Estudos Transversais , Hipocampo/metabolismo , Humanos , Proteínas tau/metabolismo
7.
MAGMA ; 36(2): 191-210, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37029886

RESUMO

Multiple sites within Germany operate human MRI systems with magnetic fields either at 7 Tesla or 9.4 Tesla. In 2013, these sites formed a network to facilitate and harmonize the research being conducted at the different sites and make this technology available to a larger community of researchers and clinicians not only within Germany, but also worldwide. The German Ultrahigh Field Imaging (GUFI) network has defined a strategic goal to establish a 14 Tesla whole-body human MRI system as a national research resource in Germany as the next progression in magnetic field strength. This paper summarizes the history of this initiative, the current status, the motivation for pursuing MR imaging and spectroscopy at such a high magnetic field strength, and the technical and funding challenges involved. It focuses on the scientific and science policy process from the perspective in Germany, and is not intended to be a comprehensive systematic review of the benefits and technical challenges of higher field strengths.


Assuntos
Imageamento por Ressonância Magnética , Imagem Corporal Total , Humanos , Imageamento por Ressonância Magnética/métodos , Espectroscopia de Ressonância Magnética , Imagem Corporal Total/métodos , Alemanha , Campos Magnéticos
8.
Alzheimers Dement ; 19(4): 1152-1163, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-35876563

RESUMO

INTRODUCTION: It remains unknown whether the global small vessel disease (SVD) burden predicts post-stroke outcomes. METHODS: In a prospective multicenter study of 666 ischemic and hemorrhagic stroke patients, we quantified magnetic resonance imaging (MRI)-based SVD markers (lacunes, white matter hyperintensities, microbleeds, perivascular spaces) and explored associations with 6- and 12-month cognitive (battery of 15 neuropsychological tests) and functional (modified Rankin scale) outcomes. RESULTS: A global SVD score (range 0-4) was associated with cognitive impairment; worse performance in executive function, attention, language, and visuospatial ability; and worse functional outcome across a 12-month follow-up. Although the global SVD score did not improve prediction, individual SVD markers, assessed across their severity range, improved the calibration, discrimination, and reclassification of predictive models including demographic, clinical, and other imaging factors. DISCUSSION: SVD presence and severity are associated with worse cognitive and functional outcomes 12 months after stroke. Assessing SVD severity may aid prognostication for stroke patients. HIGHLIGHTS: In a multi-center cohort, we explored associations of small vessel disease (SVD) burden with stroke outcomes. SVD burden associates with post-stroke cognitive and functional outcomes. A currently used score of SVD burden does not improve the prediction of poor outcomes. Assessing the severity of SVD lesions adds predictive value beyond known predictors. To add predictive value in assessing SVD in stroke patients, SVD burden scores should integrate lesion severity.


Assuntos
Doenças de Pequenos Vasos Cerebrais , Disfunção Cognitiva , Acidente Vascular Cerebral , Humanos , Estudos Prospectivos , Acidente Vascular Cerebral/complicações , Acidente Vascular Cerebral/patologia , Doenças de Pequenos Vasos Cerebrais/patologia , Disfunção Cognitiva/complicações , Imageamento por Ressonância Magnética , Cognição
9.
Hum Brain Mapp ; 43(9): 2833-2844, 2022 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-35234321

RESUMO

We examined the association between rsFC and local neurotransmitter levels in the pregenual anterior cingulate cortex (pgACC) and the anterior mid-cingulate cortex (aMCC) by varying rsFC-strengths at the whole-brain level. Our results showed region-dependent directionality of associations in the investigated ACC subdivisions.


Assuntos
Giro do Cíngulo , Imageamento por Ressonância Magnética , Encéfalo , Mapeamento Encefálico , Giro do Cíngulo/diagnóstico por imagem , Humanos , Neurotransmissores
10.
Magn Reson Med ; 88(5): 2074-2087, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35762910

RESUMO

PURPOSE: Severe geometric distortions induced by tissue susceptibility, water-fat chemical shift, and eddy currents pose a substantial obstacle in single-shot EPI, especially for high-resolution imaging at ultrahigh field. View angle tilting (VAT)-EPI can mitigate in-plane distortion. However, the accompanied strong image blurring prevented its widespread applications. On the other hand, point-spread function mapping (PSF)-EPI can correct distortion and blurring accurately but requires prolonged scan time. We present fused VAT-PSF-EPI and possibilities for acceleration. METHODS: MR signal equations were explicitly derived to quantify image blurring in VAT-EPI and the maximum acceleration capacity in VAT-PSF-EPI. To validate the theoretical prediction, phantom measurements with varying in-plane parallel imaging factors, slice thicknesses, and RF pulses were conducted at 7 Tesla. In addition, in vivo human brain scans were acquired with T2 and diffusion weighting to assess distortion and blurring correction. RESULTS: VAT can effectively suppress distortion, and the introduced image blurring is corrected through PSF encoding. Up to fourfold acceleration (only 5 shots) in VAT-PSF-EPI was achieved compared with standard PSF-EPI without VAT. VAT-induced signal loss was mitigated by adjusting the sequence parameters and EPI resolution. In vivo T2 -weighted EPI data with 1.4 mm3 resolution demonstrate immunity to water-fat chemical shift-induced distortion. Very high-spatial resolution diffusion-weighted EPI (0.7 × 0.7 × 2.8 mm3 and 1.2 mm3 ) demonstrates the immunity to eddy current-induced distortion. CONCLUSION: VAT-PSF-EPI is a novel spin-echo EPI-based sequence for fast high-resolution diffusion imaging at ultrahigh field.


Assuntos
Algoritmos , Imagem Ecoplanar , Artefatos , Encéfalo/diagnóstico por imagem , Imagem de Difusão por Ressonância Magnética/métodos , Imagem Ecoplanar/métodos , Humanos , Processamento de Imagem Assistida por Computador/métodos , Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA