Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
Plant Dis ; 104(3): 853-859, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31910114

RESUMO

Begomoviruses are plant viruses that cause major losses to many economically important crops. Although they are poorly understood, begomoviruses infecting wild plants may have an important role as reservoirs in the epidemiology of viral diseases. This study reports the discovery and genomic characterization of three novel bipartite begomoviruses from wild and cultivated African basil (Ocimum gratissimum) plants collected in Uganda, East Africa. Based on the symptoms shown by the infected plants, the names proposed for these viruses are Ocimum yellow vein virus (OcYVV), Ocimum mosaic virus (OcMV), and Ocimum golden mosaic virus (OcGMV). Genome and phylogenetic analyses suggest that DNA-A of OcGMV is mostly related to begomoviruses infecting tomato in Africa, whereas those of OcYVV and OcMV are closely related to one another and highly divergent within the Old World begomoviruses. The DNA-A of all characterized begomovirus isolates are of a recombinant nature, revealing the role of recombination in the evolution of these begomoviruses. The viruses characterized here are the first identified in O. gratissimum and the first in Ocimum spp. in the African continent and could have important epidemiological consequences for cultivated basils and other important crops.[Formula: see text] Copyright © 2020 The Author(s). This is an open access article distributed under the CC BY 4.0 International license.


Assuntos
Begomovirus , Ocimum basilicum , Ocimum , DNA Viral , Filogenia , Doenças das Plantas , Uganda
2.
Physiol Mol Plant Pathol ; 105: 67-76, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31007375

RESUMO

The localization of Cassava brown streak virus (CBSV) in cassava (Manihot esculenta) leaf tissues was determined and cellular morphological changes in CBSV-infected tissues were evaluated. CBSV-symptomatic leaves were screened with CBSV-specific primers using reverse-transcriptase polymerase chain reaction. Immunohistochemical reactions showed precipitation in CBSV-infected but not CBSV-free tissues, demonstrating successful localization of CBSV. Microscopic inspection showed significantly larger (P < 0.001) midribs in CBSV-infected compared with control (uninfected) leaves. Viral accumulation occurred in middle and lower but rarely in young upper leaves. This immunohistochemical method for virus localization will be invaluable for efficient screening of CBSV and for breeding resistant cassava.

3.
Physiol Mol Plant Pathol ; 105: 88-95, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31007377

RESUMO

Cassava brown streak disease (CBSD) caused by Cassava brown streak virus (CBSV) and Ugandan cassava brown streak virus (UCBSV) is the main constraint to cassava (Manihot esculenta Crantz) production in Mozambique. Using RT-PCR to amplify partial coat protein nucleotide sequences, we detected for the first time the occurrence of CBSV in two non-cassava perennial wild plant species: Zanha africana (Radlk.) Exell. and Trichodesma zeylanicum (Burm.f.) R.Br., that occur widely within and near cassava fields in Nampula, Zambezia, Niassa and Cabo Delgado provinces. In addition, we also detected CBSV and UCBSV in Manihot carthaginensis subsp. glaziovii (Müell-Arg.) Allem., a wild cassava relative. These findings were verified in biological assays through mechanical inoculation of CBSV to T. zeylanicum, albeit at low rates of infection. Phylogenetic analysis clustered the CBSV isolates from the non-cassava plant species with those from cultivated cassava, with high sequence homology among CBSV (91.0-99.6%) and with UCBSV (84-92%) isolates. These results provide definitive evidence of a wider host range for CBSV and UCBSV in Mozambique, indicating that these viruses are not restricted to cultivated cassava. Our findings are key to understanding the epidemiology of CBSD and will aid in the development of sustainable management strategies for the disease.

4.
J Plant Pathol ; 101(3): 467-477, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31983872

RESUMO

Cassava (Manihot esculenta Crantz) is one of the most important root staple crops in Zambia. An estimated 30% of Zambians, over 4 million people, consume cassava as part of their daily diet. Cassava is mostly grown by subsistence farmers on fields of less than 1 ha. Cultivation of cassava is hampered by several biotic constraints, of which cassava mosaic disease (CMD) is currently the most important factor limiting cassava production in Zambia. CMD occurs in all the cassava-growing provinces and accounts for 50% to 70% of yield losses countrywide. Strategies to counter CMD were initiated in the early 1990s and included the release of CMD-resistant cassava cultivars. However, efforts to control CMD are limited because few growers plant these cultivars. More recently, to address the CMD problem, regular disease monitoring and diagnostic capabilities have been strengthened, and there is increased support for screening breeders materials. CMD is a rising threat to cassava production in Zambia. This review of CMD research on disease surveillance, CMD spread, yield losses, awareness campaigns and control options in Zambia over the past 25 years informs future control efforts and management strategies.

5.
Crop Prot ; 115: 104-112, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30739973

RESUMO

Cassava brown streak disease (CBSD) and cassava mosaic disease (CMD) are two viral diseases that cause severe yield losses in cassava of up to 100%, thereby persistently threatening food and income security in sub-Saharan Africa. For effective management of these diseases, there is a critical need to develop and deploy varieties with dual resistance to CBSD and CMD. In this study, we determined the response of advanced breeding lines to field infection by cassava brown streak viruses (CBSVs) and cassava mosaic begomoviruses (CMBs). This aim helped in identifying superior clones for downstream breeding. In total, 220 cassava clones, three in uniform yield trials (UYTs) and 217 in a crossing block trial (CBT), were evaluated for virus and disease resistance. Field data were collected on disease incidence and severity. To detect and quantify CBSVs, 448 and 128 leaf samples from CBSD symptomatic and symptomless plants were analyzed by reverse transcription PCR and real-time quantitative PCR, respectively. In addition, 93 leaf samples from CMD symptomatic plants in the CBT were analyzed by conventional PCR using CMB species-specific primers. In the CBT, 124 (57%) cassava clones did not express CMD symptoms. Of the affected plants, 44 (55%) had single African cassava mosaic virus infection. Single Cassava brown streak virus (CBSV) infections were more prevalent (81.6%) in CBT clones than single Ugandan cassava brown streak virus (UCBSV) infection (3.2%). Of the three advanced clones in the UYT, NAROCASS 1 and NAROCASS 2 had significantly lower (P < 0.05) CBSD severity, incidence, and CBSV load than MH04/0300. In the UYT, only 22% of samples tested had CBSVs, and all showed a negative result for CMBs. The low disease incidence, severity, and viral load associated with NAROCASS 1 and NAROCASS 2 is evidence of their tolerance to both CBSD and CMD. Therefore, these two cassava clones should be utilized in CBSD and CMD management in Uganda, including their utilization as progenitors in further virus resistance breeding.

6.
J Virol ; 90(8): 4160-4173, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26865712

RESUMO

UNLABELLED: Cassava mosaic begomoviruses (CMBs) cause cassava mosaic disease (CMD) across Africa and the Indian subcontinent. Like all members of the geminivirus family, CMBs have small, circular single-stranded DNA genomes. We report here the discovery of two novel DNA sequences, designated SEGS-1 and SEGS-2 (forsequencesenhancinggeminivirussymptoms), that enhance symptoms and break resistance to CMD. The SEGS are characterized by GC-rich regions and the absence of long open reading frames. Both SEGS enhanced CMD symptoms in cassava (Manihot esculentaCrantz) when coinoculated withAfrican cassava mosaic virus(ACMV),East African cassava mosaic Cameroon virus(EACMCV), orEast African cassava mosaic virus-Uganda(EACMV-UG). SEGS-1 also overcame resistance of a cassava landrace carrying the CMD2 resistance locus when coinoculated with EACMV-UG. Episomal forms of both SEGS were detected in CMB-infected cassava but not in healthy cassava. SEGS-2 episomes were also found in virions and whiteflies. SEGS-1 has no homology to geminiviruses or their associated satellites, but the cassava genome contains a sequence that is 99% identical to full-length SEGS-1. The cassava genome also includes three sequences with 84 to 89% identity to SEGS-2 that together encompass all of SEGS-2 except for a 52-bp region, which includes the episomal junction and a 26-bp sequence related to alphasatellite replication origins. These results suggest that SEGS-1 is derived from the cassava genome and facilitates CMB infection as an integrated copy and/or an episome, while SEGS-2 was originally from the cassava genome but now is encapsidated into virions and transmitted as an episome by whiteflies. IMPORTANCE: Cassava is a major crop in the developing world, with its production in Africa being second only to maize. CMD is one of the most important diseases of cassava and a serious constraint to production across Africa. CMD2 is a major CMD resistance locus that has been deployed in many cassava cultivars through large-scale breeding programs. In recent years, severe, atypical CMD symptoms have been observed occasionally on resistant cultivars, some of which carry the CMD2 locus, in African fields. In this report, we identified and characterized two DNA sequences, SEGS-1 and SEGS-2, which produce similar symptoms when coinoculated with cassava mosaic begomoviruses onto a susceptible cultivar or a CMD2-resistant landrace. The ability of SEGS-1 to overcome CMD2 resistance and the transmission of SEGS-2 by whiteflies has major implications for the long-term durability of CMD2 resistance and underscore the need for alternative sources of resistance in cassava.


Assuntos
Begomovirus/genética , DNA Viral , Manihot/virologia , Doenças das Plantas/virologia , Sequência de Bases , Begomovirus/patogenicidade , Clonagem Molecular , Genoma Viral , Vírus do Mosaico/genética , Vírus do Mosaico/patogenicidade , Doenças das Plantas/imunologia , Plasmídeos/genética , Tanzânia , Nicotiana
7.
Virol J ; 14(1): 118, 2017 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-28637472

RESUMO

BACKGROUND: Cassava brown streak disease is emerging as the most important viral disease of cassava in Africa, and is consequently a threat to food security. Two distinct species of the genus Ipomovirus (family Potyviridae) cause the disease: Cassava brown streak virus (CBSV) and Ugandan cassava brown streak virus (UCBSV). To understand the evolutionary relationships among the viruses, 64 nucleotide sequences from the variable P1 gene from major cassava producing areas of east and central-southern Africa were determined. METHODS: We sequenced an amplicon of the P1 region of 31 isolates from Malawi and Tanzania. In addition to these, 33 previously reported sequences of virus isolates from Uganda, Kenya, Tanzania, Malawi and Mozambique were added to the analysis. RESULTS: Phylogenetic analyses revealed three major P1 clades of Cassava brown streak viruses (CBSVs): in addition to a clade of most CBSV and a clade containing all UCBSV, a novel, intermediate clade of CBSV isolates which has been tentatively called CBSV-Tanzania (CBSV-TZ). Virus isolates of the distinctive CBSV-TZ had nucleotide identities as low as 63.2 and 63.7% with other members of CBSV and UCBSV respectively. CONCLUSIONS: Grouping of P1 gene sequences indicated for distinct sub-populations of CBSV, but not UCBSV. Representatives of all three clades were found in both Tanzania and Malawi.


Assuntos
Variação Genética , Filogenia , Potyviridae/classificação , Potyviridae/genética , Proteínas Virais/genética , África Central , África Oriental , Genótipo , Manihot/virologia , Doenças das Plantas/virologia , Potyviridae/isolamento & purificação , Análise de Sequência de DNA
8.
Arch Virol ; 162(5): 1393-1396, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28070648

RESUMO

Four isolates of a bipartite begomovirus from naturally infected Deinbollia borbonica plants exhibiting yellow mosaic symptoms in Kenya and Tanzania were molecularly characterised. The DNA-A was most closely related to that of tomato leaf curl Mayotte virus (AM701764; 82%), while the DNA-B shared the highest nucleotide sequence identity with that of East African cassava mosaic virus (AJ704953) at 65%. Based on the current ICTV species demarcation criterion for the genus Begomovirus (≥91% sequence identity for the complete DNA-A), we report the full-length genome sequence of this novel bipartite begomovirus. The results reveal additional diversity and reservoir hosts of begomoviruses in East Africa.


Assuntos
Begomovirus/genética , DNA Viral/genética , Genoma Viral/genética , Doenças das Plantas/virologia , Sapindaceae/virologia , Sequência de Bases , Begomovirus/classificação , Begomovirus/isolamento & purificação , Quênia , Vírus do Mosaico/genética , Filogenia , Análise de Sequência de DNA , Tanzânia
9.
Arch Virol ; 162(6): 1799-1803, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28243802

RESUMO

A novel bipartite legumovirus (genus Begomovirus, family Geminiviridae), that naturally infects the wild leguminous plant Desmodium sp. in Uganda, was molecularly characterized and named Desmodium mottle virus. The highest nucleotide identities for DNA-A, obtained from two field-collected samples, were 79.9% and 80.1% with the legumovirus, soybean mild mottle virus. DNA-B had the highest nucleotide identities (65.4% and 66.4%) with a typical non-legumovirus Old World begomovirus, African cassava mosaic virus. This is the first report of a legumovirus in East Africa and extends the known diversity of begomoviruses found infecting wild plants in this continent.


Assuntos
Begomovirus/isolamento & purificação , Fabaceae/virologia , Genoma Viral , Doenças das Plantas/virologia , Sequência de Bases , Begomovirus/classificação , Begomovirus/genética , Dados de Sequência Molecular , Filogenia , RNA Viral/genética , Uganda
10.
Arch Virol ; 162(4): 1079-1082, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27900540

RESUMO

The complete genomes of a monopartite begomovirus (genus Begomovirus, family Geminiviridae) and an associated betasatellite found infecting Vernonia amygdalina Delile (family Compositae) in Uganda were cloned and sequenced. Begomoviruses isolated from two samples showed the highest nucleotide sequence identity (73.1% and 73.2%) to an isolate of the monopartite begomovirus tomato leaf curl Vietnam virus, and betasatellites from the same samples exhibited the highest nucleotide sequence identity (67.1% and 68.2%) to vernonia yellow vein Fujian betasatellite. Following the current taxonomic criteria for begomovirus species demarcation, the isolates sequenced here represent a novel begomovirus species. Based on symptoms observed in the field, we propose the name vernonia crinkle virus (VeCrV) for this novel begomovirus and vernonia crinkle betasatellite (VeCrB) for the associated betasatellite. This is the first report of a monopartite begomovirus-betasatellite complex from Uganda.


Assuntos
Begomovirus/isolamento & purificação , Doenças das Plantas/virologia , Vírus Satélites/isolamento & purificação , Vernonia/virologia , Begomovirus/classificação , Begomovirus/genética , DNA Viral/genética , Genoma Viral , Filogenia , Vírus Satélites/classificação , Vírus Satélites/genética
11.
Arch Virol ; 162(11): 3439-3445, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28791544

RESUMO

Weed-infecting begomoviruses play an important role in the epidemiology of crop diseases because they can potentially infect crops and contribute to the genetic diversity of crop-infecting begomoviruses. Despite the important epidemiological role that weed-infecting begomoviruses play, they remain insufficiently studied in Africa. Recently, we identified Deinbollia mosaic virus (DMV), a distinct begomovirus found naturally infecting the weed host Deinbollia borbonica (Sapindaceae) in Kenya and Tanzania. In this study, we investigated the capacity of DMV to infect a restricted host range of Solanaceae and Euphorbiaceae species. Biolistic inoculation of Nicotiana benthamiana with concatemeric DNAs resulted in systemic infection associated with yellow mosaic symptoms, while DNA partial dimers caused asymptomatic systemic infection. DMV was not infectious to cassava (Manihot esculenta Crantz), suggesting host resistance to the virus. Here, we demonstrate the first experimental infectivity analysis of DMV in N. benthamiana and cassava.


Assuntos
Begomovirus/fisiologia , Euphorbiaceae/virologia , Doenças das Plantas/virologia , Plantas Daninhas/virologia , Solanaceae/virologia , África Oriental , Folhas de Planta/virologia
12.
Virus Res ; 346: 199397, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38750679

RESUMO

The ipomoviruses (family Potyviridae) that cause cassava brown streak disease (cassava brown streak virus [CBSV] and Uganda cassava brown streak virus [UCBSV]) are damaging plant pathogens that affect the sustainability of cassava production in East and Central Africa. However, little is known about the rate at which the viruses evolve and when they emerged in Africa - which inform how easily these viruses can host shift and resist RNAi approaches for control. We present here the rates of evolution determined from the coat protein gene (CP) of CBSV (Temporal signal in a UCBSV dataset was not sufficient for comparable analysis). Our BEAST analysis estimated the CBSV CP evolves at a mean rate of 1.43 × 10-3 nucleotide substitutions per site per year, with the most recent common ancestor of sampled CBSV isolates existing in 1944 (95% HPD, between years 1922 - 1963). We compared the published measured and estimated rates of evolution of CPs from ten families of plant viruses and showed that CBSV is an average-evolving potyvirid, but that members of Potyviridae evolve more quickly than members of Virgaviridae and the single representatives of Betaflexiviridae, Bunyaviridae, Caulimoviridae and Closteroviridae.


Assuntos
Proteínas do Capsídeo , Evolução Molecular , Manihot , Filogenia , Doenças das Plantas , Potyviridae , Potyviridae/genética , Doenças das Plantas/virologia , Manihot/virologia , Proteínas do Capsídeo/genética
13.
Insects ; 12(3)2021 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-33804645

RESUMO

In East Africa, the prevalent Bemisia tabaci whiteflies on the food security crop cassava are classified as sub-Saharan Africa (SSA) species. Economically damaging cassava whitefly populations were associated with the SSA2 species in the 1990s, but more recently, it has been to SSA1 species. To investigate whether biological traits (number of first instar nymphs, emerged adults, proportion of females in progeny and development time) of the cassava whitefly species are significant drivers of the observed field abundance, our study determined the development of SSA1 sub-group (SG) 1 (5 populations), SG2 (5 populations), SG3 (1 population) and SSA2 (1 population) on cassava and eggplant under laboratory conditions. SSA1-(SG1-SG2) and SSA2 populations' development traits were similar. Regardless of the host plant, SSA1-SG2 populations had the highest number of first instar nymphs (60.6 ± 3.4) and emerged adults (50.9 ± 3.6), followed by SSA1-SG1 (55.5 ± 3.2 and 44.6 ± 3.3), SSA2 (45.8 ± 5.7 and 32.6 ± 5.1) and the lowest were SSA1-SG3 (34.2 ± 6.1 and 32.0 ± 7.1) populations. SSA1-SG3 population had the shortest egg-adult emergence development time (26.7 days), followed by SSA1-SG1 (29.1 days), SSA1-SG2 (29.6 days) and SSA2 (32.2 days). Regardless of the whitefly population, development time was significantly shorter on eggplant (25.1 ± 0.9 days) than cassava (34.6 ± 1.0 days). These results support that SSA1-(SG1-SG2) and SSA2 B. tabaci can become highly abundant on cassava, with their species classification alone not correlating with observed abundance and prevalence.

14.
Insect Sci ; 28(6): 1553-1566, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33146464

RESUMO

In sub-Saharan Africa cassava growing areas, two members of the Bemisia tabaci species complex termed sub-Saharan Africa 1 (SSA1) and SSA2 have been reported as the prevalent whiteflies associated with the spread of viruses that cause cassava mosaic disease (CMD) and cassava brown streak disease (CBSD) pandemics. At the peak of CMD pandemic in the late 1990s, SSA2 was the prevalent whitefly, although its numbers have diminished over the last two decades with the resurgence of SSA1 whiteflies. Three SSA1 subgroups (SG1 to SG3) are the predominant whiteflies in East Africa and vary in distribution and biological properties. Mating compatibility between SSA1 subgroups and SSA2 whiteflies was reported as the possible driver for the resurgence of SSA1 whiteflies. In this study, a combination of both phylogenomic methods and reciprocal crossing experiments were applied to determine species status of SSA1 subgroups and SSA2 whitefly populations. Phylogenomic analyses conducted with 26 548 205 bp whole genome single nucleotide polymorphisms (SNPs) and the full mitogenomes clustered SSA1 subgroups together and separate from SSA2 species. Mating incompatibility between SSA1 subgroups and SSA2 further demonstrated their distinctiveness from each other. Phylogenomic analyses conducted with SNPs and mitogenomes also revealed different genetic relationships among SSA1 subgroups. The former clustered SSA1-SG1 and SSA1-SG2 together but separate from SSA1-SG3, while the latter clustered SSA1-SG2 and SSA1-SG3 together but separate from SSA1-SG1. Mating compatibility was observed between SSA1-SG1 and SSA1-SG2, while incompatibility occurred between SSA1-SG1 and SSA1-SG3, and SSA1-SG2 and SSA1-SG3. Mating results among SSA1 subgroups were coherent with phylogenomics results based on SNPs but not the full mitogenomes. Furthermore, this study revealed that the secondary endosymbiont-Wolbachia-did not mediate reproductive success in the crossing assays carried out. Overall, using genome wide SNPs together with reciprocal crossings assays, this study established accurate genetic relationships among cassava-colonizing populations, illustrating that SSA1 and SSA2 are distinct species while at least two species occur within SSA1 species.


Assuntos
Hemípteros , Polimorfismo de Nucleotídeo Único , África Subsaariana , Animais , Genoma de Inseto , Genoma Mitocondrial , Hemípteros/classificação , Hemípteros/genética , Manihot , Filogenia , Doenças das Plantas
15.
J Pest Sci (2004) ; 94(4): 1307-1330, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34720787

RESUMO

Over the past three decades, highly increased whitefly (Bemisia tabaci) populations have been observed on the staple food crop cassava in eastern Africa and associated with ensuing viral disease pandemics and food insecurity. Increased whitefly numbers have also been observed in other key agricultural crops and weeds. Factors behind the population surges on different crops and their interrelationships are unclear, although in cassava they have been associated with specific populations within the Bemisia tabaci species complex known to infest cassava crops in Africa. This study carried out an in-depth survey to understand the distribution of B. tabaci populations infesting crops and uncultivated plant hosts in Uganda, a centre of origin for this pest complex. Whitefly samples were collected from 59 identified plant species and 25 unidentified weeds in a countrywide survey. Identities of 870 individual adult whiteflies were determined through mitochondrial cytochrome oxidase 1 sequences (651 bp) in the 3' barcode region used for B. tabaci systematics. Sixteen B. tabaci and five related whitefly putative species were identified based on > 4.0% nucleotide divergence, of which three are proposed as novel B. tabaci putative species and four as novel closely related whitefly species. The most prevalent whiteflies were classified as B. tabaci MED-ASL (30.5% of samples), sub-Saharan Africa 1 (SSA1, 22.7%) and Bemisia Uganda1 (12.1%). These species were also indicated to be the most polyphagous occurring on 33, 40 and 25 identified plant species, respectively. Multiple (≥ 3) whitefly species occurred on specific crops (bean, eggplant, pumpkin and tomato) and weeds (Sida acuta and Ocimum gratissimum). These plants may have increased potential to act as reservoirs for mixed infections of whitefly-vectored viruses. Management of whitefly pest populations in eastern Africa will require an integration of approaches that consider their degree of polyphagy and a climate that enables the continuous presence of crop and uncultivated plant hosts. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s10340-021-01355-6.

16.
Pest Manag Sci ; 76(8): 2699-2710, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32162459

RESUMO

BACKGROUND: The whitefly Bemisia tabaci is an important vector of virus diseases, impacting cassava production in East Africa. To date, breeding efforts in this region have focused on disease resistance. Here we use a spatially-explicit simulation model to explore how breeding strategies for whitefly resistance will influence the population dynamics of whitefly in the context of regional variation in cassava crop management practices. RESULTS: Simulations indicated that regions with a short cropping cycle and two cropping seasons per year were associated with high whitefly abundance. Nymph mortality and antixenosis resistance mechanisms were more effective than mechanisms that lead to longer whitefly development times. When spatial variation was introduced in heterogeneous landscapes, however, negative consequences of the antixenosis effect were observed in fields containing whitefly susceptible varieties, unless the proportion of whitefly resistant variety in the landscape was low (~10%) or the amount of matrix in the landscape was high (~75%). CONCLUSION: We show the importance of considering cropping regime and landscape management context when developing and deploying whitefly-resistant cassava varieties. Recommendations differ significantly between regions. There may also be unintended negative consequences of higher whitefly densities for whitefly susceptible varieties if uptake of the new variety in a landscape is high, depending on the mechanism of resistance and the landscape context. Furthermore, we show that in some cases, such as where there is substantial fallow combined with a short single-season crop, the management characteristics of the existing cropping regime alone may be effective at controlling whitefly populations. © 2020 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.


Assuntos
Hemípteros , Manihot , África Oriental , Animais , Cruzamento , Doenças das Plantas
17.
Insects ; 11(11)2020 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-33167394

RESUMO

Bemisia tabaci is an important vector of cassava brown streak viruses and cassava mosaic begomoviruses, the causal agents of cassava brown streak disease and cassava mosaic disease (CMD), respectively. A study was carried out to determine the genetic variability of B. tabaci associated with cassava and the occurrence of CMD in Zambia in 2013 and 2015. Phylogenetic analysis showed the presence of only the sub-Saharan Africa 1 (SSA1) genetic group in Zambia. The SSA1 population had three population subgroups (SGs): SSA1-SG1, SSA1-SG2 and SSA1-SG3. All three SSA1 population subgroups occurred in Western Province. However, only SSA1-SG3 occurred in Eastern Province, while only SSA1-SG1 occurred in North Western and Luapula Provinces. Adult B. tabaci were most abundant in Western Province in 2013 (11.1/plant) and 2015 (10.8/plant), and least abundant (0.2/plant) in Northern Province in both 2013 and 2015. CMD was prevalent in all seven provinces surveyed, with the highest incidence recorded in Lusaka Province in both 2013 (78%) and 2015 (83.6%), and the lowest in Northern Province in both 2013 (26.6%) and 2015 (29.3%). Although SSA1-SG1 occurred at greater abundances than the other subgroups, there was no direct association demonstrated between whitefly subgroup and incidence of CMD. Establishing which B. tabaci genetic groups and populations are associated with CMD and their distribution in the country is a key factor in guiding the development of CMD control strategies for cassava-dependent households.

18.
PeerJ ; 8: e8632, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32175188

RESUMO

Cassava is a staple food crop in sub-Saharan Africa; it is a rich source of carbohydrates and proteins which currently supports livelihoods of more than 800 million people worldwide. However, its continued production is at stake due to vector-transmitted diseases such as Cassava mosaic disease and Cassava brown streak disease. Currently, the management and control of viral diseases in cassava relies mainly on virus-resistant cultivars of cassava. Thus, the discovery of new target genes for plant virus resistance is essential for the development of more cassava varieties by conventional breeding or genetic engineering. The chloroplast is a common target for plant viruses propagation and is also a potential source for discovering new resistant genes for plant breeding. Non-infected and infected cassava leaf samples were obtained from different locations of East Africa in Tanzania, Kenya and Mozambique. RNA extraction followed by cDNA library preparation and Illumina sequencing was performed. Assembling and mapping of the reads were carried out and 33 partial chloroplast genomes were obtained. Bayesian phylogenetic analysis from 55 chloroplast protein-coding genes of a dataset with 39 taxa was performed and the single nucleotide polymorphisms for the chloroplast dataset were identified. Phylogenetic analysis revealed considerable genetic diversity present in chloroplast partial genome among cultivated cassava of East Africa. The results obtained may supplement data of previously selected resistant materials and aid breeding programs to find diversity and achieve resistance for new cassava varieties.

19.
Sci Data ; 6(1): 327, 2019 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-31852893

RESUMO

Cassava brown streak disease (CBSD) is currently the most devastating cassava disease in eastern, central and southern Africa affecting a staple crop for over 700 million people on the continent. A major outbreak of CBSD in 2004 near Kampala rapidly spread across Uganda. In the following years, similar CBSD outbreaks were noted in countries across eastern and central Africa, and now the disease poses a threat to West Africa including Nigeria - the biggest cassava producer in the world. A comprehensive dataset with 7,627 locations, annually and consistently sampled between 2004 and 2017 was collated from historic paper and electronic records stored in Uganda. The survey comprises multiple variables including data for incidence and symptom severity of CBSD and abundance of the whitefly vector (Bemisia tabaci). This dataset provides a unique basis to characterize the epidemiology and dynamics of CBSD spread in order to inform disease surveillance and management. We also describe methods used to integrate and verify extensive field records for surveys typical of emerging epidemics in subsistence crops.


Assuntos
Manihot/microbiologia , Doenças das Plantas/microbiologia , Animais , Monitoramento Ambiental , Hemípteros , Insetos Vetores , Uganda
20.
Genes (Basel) ; 10(9)2019 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-31438604

RESUMO

In this case study we successfully teamed the PDQeX DNA purification technology developed by MicroGEM, New Zealand, with the MinION and MinIT mobile sequencing devices developed by Oxford Nanopore Technologies to produce an effective point-of-need field diagnostic system. The PDQeX extracts DNA using a cocktail of thermophilic proteinases and cell wall-degrading enzymes, thermo-responsive extractor cartridges and a temperature control unit. This closed system delivers purified DNA with no cross-contamination. The MinIT is a newly released data processing unit that converts MinION raw signal output into nucleotide base called data locally in real-time, removing the need for high-specification computers and large file transfers from the field. All three devices are battery powered with an exceptionally small footprint that facilitates transport and setup. To evaluate and validate capability of the system for unbiased pathogen identification by real-time sequencing in a farmer's field setting, we analysed samples collected from cassava plants grown by subsistence farmers in three sub-Sahara African countries (Tanzania, Uganda and Kenya). A range of viral pathogens, all with similar symptoms, greatly reduce yield or destroy cassava crops. Eight hundred (800) million people worldwide depend on cassava for food and yearly income, and viral diseases are a significant constraint to its production. Early pathogen detection at a molecular level has great potential to rescue crops within a single growing season by providing results that inform decisions on disease management, use of appropriate virus-resistant or replacement planting. This case study presented conditions of working in-field with limited or no access to mains power, laboratory infrastructure, Internet connectivity and highly variable ambient temperature. An additional challenge is that, generally, plant material contains inhibitors of downstream molecular processes making effective DNA purification critical. We successfully undertook real-time on-farm genome sequencing of samples collected from cassava plants on three farms, one in each country. Cassava mosaic begomoviruses were detected by sequencing leaf, stem, tuber and insect samples. The entire process, from arrival on farm to diagnosis, including sample collection, processing and provisional sequencing results was complete in under 3 h. The need for accurate, rapid and on-site diagnosis grows as globalized human activity accelerates. This technical breakthrough has applications that are relevant to human and animal health, environmental management and conservation.


Assuntos
Begomovirus/genética , Genômica/métodos , Hemípteros/genética , Manihot/virologia , Doenças das Plantas/virologia , Análise de Sequência de DNA/métodos , África Oriental , Animais , Begomovirus/patogenicidade , Genômica/instrumentação , Hemípteros/patogenicidade , Manihot/parasitologia , Doenças das Plantas/parasitologia , Kit de Reagentes para Diagnóstico/normas , Análise de Sequência de DNA/instrumentação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA