Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Molecules ; 27(5)2022 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-35268629

RESUMO

This study expands and combines concepts from two of our earlier studies. One study reported the complementary halogen bonding and π-π charge transfer complexation observed between isomeric electron rich 4-N,N-dimethylaminophenylethynylpyridines and the electron poor halogen bond donor, 1-(3,5-dinitrophenylethynyl)-2,3,5,6-tetrafluoro-4-iodobenzene while the second study elaborated the ditopic halogen bonding of activated pyrimidines. Leveraging our understanding on the combination of these non-covalent interactions, we describe cocrystallization featuring ditopic halogen bonding and π-stacking. Specifically, red cocrystals are formed between the ditopic electron poor halogen bond donor 1-(3,5-dinitrophenylethynyl)-2,4,6-triflouro-3,5-diiodobenzene and each of electron rich pyrimidines 2- and 5-(4-N,N-dimethyl-aminophenylethynyl)pyrimidine. The X-ray single crystal structures of these cocrystals are described in terms of halogen bonding and electron donor-acceptor π-complexation. Computations confirm that the donor-acceptor π-stacking interactions are consistently stronger than the halogen bonding interactions and that there is cooperativity between π-stacking and halogen bonding in the crystals.

2.
J Org Chem ; 83(11): 6142-6150, 2018 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-29728046

RESUMO

The electronic properties of a pyrazine-containing arylene ethynylene unit are influenced by hydrogen bond and halogen bond donors that are held in proximity of the pyrazine rotor. These interactions are evident with iodine- and bromine-centered halogen bonds and O-H- and C-H-based hydrogen bonds. Bathochromic shifts of UV-vis and fluorescence signals are the best indicators of this intramolecular attraction. The effects can be attenuated in solvents that are less favorable for intramolecular halogen or hydrogen bonding, such as 2-propanol, and amplified in solvents that are supportive, such as toluene. Intramolecular attractions promote planarity in the pyrazine ethynylene system, likely increasing the effective conjugation of the unsaturated backbone. Additionally, computations at the B3LYP and M062X levels of theory using 6-311++G(2d,p) and aug-cc-pVTZ basis sets suggest that the Lewis acidity of the halogen and hydrogen atoms influences electronic behavior even in the absence of conformational constraints.

3.
J Org Chem ; 79(13): 6269-78, 2014 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-24931463

RESUMO

Intramolecular halogen bonds between aryl halide donors and suitable acceptors, such as carbonyl or quinolinyl groups, held in proximity by 1,2-aryldiyne linkers, provide triangular structures in the solid state. Aryldiyne linkers provide a nearly ideal template for intramolecular halogen bonding as minor deviations from alkyne linearity can accommodate a variety of halogen bonding interactions, including O···Cl, O···Br, O···I, N···Br, and N···I. Halogen bond lengths for these units, observed by single crystal X-ray crystallography, range from 2.75 to 2.97 Å. Internal bond angles of the semirigid bridge between halogen bond donor and acceptor are responsive to changes in the identity of the halogen, the identity of the acceptor, and the electronic environment around the halogen, with the triangles retaining almost perfect co-planarity in even the most strained systems. Consistency between experimental results and structures predicted by M06-2X/6-31G* calculations demonstrates the efficacy of this computational method for modeling halogen-bonded structures of this type.

4.
Acta Crystallogr C Struct Chem ; 78(Pt 10): 552-558, 2022 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-36196788

RESUMO

1,3-Diiodo-5-nitrobenzene, C6H3I2NO2, and 1,3-dibromo-5-nitrobenzene, C6H3Br2NO2, crystallize in the centrosymmetric space group P21/m, and are isostructural with 1,3-dichloro-5-nitrobenzene, C6H3Cl2NO2, that has been redetermined at 100 K for consistency. While the three-dimensional packing in all three structures is similar, the size of the halogen atom affects the nonbonded close contacts observed between molecules. Thus, the structure of 1,3-diiodo-5-nitrobenzene features a close Type 1 I...I contact, the structure of 1,3-dibromo-5-nitrobenzene features a self-complementary nitro-O...Br close contact, while the structure of 1,3-dichloro-5-nitrobenzene also has a self-complementary nitro-O...Cl interaction, as well as a bifurcated C-H...O(nitro) close contact. Notably, the major energetically attractive intermolecular interaction between adjacent molecules in each of the three structures corresponds to a π-stacked interaction. The self-complementary halogen...O(nitro) and C-H...O(nitro) interactions correspond to significant cohesive attraction between molecules in each structure, while the Type 1 halogen-halogen contact is weakly cohesive.

5.
Chempluschem ; 86(5): 745-749, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33942573

RESUMO

Co-crystallization of a pyridyl-containing arylethynyl (AE) moiety with 1,4-diiodotetrafluorobenzene leads to unique, figure-eight shaped helical motifs within the crystal lattice. A slight twist in the AE backbone allows each AE unit to simultaneously interact with haloarene units that are stacked on top of one another. Left-handed (M) and right-handed (P) helices are interspersed in a regular pattern throughout the crystal. The major driving forces for assembly are 1) halogen bonding between the pyridyl nitrogen atoms and the iodine substituents of the haloarene, with N⋅⋅⋅I distances between 2.81 and 2.84 Å, and 2) π-π stacking of the haloarenes, with distances of approximately 3.57 Šbetween centroids. Halogen bonding and π-π stacking not only work in concert, but also seem to mutually enhance one another. Calculations suggest that the presence of π-π stacking modestly intensifies the halogen bonding interaction by <0.2 kcal/mol; likewise, halogen bonding to the haloarene enhances the π-π stacking interaction by 0.59 kcal/mol.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA