Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros

Base de dados
Tipo de documento
País/Região como assunto
Intervalo de ano de publicação
1.
Environ Sci Technol ; 54(3): 1415-1424, 2020 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-31917550

RESUMO

Isoprene (C5H8) is the main non-methane hydrocarbon emitted into the global atmosphere. Despite intense research, atmospheric transformations of isoprene leading to secondary organic aerosol (SOA) are still not fully understood, including its multiphase chemical reactions. Herein, we report on the detailed structural characterization of atmospherically relevant isoprene-derived organosulfates (OSs) with a molecular weight (MW) of 212 (C5H8SO7), which are abundantly present in both ambient fine aerosol (PM2.5) and laboratory-generated isoprene SOA. The results obtained from smog chamber-generated isoprene SOA and aqueous-phase laboratory experiments coupled to the S(IV)-autooxidation chemistry of isoprene, 3-methyl-2(5H)-furanone, and 4-methyl-2(5H)-furanone, allowed us for the first time to fully elucidate the isomeric structures of the MW 212 OSs. By applying liquid chromatography interfaced to electrospray ionization high-resolution mass spectrometry, we firmly confirmed six positional isomers of the MW 212 OSs in PM2.5 collected from different sites in Europe and the United States. Our results also show that despite the low solubility of isoprene in water, aqueous-phase or multiphase chemistry can play an important role in the formation of OSs from isoprene. Possible formation mechanisms for the MW 212 OSs are also tentatively proposed.


Assuntos
Hemiterpenos , Aerossóis , Butadienos , Europa (Continente) , Lactonas , Peso Molecular , Pentanos
2.
Anal Chem ; 90(5): 3416-3423, 2018 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-29429345

RESUMO

Secondary organic aerosol (SOA) is an important yet not fully characterized constituent of atmospheric particulate matter. A number of different techniques and chromatographic methods are currently used for the analysis of SOA, so the comparison of results from different laboratories poses a challenge. So far, tentative structures have been suggested for many organosulfur compounds that have been identified as markers for the formation of SOA, including isoprene-derived organosulfates. Despite the effectiveness and robustness of LC-MS/MS analyses, the structural profiling of positional isomers of recently discovered organosulfates with molecular weights (MWs) of 214 and 212 from isoprene was entirely unsuccessful. Here, we developed a UHPLC combined with high-resolution tandem mass spectrometric method that significantly improves the separation efficiency and detection sensitivity of these compounds in aerosol matrices. We discovered that selection of the proper solvent for SOA extracts was a key factor in improving the separation parameters. Later, we took advantage of the enhanced sensitivity, combined with a short scan time window, to perform detailed structural mass-spectrometric studies. For the first time, we elucidate a number of isomers of the MW 214 and the MW 212 organosulfates and provide strong evidence for their molecular structures. The structure of trihydroxyketone sulfate MW 214 that we propose has not been previously reported. The methods we designed can be easily applied in other laboratories to foster an easy comparison of related qualitative and quantitative data obtained throughout the world.

3.
Int J Syst Evol Microbiol ; 68(12): 3935-3941, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30394866

RESUMO

An aerobic, Gram-stain-negative, rod-shaped, non-motile, mesophilic soil bacterium, strain WS5A3pT, was isolated from a pesticide burial site in north-west Poland. The strain grew at 12-37 °C, at pH 8-9 and with 0-2 % (w/v) NaCl. The main fatty acids detected in WS5A3pT were summed feature 3, summed feature 8 and C16 : 0. The major respiratory quinone was Q-10 and major polar lipids were phosphatidylethanolamine, sphingoglycolipid and phosphatidylglycerol. The G+C content of the genome was 65.1 mol%. Phylogenetic pairwise distance analysis of the 16S rRNA gene placed this strain within the genus Sphingopyxis, with the highest similarity to Sphingopyxis witflariensis W-50T (98.8 %), Sphingopyxis bauzanensis BZ30T and Sphingopyxis ginsengisoli Gsoil 250T (98.3 %) and Sphingopyxis granuli NBRC 100800T (98.09 %). Genomic similarity analyses using ANIb and dDDH algorithms indicated levels of similarity of 81.44, 80.84 and 81.16 % between WS5A3pT and S. witflariensis, S. bauzanensisand S. granuli, respectively for average nucleotide identity and 25.90, 25.00 and 26.10 % for digital DNA-DNA hybridization. Based on the phylogenetic and phenotypic data, strain WS5A3pT should be considered as a representative of a novel Sphingopyxis species. The name Sphingopyxis lindanitolerans sp. nov. is proposed with the type strain WS5A3pT (=DSM 106274T=PCM 2932T).


Assuntos
Resíduos Perigosos , Praguicidas , Filogenia , Microbiologia do Solo , Sphingomonadaceae/classificação , Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano/genética , Ácidos Graxos/química , Hibridização de Ácido Nucleico , Fosfolipídeos/química , Polônia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Sphingomonadaceae/genética , Sphingomonadaceae/isolamento & purificação , Ubiquinona/análogos & derivados , Ubiquinona/química
4.
AAPS PharmSciTech ; 16(1): 21-9, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25160674

RESUMO

The aim of this study was to investigate the ionizing radiation effects, in the form of an electron beam, on itraconazole (ITR) in the solid phase. It was found that the ITR, under the influence of a standard 25 kGy dose of radiation used for the sterilization of drug substances, decomposed at 0.4%. Moreover, a gentle change of colour and a decrease in melting point does not exceed pharmacopoeial standards causing that ITR can be sterilized by radiation method. The use of high 400 kGy radiation doses resulted in a 6.5% decomposition of the ITR and eight radiodegradation products were found. However, with the exception of differential scanning calorimetry (DSC), the X-ray diffraction, Fourier transform infrared spectroscopy (FT-IR) and ultraviolet-visible (UV-vis) methods showed no changes in the form and the morphology of the crystals. The structures of all those compounds were investigated. It was confirmed that the ITR decomposition takes place by dehalogenation (one of Cl atom elimination), the oxidation in isobutyl residue (beside the triazole ring) and C-O bond rupture.


Assuntos
Itraconazol/química , Itraconazol/efeitos da radiação , Radiação Ionizante , Esterilização/métodos , Antifúngicos/química , Antifúngicos/efeitos da radiação , Estabilidade de Medicamentos , Elétrons , Tamanho da Partícula , Transição de Fase , Doses de Radiação , Temperatura de Transição/efeitos da radiação
5.
J Agric Food Chem ; 69(48): 14689-14698, 2021 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-34841873

RESUMO

Inspired by the easy intercalation of quinoxaline heterocyclic aromatic amines (HAAs) in double-stranded DNA (dsDNA), we synthesized a nucleobase-functionalized molecularly imprinted polymer (MIP) as the recognition unit of an impedimetric chemosensor for the selective determination of a 2-amino-3,7,8-trimethyl-3H-imidazo[4,5-f]quinoxaline (7,8-DiMeIQx) HAA. HAAs are generated in meat and fish processed at high temperatures. They are considered to be potent hazardous carcinogens. The MIP film was prepared by potentiodynamic electropolymerization of a pre-polymerization complex of two adenine- and one thymine-substituted bis(2,2'-bithien-5-yl)methane functional monomer molecules with one 7,8-DiMeIQx template molecule, in the presence of the 2,4,5,2',4',5'-hexa(thiophene-2-yl)-3,3'-bithiophene cross-linking monomer, in solution. The as-formed MIP chemosensor allowed for the selective impedimetric determination of 7,8-DiMeIQx in the 47 to 400 µM linear dynamic concentration range with a limit of detection of 15.5 µM. The chemosensor was successfully applied for 7,8-DiMeIQx determination in the pork meat extract as a proof of concept.


Assuntos
Impressão Molecular , Carne de Porco , Carne Vermelha , Aminas , Animais , DNA , Eletrodos , Polímeros Molecularmente Impressos , Suínos
6.
Sci Total Environ ; 730: 139175, 2020 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-32388384

RESUMO

Iodine plays an important role in the environment and life. In the atmosphere, iodine is present in the form of inorganic and organic compounds. In this study, we have analyzed atmospheric wet precipitation using ultra-high performance liquid chromatography coupled to high resolution mass spectrometry (UHPLC-HRMS) for the presence of organoiodine compounds and found that the main organoiodine compound in atmospheric waters is 2-iodomalondialdehyde. The structure of this compound is supported by independent synthesis. A plausible mechanism of the formation of 2-iodomalondialdehyde from acrolein, iodine and water in the atmosphere is proposed. Our measurements reveal the presence of ten other organoiodine compounds in atmospheric wet precipitation but their structures remain unknown, mainly due to very low concentrations prohibiting mass spectrometry studies. The results described in this paper enhance our knowledge about the circulation of iodine in nature. It provides insights into the chemical nature of soluble organic iodine, whose presence in the atmosphere has been known for two decades. In addition, it also shows the potential of using liquid chromatography coupled to mass spectrometry (LC-MS) technique to further explore iodine chemistry in the atmosphere.

7.
Chemosphere ; 251: 126439, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32443254

RESUMO

The molecular characterization of secondary organic aerosol (SOA) is based mainly on LC-MS analyses of particulate matter (PM) samples collected with aerosol samplers. Several studies have analyzed atmospheric waters, including rain and cloud water, for the presence of SOA components, however, no separation techniques were used making identification of the individual components in these complex mixtures impossible. We have applied our improved UHPLC-HR-MS methodology to analyze atmospheric precipitates (hailstone, rain and snow), as well as SOA collected with high-volume samplers. We achieved sensitivity levels and separation efficiencies that were sufficient for molecular-level identification of individual compounds. Tracing commonly known SOA markers such as organosulfates (OS), C4-C6 dicarboxylic acids and terpenoic acids revealed that the chromatographic profiles for both atmospheric precipitate and PM samples were very similar, with both giving similar component ratios, especially for OS. We also demonstrated that SOA markers can be detected directly from raw rain samples. Our results show that LC-MS techniques are suitable for the convenient analysis of atmospheric precipitates containing SOA markers at the molecular level. It complements traditional SOA analyses and provides additional sampling opportunities which will no doubt allow for better elucidation of chemical transformations of volatile organic compounds in the atmosphere.


Assuntos
Aerossóis/análise , Poluentes Atmosféricos/análise , Monitoramento Ambiental/métodos , Atmosfera/química , Cromatografia Líquida , Espectrometria de Massas , Material Particulado/análise , Chuva , Neve , Compostos Orgânicos Voláteis/análise , Tempo (Meteorologia)
8.
Science ; 369(6511)2020 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-32973002

RESUMO

The challenge of prebiotic chemistry is to trace the syntheses of life's key building blocks from a handful of primordial substrates. Here we report a forward-synthesis algorithm that generates a full network of prebiotic chemical reactions accessible from these substrates under generally accepted conditions. This network contains both reported and previously unidentified routes to biotic targets, as well as plausible syntheses of abiotic molecules. It also exhibits three forms of nontrivial chemical emergence, as the molecules within the network can act as catalysts of downstream reaction types; form functional chemical systems, including self-regenerating cycles; and produce surfactants relevant to primitive forms of biological compartmentalization. To support these claims, computer-predicted, prebiotic syntheses of several biotic molecules as well as a multistep, self-regenerative cycle of iminodiacetic acid were validated by experiment.


Assuntos
Compostos Orgânicos/síntese química , Origem da Vida , Simulação por Computador
9.
iScience ; 23(6): 101198, 2020 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-32526701

RESUMO

Dehydrodolichyl diphosphate synthase (DHDDS) catalyzes the committed step in dolichol synthesis. Recessive mutations in DHDDS cause retinitis pigmentosa (RP59), resulting in blindness. We hypothesized that rod photoreceptor-specific ablation of Dhdds would cause retinal degeneration due to diminished dolichol-dependent protein N-glycosylation. Dhddsflx/flx mice were crossed with rod-specific Cre recombinase-expressing (Rho-iCre75) mice to generate rod-specific Dhdds knockout mice (Dhddsflx/flx iCre+). In vivo morphological and electrophysiological evaluation of Dhddsflx/flx iCre+ retinas revealed mild retinal dysfunction at postnatal (PN) 4 weeks, compared with age-matched controls; however, rapid photoreceptor degeneration ensued, resulting in almost complete loss of rods and cones by PN 6 weeks. Retina dolichol levels were markedly decreased by PN 4 weeks in Dhddsflx/flx iCre+ mice, relative to controls; despite this, N-glycosylation of retinal proteins, including opsin (the dominant rod-specific glycoprotein), persisted in Dhddsflx/flx iCre+ mice. These findings challenge the conventional mechanistic view of RP59 as a congenital disorder of glycosylation.

10.
Chemosphere ; 214: 1-9, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30248553

RESUMO

In-cloud processing of volatile organic compounds is one of the significant routes leading to secondary organic aerosol (SOA) in the lower troposphere. In this study, we demonstrate that two atmospherically relevant α,ß-unsaturated carbonyls, i.e., but-3-en-2-on (methyl vinyl ketone, MVK) and 2-methylopropenal (methacrolein, MACR), undergo sulfate radical-induced transformations in dilute aqueous systems under photochemical conditions to form organosulfates previously identified in ambient aerosols and SOA generated in smog chambers. The photooxidation was performed under sun irradiation in unbuffered aqueous solutions containing carbonyl precursors at a concentration of 0.2 mmol and peroxydisulfate as a source of sulfate radicals (SO4-) at a concentration of 0.95 mmol. UV-vis analysis of solutions showed the fast decay of unsaturated carbonyl precursors in the presence of sulfate radicals. The observation confirms the capacity of sulfate radicals to transform the organic compounds into SOA components in atmospheric waters. Detailed interpretation of high-resolution negative ion electrospray ionization tandem mass spectra allowed to assign molecular structures to multiple aqueous organosulfate products, including an abundant isoprene-derived organosulfate C4H8SO7 detected at m/z 199. The results highlight the solar aqueous-phase reactions as a potentially significant route for biogenic SOA production in clouds at locations where isoprene oxidation occurs. A recent modelling study suggests that such processes could likely contribute to 20-30 Tg year-1 production of SOA, referred to as aqSOA, which is a non-negligible addition to the still underestimated budget of atmospheric aerosol.


Assuntos
Acroleína/análogos & derivados , Poluentes Atmosféricos/química , Butanonas/química , Água/química , Acroleína/química , Poluentes Atmosféricos/análise , Oxirredução , Água/análise
11.
Atmos Chem Phys ; 18(24): 18101-18121, 2018 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-32158471

RESUMO

The effect of acidity and relative humidity on bulk isoprene aerosol parameters has been investigated in several studies; however, few measurements have been conducted on individual aerosol compounds. The focus of this study has been the examination of the effect of acidity and relative humidity on secondary organic aerosol (SOA) chemical composition from isoprene photooxidation in the presence of nitrogen oxide (NO x ). A detailed characterization of SOA at the molecular level was also investigated. Experiments were conducted in a 14.5 m3 smog chamber operated in flow mode. Based on a detailed analysis of mass spectra obtained from gas chromatography-mass spectrometry of silylated derivatives in electron impact and chemical ionization modes, ultra-high performance liquid chromatography/electrospray ionization/time-of-flight high-resolution mass spectrometry, and collision-induced dissociation in the negative ionization modes, we characterized not only typical isoprene products but also new oxygenated compounds. A series of nitroxy-organosulfates (NOSs) were tentatively identified on the basis of high-resolution mass spectra. Under acidic conditions, the major identified compounds include 2-methyltetrols (2MT), 2-methylglyceric acid (2mGA), and 2MT-OS. Other products identified include epoxydiols, mono- and dicarboxylic acids, other organic sulfates, and nitroxy- and nitrosoxy-OS. The contribution of SOA products from isoprene oxidation to PM2.5 was investigated by analyzing ambient aerosol collected at rural sites in Poland. Methyltetrols, 2mGA, and several organosulfates and nitroxy-OS were detected in both the field and laboratory samples. The influence of relative humidity on SOA formation was modest in non-acidic-seed experiments and stronger under acidic seed aerosol. Total secondary organic carbon decreased with increasing relative humidity under both acidic and non-acidic conditions. While the yields of some of the specific organic compounds decreased with increasing relative humidity, others varied in an indeterminate manner from changes in the relative humidity.

13.
Front Microbiol ; 8: 1872, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29163375

RESUMO

Due to their particular properties, detergents are widely used in household cleaning products, cosmetics, pharmaceuticals, and in agriculture as adjuvants tailoring the features of pesticides or other crop protection agents. The continuously growing use of these various products means that water soluble detergents have become one of the most problematic groups of pollutants for the aquatic and terrestrial environments. Thus it is important to identify bacteria having the ability to survive in the presence of large quantities of detergent and efficiently decompose it to non-surface active compounds. In this study, we used peaty soil sampled from a surface flow constructed wetland in a wastewater treatment plant to isolate bacteria that degrade sodium dodecyl sulfate (SDS). We identified and initially characterized 36 Pseudomonas spp. strains that varied significantly in their ability to use SDS as their sole carbon source. Five isolates having the closest taxonomic relationship to the Pseudomonas jessenii subgroup appeared to be the most efficient SDS degraders, decomposing from 80 to 100% of the SDS present in an initial concentration 1 g/L in less than 24 h. These isolates exhibited significant differences in degree of SDS degradation, their resistance to high detergent concentration (ranging from 2.5 g/L up to 10 g/L or higher), and in chemotaxis toward SDS on a plate test. Mass spectrometry revealed several SDS degradation products, 1-dodecanol being dominant; however, traces of dodecanal, 2-dodecanol, and 3-dodecanol were also observed, but no dodecanoic acid. Native polyacrylamide gel electrophoresis zymography revealed that all of the selected isolates possessed alkylsulfatase-like activity. Three isolates, AP3_10, AP3_20, and AP3_22, showed a single band on native PAGE zymography, that could be the result of alkylsulfatase activity, whereas for isolates AP3_16 and AP3_19 two bands were observed. Moreover, the AP3_22 strain exhibited a band in presence of both glucose and SDS, whereas in other isolates, the band was visible solely in presence of detergent in the culture medium. This suggests that these microorganisms isolated from peaty soil exhibit exceptional capabilities to survive in, and break down SDS, and they should be considered as a valuable source of biotechnological tools for future bioremediation and industrial applications.

14.
Carbohydr Res ; 409: 1-8, 2015 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-25880336

RESUMO

The outer core oligosaccharide (OS) was isolated from the lipopolysaccharide (LPS) of Rhizobium leguminosarum bv. trifolii strain 24 after Smith degradation and then studied by sugar and methylation analyses along with NMR and mass spectrometry methods. Negative-ion electrospray (ESI-MS) mass spectrum showed two molecular ions at m/z 686.3 and 728.3, which corresponded to the core OS having the composition Rha2QuiNAcKdh. The mass difference between both ions indicated that the higher molecule mass represented the mono O-acetylated variant of the OS. The sequence of the oligosaccharide was reflected in CID MS/MS spectra. In turn, NMR spectroscopy confirmed the composition and glycosylation pattern of the core OS and provided additional evidence on its structure. 2D NMR experiments revealed that the terminal Rhap is acetylated at position O-2. Moreover, 3-deoxyheptulosonic acid (Kdh), which was detected at the reducing terminus of the OS, was evidently derived from the Kdo as a result of Smith degradation. In addition, the higher intensity of signals for a six-membered pyranose ring of Kdhp over 2,7-anh-Kdhf seemed to indicate prevalence of this form of the sugar in the OS-derived species. Based on the data obtained, the following structure of the outer core tetrasaccharide, which probably links the O-chain polysaccharide to the inner core in the LPS of R. leguminosarum bv. trifolii strain 24, was established: α-L-Rhap-2-OAc*-(1-->3)-α-L-Rhap-(1-->3)-ß-D-QuipNAc-(1-->4)-Kdo * ~ 50%. .


Assuntos
Lipopolissacarídeos/química , Oligossacarídeos/química , Rhizobium leguminosarum/química , Sequência de Carboidratos , Espectroscopia de Ressonância Magnética , Espectrometria de Massas por Ionização por Electrospray , Espectrometria de Massas em Tandem
15.
PLoS One ; 9(1): e85259, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24465516

RESUMO

N-oleoyl-dopamine (OLDA) is a novel lipid derivative of dopamine. Its biological action includes the interaction with dopamine and the transient receptor potential vanilloid (TRPV1) receptors. It seems to be synthesized in a dopamine-like manner, but there has been no information on its degradation. The aim of the study was, therefore, to determine whether OLDA metabolism proceeds the way dopamine proper does. We addressed the issue by examining the occurrence of O-methylation of exogenously supplemented OLDA via catechol-O-methyltransferase (COMT) under in vitro, ex vivo, and in vivo conditions using rat brain tissue. The results show that OLDA was methylated by COMT in all conditions studied, yielding the O-methylated derivative. The methylation was reversed by tolcapone, a potent COMT inhibitor, in a dose-dependent manner. We conclude that OLDA enters the metabolic pathway of dopamine. Methylation of OLDA may enhance its bioactive properties, such as the ability to interact with TRPV1 receptors.


Assuntos
Encéfalo/metabolismo , Catecol O-Metiltransferase/metabolismo , Dopamina/análogos & derivados , Acilação , Animais , Benzofenonas/farmacologia , Ligação Competitiva , Inibidores de Catecol O-Metiltransferase , Cromatografia Líquida de Alta Pressão , Dopamina/metabolismo , Masculino , Metilação/efeitos dos fármacos , Nitrofenóis/farmacologia , Ratos , Ratos Wistar , Espectrofotometria , Canais de Cátion TRPV/metabolismo , Espectrometria de Massas em Tandem , Tolcapona
16.
Oxid Med Cell Longev ; 2014: 764367, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25298860

RESUMO

Although a growing body of evidence suggests that plant polyphenols can modulate human immune responses, their simultaneous action on monocyte and neutrophil oxidative burst is currently poorly understood. Based on the hypothesis that various polyphenols contained in plant extracts might affect the oxidative burst of phagocytes, we evaluated the effects of ethanolic O. paradoxa extract polyphenols on monocyte and neutrophil oxidative burst in vitro activated by different stimuli, including opsonized bacteria E. coli, phorbol 12-myristate 13-acetate (PMA), and formyl-methionyl-leucyl-phenylalanine (fMLP). Samples were analyzed by the dihydrorhodamine flow cytometry assay. Our results showed that the extract repressed significantly and dose-dependently reactive oxygen species production in both cell types stimulated with E. coli and PMA (P < 0.05) and its inhibitory efficiency was stimulus- and cell-type-dependent. Interestingly, there was significant stimulatory effect of the extract on bursting phagocytes induced by fMLP (P < 0.05). Additionally, several flavonoids and phenolic compounds as well as penta-galloyl-ß-(D)-glucose (PGG), the representative of hydrolyzable tannins, were identified in the 60% extract by high-performance liquid chromatography (HPLC) coupled to electrospray ionization in negative ion mode. In summary, the ethanolic O. paradoxa extract, rich in flavonoids and phenolic compounds, exhibits dual stimulus-dependent effect on the respiratory burst in human leukocytes; hence, it might affect immune responses in humans.


Assuntos
Escherichia coli/fisiologia , Leucócitos/efeitos dos fármacos , N-Formilmetionina Leucil-Fenilalanina/análogos & derivados , Oenothera/química , Extratos Vegetais/farmacologia , Explosão Respiratória/efeitos dos fármacos , Acetato de Tetradecanoilforbol/farmacologia , Cromatografia Líquida de Alta Pressão , Sinergismo Farmacológico , Humanos , Leucócitos/metabolismo , N-Formilmetionina Leucil-Fenilalanina/farmacologia , Extratos Vegetais/química , Polifenóis/química , Polifenóis/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Sementes/química , Espectrometria de Massas em Tandem
17.
Carbohydr Res ; 352: 126-36, 2012 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-22456102

RESUMO

The structure of the lipid A of the lipopolysaccharide (LPS) from Azorhizobium caulinodans, a symbiont of the tropical legume Sesbania rostrata, was investigated by chemical compositional analyses, mass spectrometry, as well as 1D and 2D NMR spectroscopy techniques. The lipid A backbone was composed of a ß-(1→6)-linked 2,3-diamino-2,3-dideoxy-D-glucopyranose (GlcpN3N) disaccharide and α-D-glucuronic acid (GlcpA). Nuclear magnetic resonance spectroscopy revealed that the GlcpA was connected to the reducing end of the diaminosugar disaccharide via an α-(1→1) glycosidic bond. The lipid A was deprived of phosphate residues. ESI-MS analysis showed that the lipid A preparation was a mixture of molecules due to the occurrence of different acylation patterns. The GlcpN3N disaccharide backbone was N-acylated at the C-2, C-3, C-2' and C-3' positions with 3-OH-18:0, 3-OH-14:0, 3-OH-20:1 and 3-OH-14:0 fatty acids, respectively. Nonpolar fatty acids as well as 3-OH-18:0 were found to be ester-linked. They were attached to hydroxyl groups of primary 3-OH fatty acids giving three acyloxyacyl moieties. Thus, the complete lipid A from A. caulinodans comprised seven acyl residues. Part of the lipid A molecules was esterified by 3-methoxybutyric acid. Azorhizobium caulinodans did not incorporate ω-1 hydroxylated very long chain fatty acids (e.g., 27-OH-28:0) into the lipid A, which makes this variant of endotoxin unusual among rhizobial lipids A.


Assuntos
Azorhizobium caulinodans/química , Azorhizobium caulinodans/fisiologia , Lipídeo A/química , Caules de Planta/química , Caules de Planta/fisiologia , Sequência de Carboidratos , Ácidos Graxos/química , Lipídeo A/isolamento & purificação , Espectroscopia de Ressonância Magnética , Espectrometria de Massas , Dados de Sequência Molecular
18.
Monatsh Chem ; 142(12): 1241-1247, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-26166855

RESUMO

ABSTRACT: Ru-catalyzed synthesis of mixed alkyl-alkyl acetals via addition of primary alcohols to allyl ethers has been extended to include long-chain and/or functionalized substrates. The catalytic systems for these reactions were generated from RuCl2(PPh3)3 and [RuCl2(1,5-COD)]x and phosphines [PPh3 or P(p-chlorophenyl)3] or SbPh3. Of particular importance is the almost quantitative elimination of transacetalization. The addition proceeds through allyl complexes, not via isomerization of allyl ethers--subsequent addition of ROH to vinyl ethers.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA