Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
1.
Molecules ; 27(10)2022 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-35630684

RESUMO

Spent sulfite liquor (SSL) from softwood processing is rich in hemicellulose (acetyl galactoglucomannan, AcGGM), lignin, and lignin-derived compounds. We investigated the effect of sequential AcGGM purification on the enzymatic bioconversion of AcGGM. SSL was processed through three consecutive purification steps (membrane filtration, precipitation, and adsorption) to obtain AcGGM with increasing purity. Significant reduction (~99%) in lignin content and modest loss (~18%) of polysaccharides was observed during purification from the least pure preparation (UFR), obtained by membrane filtration, compared to the purest preparation (AD), obtained by adsorption. AcGGM (~14.5 kDa) was the major polysaccharide in the preparations; its enzymatic hydrolysis was assessed by reducing sugar and high-performance anion-exchange chromatography analysis. The hydrolysis of the UFR preparation with Viscozyme L or Trichoderma reesei ß-mannanase TrMan5A (1 mg/mL) resulted in less than ~50% bioconversion of AcGGM. The AcGGM in the AD preparation was hydrolyzed to a higher degree (~67% with TrMan5A and 80% with Viscozyme L) and showed the highest conversion rate. This indicates that SSL contains enzyme-inhibitory compounds (e.g., lignin and lignin-derived compounds such as lignosulfonates) which were successfully removed.


Assuntos
Lignina , Polissacarídeos , Hidrólise , Lignina/química , Sulfitos
2.
Chemistry ; 27(40): 10323-10334, 2021 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-33914359

RESUMO

Glycobiology is dogged by the relative scarcity of synthetic, defined oligosaccharides. Enzyme-catalysed glycosylation using glycoside hydrolases is feasible but is hampered by the innate hydrolytic activity of these enzymes. Protein engineering is useful to remedy this, but it usually requires prior structural knowledge of the target enzyme, and/or relies on extensive, time-consuming screening and analysis. Here, a straightforward strategy that involves rational rapid in silico analysis of protein sequences is described. The method pinpoints 6-12 single-mutant candidates to improve transglycosylation yields. Requiring very little prior knowledge of the target enzyme other than its sequence, the method is generic and procures catalysts for the formation of glycosidic bonds involving various d/l-, α/ß-pyranosides or furanosides, and exo or endo action. Moreover, mutations validated in one enzyme can be transposed to others, even distantly related enzymes.


Assuntos
Glicosídeo Hidrolases , Glicosiltransferases , Glicosídeo Hidrolases/genética , Glicosídeo Hidrolases/metabolismo , Glicosilação , Glicosiltransferases/genética , Hidrólise , Oligossacarídeos , Especificidade por Substrato
3.
Biomacromolecules ; 22(6): 2338-2351, 2021 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-33961400

RESUMO

We present here a series of thermoresponsive glycopolymers in the form of poly(N-isopropylacrylamide)-co-(2-[ß-manno[oligo]syloxy] ethyl methacrylate)s. These copolymers were prepared from oligo-ß-mannosyl ethyl methacrylates that were synthesized through enzymatic catalysis, and were subsequently investigated with respect to their aggregation and phase behavior in aqueous solution using a combination of 1H NMR spectroscopy, dynamic light scattering, cryogenic transmission electron microscopy (TEM), and small-angle X-ray scattering (SAXS). The thermoresponsive glycopolymers were prepared by conventional free radical copolymerization of different mixtures of 2-(ß-manno[oligo]syloxy)ethyl methacrylates (with either one or two saccharide units) and N-isopropylacrylamide (NIPAm). The results showed that below the lower critical solution temperature (LCST) of poly(NIPAm), the glycopolymers readily aggregate into nanoscale structures, partly due to the presence of the saccharide moieties. Above the LCST of poly(NIPAm), the glycopolymers rearrange into a heterogeneous mixture of fractal and disc/globular aggregates. Cryo-TEM and SAXS data demonstrated that the presence of the pendant ß-mannosyl moieties in the glycopolymers induces a gradual conformational change over a wide temperature range. Even though the onset of this transition is not different from the LCST of poly(NIPAm), the gradual conformational change offers a variation of the temperature-dependent properties in comparison to poly(NIPAm), which displays a sharp coil-to-globule transition. Importantly, the compacted form of the glycopolymers shows a larger colloidal stability compared to the unmodified poly(NIPAm). In addition, the thermoresponsiveness can be conveniently tuned by varying the sugar unit-length and the oligo-ß-mannosyl ethyl methacrylate content.


Assuntos
Acrilamidas , Metacrilatos , Espalhamento a Baixo Ângulo , Temperatura , Difração de Raios X
4.
J Biol Chem ; 294(23): 9100-9117, 2019 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-31000630

RESUMO

The galactomannan utilization locus (BoManPUL) of the human gut bacterium Bacteroides ovatus encodes BoMan26B, a cell-surface-exposed endomannanase whose functional and structural features have been unclear. Our study now places BoMan26B in context with related enzymes and reveals the structural basis for its specificity. BoMan26B prefers longer substrates and is less restricted by galactose side-groups than the mannanase BoMan26A of the same locus. Using galactomannan, BoMan26B generated a mixture of (galactosyl) manno-oligosaccharides shorter than mannohexaose. Three defined manno-oligosaccharides had affinity for the SusD-like surface-exposed glycan-binding protein, predicted to be implicated in saccharide transport. Co-incubation of BoMan26B and the periplasmic α-galactosidase BoGal36A increased the rate of galactose release by about 10-fold compared with the rate without BoMan26B. The results suggested that BoMan26B performs the initial attack on galactomannan, generating oligosaccharides that after transport to the periplasm are processed by BoGal36A. A crystal structure of BoMan26B with galactosyl-mannotetraose bound in subsites -5 to -2 revealed an open and long active-site cleft with Trp-112 in subsite -5 concluded to be involved in mannosyl interaction. Moreover, Lys-149 in the -4 subsite interacted with the galactosyl side-group of the ligand. A phylogenetic tree consisting of GH26 enzymes revealed four strictly conserved GH26 residues and disclosed that BoMan26A and BoMan26B reside on two distinct phylogenetic branches (A and B). The three other branches contain lichenases, xylanases, or enzymes with unknown activities. Lys-149 is conserved in a narrow part of branch B, and Trp-112 is conserved in a wider group within branch B.


Assuntos
Proteínas de Bactérias/química , Bacteroides/metabolismo , beta-Manosidase/química , Proteínas de Bactérias/classificação , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Cálcio/metabolismo , Domínio Catalítico , Cristalografia por Raios X , Galactose/análogos & derivados , Cinética , Mananas/metabolismo , Simulação de Dinâmica Molecular , Mutagênese Sítio-Dirigida , Filogenia , Estabilidade Proteica , Especificidade por Substrato , beta-Manosidase/classificação , beta-Manosidase/genética , beta-Manosidase/metabolismo
5.
Soft Matter ; 16(30): 7063-7076, 2020 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-32756673

RESUMO

The substantial part of the water-soluble hemicellulose fraction, obtained when processing cellulose to produce paper and other products, has so far been discarded. The aim of this work is to reveal the interfacial properties of softwood hemicellulose (galactoglucomannan, GGM) in relation to their molecular and solution structure. In this study the sugar composition of GGM was characterised by chemical analysis as well as 1D and 2D NMR spectroscopy. Previously it has been demonstrated that hemicellulose has high affinity towards cellulose and has the ability to alter the properties of cellulose based products. This study is focused on the interactions between hemicellulose and the cellulose surface. Therefore, adsorption to hydrophobized silica and cellulose surfaces of two softwood hemicellulose samples and structurally similar seed hemicelluloses (galactomannans, GMs) was studied with ellipsometry, QCM-D and neutron reflectometry. Aqueous solutions of all samples were characterized with light scattering to determine how the degree of side-group substitution and molecular weight affect the conformation and aggregation of these polymers in the bulk. In addition, hemicellulose samples were studied with SAXS to investigate backbone flexibility. Light scattering results indicated that GM polymers form globular particles while GGMs were found to form rod-like aggregates in the solution. The polysaccharides exhibit higher adsorption to cellulose than on hydrophobic surfaces. A clear correlation between the increase in molecular weight of polysaccharides and increasing adsorbed amount on cellulose was observed, while the adsorbed amount on the hydrophobic surface was fairly independent of the molecular weight. The obtained layer thickness was compared with bulk scattering data and the results indicated flat conformation of the polysaccharides on the surface.

6.
J Biol Chem ; 292(1): 229-243, 2017 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-27872187

RESUMO

A recently identified polysaccharide utilization locus (PUL) from Bacteroides ovatus ATCC 8483 is transcriptionally up-regulated during growth on galacto- and glucomannans. It encodes two glycoside hydrolase family 26 (GH26) ß-mannanases, BoMan26A and BoMan26B, and a GH36 α-galactosidase, BoGal36A. The PUL also includes two glycan-binding proteins, confirmed by ß-mannan affinity electrophoresis. When this PUL was deleted, B. ovatus was no longer able to grow on locust bean galactomannan. BoMan26A primarily formed mannobiose from mannan polysaccharides. BoMan26B had higher activity on galactomannan with a high degree of galactosyl substitution and was shown to be endo-acting generating a more diverse mixture of oligosaccharides, including mannobiose. Of the two ß-mannanases, only BoMan26B hydrolyzed galactoglucomannan. A crystal structure of BoMan26A revealed a similar structure to the exo-mannobiohydrolase CjMan26C from Cellvibrio japonicus, with a conserved glycone region (-1 and -2 subsites), including a conserved loop closing the active site beyond subsite -2. Analysis of cellular location by immunolabeling and fluorescence microscopy suggests that BoMan26B is surface-exposed and associated with the outer membrane, although BoMan26A and BoGal36A are likely periplasmic. In light of the cellular location and the biochemical properties of the two characterized ß-mannanases, we propose a scheme of sequential action by the glycoside hydrolases encoded by the ß-mannan PUL and involved in the ß-mannan utilization pathway in B. ovatus. The outer membrane-associated BoMan26B initially acts on the polysaccharide galactomannan, producing comparably large oligosaccharide fragments. Galactomanno-oligosaccharides are further processed in the periplasm, degalactosylated by BoGal36A, and subsequently hydrolyzed into mainly mannobiose by the ß-mannanase BoMan26A.


Assuntos
Bacteroides/enzimologia , Mananas/metabolismo , Polissacarídeos/metabolismo , beta-Manosidase/química , beta-Manosidase/metabolismo , Catálise , Cristalografia por Raios X , Galactose/análogos & derivados , Hidrólise , Conformação Proteica , Especificidade por Substrato
7.
Appl Microbiol Biotechnol ; 102(12): 5149-5163, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29680901

RESUMO

ß-Mannanases catalyze the conversion and modification of ß-mannans and may, in addition to hydrolysis, also be capable of transglycosylation which can result in enzymatic synthesis of novel glycoconjugates. Using alcohols as glycosyl acceptors (alcoholysis), ß-mannanases can potentially be used to synthesize alkyl glycosides, biodegradable surfactants, from renewable ß-mannans. In this paper, we investigate the synthesis of alkyl mannooligosides using glycoside hydrolase family 5 ß-mannanases from the fungi Trichoderma reesei (TrMan5A and TrMan5A-R171K) and Aspergillus nidulans (AnMan5C). To evaluate ß-mannanase alcoholysis capacity, a novel mass spectrometry-based method was developed that allows for relative comparison of the formation of alcoholysis products using different enzymes or reaction conditions. Differences in alcoholysis capacity and potential secondary hydrolysis of alkyl mannooligosides were observed when comparing alcoholysis catalyzed by the three ß-mannanases using methanol or 1-hexanol as acceptor. Among the three ß-mannanases studied, TrMan5A was the most efficient in producing hexyl mannooligosides with 1-hexanol as acceptor. Hexyl mannooligosides were synthesized using TrMan5A and purified using high-performance liquid chromatography. The data suggests a high selectivity of TrMan5A for 1-hexanol as acceptor over water. The synthesized hexyl mannooligosides were structurally characterized using nuclear magnetic resonance, with results in agreement with their predicted ß-conformation. The surfactant properties of the synthesized hexyl mannooligosides were evaluated using tensiometry, showing that they have similar micelle-forming properties as commercially available hexyl glucosides. The present paper demonstrates the possibility of using ß-mannanases for alkyl glycoside synthesis and increases the potential utilization of renewable ß-mannans.


Assuntos
Aspergillus nidulans/enzimologia , Glicosídeos/biossíntese , Trichoderma/enzimologia , beta-Manosidase/metabolismo , Hidrólise , Mananas/metabolismo
8.
BMC Biochem ; 16: 26, 2015 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-26558435

RESUMO

BACKGROUND: ß-Mannans are abundant and diverse plant structural and storage polysaccharides. Certain human gut microbiota members including health-promoting Bifidobacterium spp. catabolize dietary mannans. Little insight is available on the enzymology of mannan deconstruction in the gut ecological niche. Here, we report the biochemical properties of the first family 5 subfamily 8 glycoside hydrolase (GH5_8) mannanase from the probiotic bacterium Bifidobacterium animalis subsp. lactis Bl-04 (BlMan5_8). RESULTS: BlMan5_8 possesses a novel low affinity carbohydrate binding module (CBM) specific for soluble mannan and displays the highest catalytic efficiency reported to date for a GH5 mannanase owing to a very high k cat (1828 ± 87 s(-1)) and a low K m (1.58 ± 0.23 g · L(-1)) using locust bean galactomannan as substrate. The novel CBM of BlMan5_8 mediates increased binding to soluble mannan based on affinity electrophoresis. Surface plasmon resonance analysis confirmed the binding of the CBM10 to manno-oligosaccharides, albeit with slightly lower affinity than the catalytic module of the enzyme. This is the first example of a low-affinity mannan-specific CBM, which forms a subfamily of CBM10 together with close homologs present only in mannanases. Members of this new subfamily lack an aromatic residue mediating binding to insoluble cellulose in canonical CBM10 members consistent with the observed low mannan affinity. CONCLUSION: BlMan5_8 is evolved for efficient deconstruction of soluble mannans, which is reflected by an exceptionally low K m and the presence of an atypical low affinity CBM, which increases binding to specifically to soluble mannan while causing minimal decrease in catalytic efficiency as opposed to enzymes with canonical mannan binding modules. These features highlight fine tuning of catalytic and binding properties to support specialization towards a preferred substrate, which is likely to confer an advantage in the adaptation to competitive ecological niches.


Assuntos
Proteínas de Bactérias/metabolismo , Bifidobacterium/enzimologia , Fibras na Dieta/metabolismo , Mananas/metabolismo , Manosidases/metabolismo , Modelos Moleculares , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Sítios de Ligação , Domínio Catalítico , Estabilidade Enzimática , Galactose/análogos & derivados , Humanos , Ligantes , Mananas/química , Manosidases/química , Manosidases/genética , Mutagênese Sítio-Dirigida , Mutação , Filogenia , Conformação Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Solubilidade , Homologia Estrutural de Proteína , Especificidade por Substrato
9.
J Biol Chem ; 288(20): 14624-14635, 2013 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-23558681

RESUMO

The microbial deconstruction of the plant cell wall is a key biological process that is of increasing importance with the development of a sustainable biofuel industry. The glycoside hydrolase families GH5 (PaMan5A) and GH26 (PaMan26A) endo-ß-1,4-mannanases from the coprophilic ascomycete Podospora anserina contribute to the enzymatic degradation of lignocellulosic biomass. In this study, P. anserina mannanases were further subjected to detailed comparative analysis of their substrate specificities, active site organization, and transglycosylation capacity. Although PaMan5A displays a classical mode of action, PaMan26A revealed an atypical hydrolysis pattern with the release of mannotetraose and mannose from mannopentaose resulting from a predominant binding mode involving the -4 subsite. The crystal structures of PaMan5A and PaMan26A were solved at 1.4 and 2.85 Å resolution, respectively. Analysis of the PaMan26A structure supported strong interaction with substrate at the -4 subsite mediated by two aromatic residues Trp-244 and Trp-245. The PaMan26A structure appended to its family 35 carbohydrate binding module revealed a short and proline-rich rigid linker that anchored together the catalytic and the binding modules.


Assuntos
Parede Celular/enzimologia , Glicosídeo Hidrolases/química , Oligossacarídeos/química , Podospora/enzimologia , Catálise , Domínio Catalítico , Glicosídeo Hidrolases/genética , Glicosilação , Hidrólise , Mutagênese , Polissacarídeos/química , Prolina/química , Estrutura Terciária de Proteína , Especificidade por Substrato
10.
Appl Microbiol Biotechnol ; 98(24): 10091-104, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24950755

RESUMO

ß-Mannanases are involved in the conversion and modification of mannan-based saccharides. Using a retaining mechanism, they can, in addition to hydrolysis, also potentially perform transglycosylation reactions, synthesizing new glyco-conjugates. Transglycosylation has been reported for ß-mannanases in GH5 and GH113. However, although they share the same fold and catalytic mechanism, there may be differences in the enzymes' ability to perform transglycosylation. Three GH5 ß-mannanases from Aspergillus nidulans, AnMan5A, AnMan5B and AnMan5C, which belong to subfamily GH5_7 were studied. Comparative studies, including the GH5_7 TrMan5A from Trichoderma reesei, showed some differences between the enzymes. All the enzymes could perform transglycosylation but AnMan5B stood out in generating comparably higher amounts of transglycosylation products when incubated with manno-oligosaccharides. In addition, AnMan5B did not use alcohols as acceptor, which was also different compared to the other three ß-mannanases. In order to map the preferred binding of manno-oligosaccharides, incubations were performed in H2 (18)O. AnMan5B in contrary to the other enzymes did not generate any (18)O-labelled products. This further supported the idea that AnMan5B potentially prefers to use saccharides as acceptor instead of water. A homology model of AnMan5B showed a non-conserved Trp located in subsite +2, not present in the other studied enzymes. Strong aglycone binding seems to be important for transglycosylation with saccharides. Depending on the application, it is important to select the right enzyme.


Assuntos
Aspergillus nidulans/enzimologia , beta-Manosidase/metabolismo , Álcoois/metabolismo , Sequência de Aminoácidos , Modelos Moleculares , Dados de Sequência Molecular , Ligação Proteica , Conformação Proteica , Alinhamento de Sequência , Trichoderma/enzimologia , Água/metabolismo
11.
Appl Environ Microbiol ; 79(1): 133-40, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23064345

RESUMO

The gene encoding ß-mannanase (EC 3.2.1.78) BaMan26A from the bacterium Bifidobacterium adolescentis (living in the human gut) was cloned and the gene product characterized. The enzyme was found to be modular and to contain a putative signal peptide. It possesses a catalytic module of the glycoside hydrolase family 26, a predicted immunoglobulin-like module, and two putative carbohydrate-binding modules (CBMs) of family 23. The enzyme is likely cell attached either by the sortase mechanism (LPXTG motif) or via a C-terminal transmembrane helix. The gene was expressed in Escherichia coli without the native signal peptide or the cell anchor. Two variants were made: one containing all four modules, designated BaMan26A-101K, and one truncated before the CBMs, designated BaMan26A-53K. BaMan26A-101K, which contains the CBMs, showed an affinity to carob galactomannan having a dissociation constant of 0.34 µM (8.8 mg/liter), whereas BaMan26A-53K did not bind, showing that at least one of the putative CBMs of family 23 is mannan binding. For BaMan26A-53K, k(cat) was determined to be 444 s(-1) and K(m) 21.3 g/liter using carob galactomannan as the substrate at the optimal pH of 5.3. Both of the enzyme variants hydrolyzed konjac glucomannan, as well as carob and guar gum galactomannans to a mixture of oligosaccharides. The dominant product from ivory nut mannan was found to be mannotriose. Mannobiose and mannotetraose were produced to a lesser extent, as shown by high-performance anion-exchange chromatography. Mannobiose was not hydrolyzed, and mannotriose was hydrolyzed at a significantly lower rate than the longer oligosaccharides.


Assuntos
Motivos de Aminoácidos , Bifidobacterium/enzimologia , Bifidobacterium/genética , beta-Manosidase/genética , beta-Manosidase/metabolismo , Sequência de Aminoácidos , Animais , Aderência Bacteriana , Sítios de Ligação , Gatos , Clonagem Molecular , Escherichia coli/genética , Galactose/análogos & derivados , Expressão Gênica , Humanos , Hidrólise , Cinética , Mananas/metabolismo , Manose/metabolismo , Dados de Sequência Molecular , Ligação Proteica , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Alinhamento de Sequência
12.
Plant Physiol ; 155(1): 399-413, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21057113

RESUMO

Xyloglucan endo-transglycosylases (XETs) encoded by xyloglucan endo-transglycosylases/hydrolase (XTH) genes modify the xyloglucan-cellulose framework of plant cell walls, thereby regulating their expansion and strength. To evaluate the importance of XET in wood development, we studied xyloglucan dynamics and XTH gene expression in developing wood and modified XET activity in hybrid aspen (Populus tremula × tremuloides) by overexpressing PtxtXET16-34. We show that developmental modifications during xylem differentiation include changes from loosely to tightly bound forms of xyloglucan and increases in the abundance of fucosylated xyloglucan epitope recognized by the CCRC-M1 antibody. We found that at least 16 Populus XTH genes, all likely encoding XETs, are expressed in developing wood. Five genes were highly and ubiquitously expressed, whereas PtxtXET16-34 was expressed more weakly but specifically in developing wood. Transgenic up-regulation of XET activity induced changes in cell wall xyloglucan, but its effects were dependent on developmental stage. For instance, XET overexpression increased abundance of the CCRC-M1 epitope in cambial cells and xylem cells in early stages of differentiation but not in mature xylem. Correspondingly, an increase in tightly bound xyloglucan content was observed in primary-walled xylem but a decrease was seen in secondary-walled xylem. Thus, in young xylem cells, XET activity limits xyloglucan incorporation into the tightly bound wall network but removes it from cell walls in older cells. XET overexpression promoted vessel element growth but not fiber expansion. We suggest that the amount of nascent xyloglucan relative to XET is an important determinant of whether XET strengthens or loosens the cell wall.


Assuntos
Glucanos/metabolismo , Glicosiltransferases/metabolismo , Hibridização Genética , Populus/enzimologia , Populus/crescimento & desenvolvimento , Madeira/enzimologia , Madeira/crescimento & desenvolvimento , Xilanos/metabolismo , Anticorpos Monoclonais/metabolismo , Proliferação de Células , Perfilação da Expressão Gênica , Regulação Enzimológica da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Glicosiltransferases/genética , Dados de Sequência Molecular , Peso Molecular , Família Multigênica/genética , Filogenia , Plantas Geneticamente Modificadas , Polissacarídeos/metabolismo , Populus/citologia , Populus/genética , Coloração e Rotulagem , Madeira/citologia , Madeira/genética , Xilema/citologia , Xilema/enzimologia
13.
PLoS Biol ; 7(3): e71, 2009 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-19338387

RESUMO

Multifunctional proteins, which play a critical role in many biological processes, have typically evolved through the recruitment of different domains that have the required functional diversity. Thus the different activities displayed by these proteins are mediated by spatially distinct domains, consistent with the specific chemical requirements of each activity. Indeed, current evolutionary theory argues that the colocalization of diverse activities within an enzyme is likely to be a rare event, because it would compromise the existing activity of the protein. In contrast to this view, a potential example of multifunctional recruitment into a single protein domain is provided by CtCel5C-CE2, which contains an N-terminal module that displays cellulase activity and a C-terminal module, CtCE2, which exhibits a noncatalytic cellulose-binding function but also shares sequence identity with the CE2 family of esterases. Here we show that, unlike other CE2 members, the CtCE2 domain displays divergent catalytic esterase and noncatalytic carbohydrate binding functions. Intriguingly, these diverse activities are housed within the same site on the protein. Thus, a critical component of the active site of CtCE2, the catalytic Ser-His dyad, in harness with inserted aromatic residues, confers noncatalytic binding to cellulose whilst the active site of the domain retains its esterase activity. CtCE2 catalyses deacetylation of noncellulosic plant structural polysaccharides to deprotect these substrates for attack by other enzymes. Yet it also acts as a cellulose-binding domain, which promotes the activity of the appended cellulase on recalcitrant substrates. The CE2 family encapsulates the requirement for multiple activities by biocatalysts that attack challenging macromolecular substrates, including the grafting of a second, powerful and discrete noncatalytic binding functionality into the active site of an enzyme. This article provides a rare example of "gene sharing," where the introduction of a second functionality into the active site of an enzyme does not compromise the original activity of the biocatalyst.


Assuntos
Carboidratos/química , Domínio Catalítico/fisiologia , Celulase/metabolismo , Celulose/metabolismo , Esterases , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Bacteroides/enzimologia , Catálise , Celulase/química , Celulose/química , Cellvibrio/enzimologia , Esterases/química , Esterases/metabolismo , Modelos Moleculares , Polissacarídeos/química , Polissacarídeos/metabolismo
14.
Microorganisms ; 10(12)2022 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-36557749

RESUMO

ß-Mannan is abundant in the human diet and in hemicellulose derived from softwood. Linear or galactose-substituted ß-mannan-oligosaccharides (MOS/GMOSs) derived from ß-mannan are considered emerging prebiotics that could stimulate health-associated gut microbiota. However, the underlying mechanisms are not yet resolved. Therefore, this study investigated the cross-feeding and metabolic interactions between Bifidobacterium adolescentis ATCC 15703, an acetate producer, and Roseburia hominis A2-183 DSMZ 16839, a butyrate producer, during utilization of MOS/GMOSs. Cocultivation studies suggest that both strains coexist due to differential MOS/GMOS utilization, along with the cross-feeding of acetate from B. adolescentis E194a to R. hominis A2-183. The data suggest that R. hominis A2-183 efficiently utilizes MOS/GMOS in mono- and cocultivation. Notably, we observed the transcriptional upregulation of certain genes within a dedicated MOS/GMOS utilization locus (RhMosUL), and an exo-oligomannosidase (RhMan113A) gene located distally in the R. hominis A2-183 genome. Significantly, biochemical analysis of ß-1,4 mannan-oligosaccharide phosphorylase (RhMOP130A), α-galactosidase (RhGal36A), and exo-oligomannosidase (RhMan113A) suggested their potential synergistic role in the initial utilization of MOS/GMOSs. Thus, our results enhance the understanding of MOS/GMOS utilization by potential health-promoting human gut microbiota and highlight the role of cross-feeding and metabolic interactions between two secondary mannan degraders inhabiting the same ecological niche in the gut.

15.
J Agric Food Chem ; 69(12): 3617-3625, 2021 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-33724030

RESUMO

Effects of xylooligosaccharides (XOSs) as well as a mixture of XOS, inulin, oligofructose, and partially hydrolyzed guar gum (MIX) in mice fed a high-fat diet (HFD) were studied. Control groups were fed an HFD or a low-fat diet. Special attention was paid to the cecal composition of the gut microbiota and formation of short-chain fatty acids, but metabolic parameters were also documented. The XOS group had significantly higher cecum levels of acetic, propionic, and butyric acids than the HFD group, and the butyric acid content was higher in the XOS than in the MIX group. The cecum microbiota of the XOS group contained more Bifidobacteria, Lachnospiraceae, and S24-7 bacteria than the HFD group. A tendency of lower body weight gain was observed on comparing the XOS and HFD groups. In conclusion, the XOS was shown to be a promising prebiotic candidate. The fiber diversity in the MIX diet did not provide any advantages compared to the XOS diet.


Assuntos
Bifidobacterium , Dieta Hiperlipídica , Animais , Ácido Butírico , Dieta Hiperlipídica/efeitos adversos , Ácidos Graxos , Ácidos Graxos Voláteis , Glucuronatos , Camundongos , Oligossacarídeos
16.
Biochemistry ; 49(23): 4884-96, 2010 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-20426480

RESUMO

To date, rational redesign of glycosidase active-site clefts has been mainly limited to the removal of essential functionalities rather than their introduction. The glycoside hydrolase family 26 endo-beta-1,4-mannanase from the soil bacterium Cellulomonas fimi depolymerizes various abundant plant mannans. On the basis of differences in the structures and hydrolytic action patterns of this wild-type (but recombinantly expressed) enzyme and a homologous mannanase from Cellvibrio japonicus, two nonconserved amino acid residues at two distal glycone-binding subsites of the C. fimi enzyme were substituted, Ala323Arg at subsite -2 and Phe325Ala at subsite -3, to achieve inverted mannosyl affinities in the respective subsites, mimicking the Ce. japonicus enzyme that has an Arg providing mannosyl interactions at subsite -2. The X-ray crystal structure of the C. fimi doubly substituted mannanase was determined to 2.35 A resolution and shows that the introduced Arg323 is in a position suitable for hydrogen bonding to mannosyl at subsite -2. We report steady-state enzyme kinetics and hydrolysis-product analyses using anion-exchange chromatography and a novel rapid mass spectrometric profiling method of (18)O-labeled products obtained using H(2)(18)O as a solvent. The results obtained with oligosaccharide substrates show that although the catalytic efficiency (k(cat)/K(m)) is wild-type-like for the engineered enzyme, it has an altered hydrolytic action pattern that stems from promotion of substrate binding at subsite -2 (due to the introduced Arg323) and demotion of it at subsite -3 (to which removal of Phe325 contributed). However, k(cat)/K(m) decreased approximately 1 order of magnitude with polymeric substrates, possibly caused by spatial repositioning of the substrate at subsite -3 and beyond for the engineered enzyme.


Assuntos
Cellulomonas/enzimologia , Manose/genética , Manose/metabolismo , Manosidases/química , Manosidases/metabolismo , Engenharia de Proteínas/métodos , Substituição de Aminoácidos/genética , Sítios de Ligação/genética , Sequência de Carboidratos , Cellulomonas/genética , Cellulomonas/metabolismo , Sequência Conservada , Cristalografia por Raios X , Hidrólise , Manose/química , Manosidases/genética , Mutagênese Sítio-Dirigida , Ligação Proteica/genética , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Especificidade por Substrato
17.
Curr Opin Plant Biol ; 11(3): 338-48, 2008 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-18430603

RESUMO

The recent years have witnessed considerable developments in the interpretation of the three-dimensional structures of plant polysaccharide-degrading enzymes in the context of their functional specificity. A plethora of new structures of catalytic, carbohydrate-binding and protein-scaffolding modules involved in (hemi)cellulose catabolism has emerged in harness with sophisticated biochemical analysis. Despite significant advances, a full understanding of the intricacies of substrate recognition and catalysis by these diverse and specialised enzymes remains an important goal, especially if the application potential of these biocatalysts is to be fully realised.


Assuntos
Metabolismo dos Carboidratos , Parede Celular/metabolismo , Plantas/metabolismo , Polissacarídeos/metabolismo , Parede Celular/química , Modelos Moleculares , Estrutura Molecular , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Plantas/enzimologia , Polissacarídeos/química , Conformação Proteica
18.
BMC Plant Biol ; 10: 274, 2010 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-21156059

RESUMO

BACKGROUND: Alamethicin is a membrane-active peptide isolated from the beneficial root-colonising fungus Trichoderma viride. This peptide can insert into membranes to form voltage-dependent pores. We have previously shown that alamethicin efficiently permeabilises the plasma membrane, mitochondria and plastids of cultured plant cells. In the present investigation, tobacco cells (Nicotiana tabacum L. cv Bright Yellow-2) were pre-treated with elicitors of defence responses to study whether this would affect permeabilisation. RESULTS: Oxygen consumption experiments showed that added cellulase, already upon a limited cell wall digestion, induced a cellular resistance to alamethicin permeabilisation. This effect could not be elicited by xylanase or bacterial elicitors such as flg22 or elf18. The induction of alamethicin resistance was independent of novel protein synthesis. Also, the permeabilisation was unaffected by the membrane-depolarising agent FCCP. As judged by lipid analyses, isolated plasma membranes from cellulase-pretreated tobacco cells contained less negatively charged phospholipids (PS and PI), yet higher ratios of membrane lipid fatty acid to sterol and to protein, as compared to control membranes. CONCLUSION: We suggest that altered membrane lipid composition as induced by cellulase activity may render the cells resistant to alamethicin. This induced resistance could reflect a natural process where the plant cells alter their sensitivity to membrane pore-forming agents secreted by Trichoderma spp. to attack other microorganisms, and thus adding to the beneficial effect that Trichoderma has for plant root growth. Furthermore, our data extends previous reports on artificial membranes on the importance of lipid packing and charge for alamethicin permeabilisation to in vivo conditions.


Assuntos
Alameticina/farmacologia , Membrana Celular/efeitos dos fármacos , Celulase/farmacologia , Resistência a Medicamentos/efeitos dos fármacos , Sequência de Aminoácidos , Carbonil Cianeto p-Trifluormetoxifenil Hidrazona/farmacologia , Catalase/metabolismo , Catalase/farmacologia , Linhagem Celular , Membrana Celular/química , Membrana Celular/ultraestrutura , Celulase/metabolismo , Cicloeximida/farmacologia , Ácidos Graxos/análise , Lipídeos de Membrana/química , Proteínas de Membrana/análise , Microscopia Eletrônica de Transmissão , Dados de Sequência Molecular , Consumo de Oxigênio/efeitos dos fármacos , Inibidores da Síntese de Proteínas/farmacologia , Esteróis/análise , Nicotiana/citologia , Nicotiana/efeitos dos fármacos , Nicotiana/metabolismo , Trichoderma/enzimologia , Trichoderma/metabolismo , Desacopladores/farmacologia
19.
Bioresour Technol ; 295: 122258, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31639625

RESUMO

α-Galactosidases are important industrial enzymes for hemicellulosic biomass degradation or modification. In this study, six novel extracellular α-galactosidases from Penicillium subrubescens were produced in Pichia pastoris and characterized. All α-galactosidases exhibited high affinity to pNPαGal, and only AglE was not active towards galacto-oligomers. Especially AglB and AglD released high amounts of galactose from guar gum, carob galactomannan and locust bean, but combining α-galactosidases with an endomannanase dramatically improved galactose release. Structural comparisons to other α-galactosidases and homology modelling showed high sequence similarities, albeit significant differences in mechanisms of productive binding, including discrimination between various galactosides. To our knowledge, this is the first study of such an extensive repertoire of extracellular fungal α-galactosidases, to demonstrate their potential for degradation of galactomannan-rich biomass. These findings contribute to understanding the differences within glycoside hydrolase families, to facilitate the development of new strategies to generate tailor-made enzymes for new industrial bioprocesses.


Assuntos
Penicillium , alfa-Galactosidase , Biomassa , Hidrólise , Lignina , Especificidade por Substrato
20.
Fungal Genet Biol ; 46 Suppl 1: S161-S169, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19618505

RESUMO

The plant polysaccharide degradative potential of Aspergillus nidulans was analysed in detail and compared to that of Aspergillus niger and Aspergillus oryzae using a combination of bioinformatics, physiology and transcriptomics. Manual verification indicated that 28.4% of the A. nidulans ORFs analysed in this study do not contain a secretion signal, of which 40% may be secreted through a non-classical method.While significant differences were found between the species in the numbers of ORFs assigned to the relevant CAZy families, no significant difference was observed in growth on polysaccharides. Growth differences were observed between the Aspergilli and Podospora anserina, which has a more different genomic potential for polysaccharide degradation, suggesting that large genomic differences are required to cause growth differences on polysaccharides. Differences were also detected between the Aspergilli in the presence of putative regulatory sequences in the promoters of the ORFs of this study and correlation of the presence of putative XlnR binding sites to induction by xylose was detected for A. niger. These data demonstrate differences at genome content, substrate specificity of the enzymes and gene regulation in these three Aspergilli, which likely reflect their individual adaptation to their natural biotope.


Assuntos
Aspergillus nidulans/genética , Aspergillus niger/genética , Aspergillus oryzae/genética , Enzimas/genética , Polissacarídeos/metabolismo , Sequência de Aminoácidos , Aspergillus nidulans/crescimento & desenvolvimento , Aspergillus nidulans/metabolismo , Aspergillus niger/crescimento & desenvolvimento , Aspergillus niger/metabolismo , Aspergillus oryzae/crescimento & desenvolvimento , Aspergillus oryzae/metabolismo , Biologia Computacional , Perfilação da Expressão Gênica , Genes Fúngicos , Genoma , Dados de Sequência Molecular , Fases de Leitura Aberta , Regiões Promotoras Genéticas/genética , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA