Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
Arch Toxicol ; 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38806719

RESUMO

The development of inhaled drugs for respiratory diseases is frequently impacted by lung pathology in non-clinical safety studies. To enable design of novel candidate drugs with the right safety profile, predictive in vitro lung toxicity assays are required that can be applied during drug discovery for early hazard identification and mitigation. Here, we describe a novel high-content imaging-based screening assay that allows for quantification of the tight junction protein occludin in A549 cells, as a model for lung epithelial barrier integrity. We assessed a set of compounds with a known lung safety profile, defined by clinical safety or non-clinical in vivo toxicology data, and were able to correctly identify 9 of 10 compounds with a respiratory safety risk and 9 of 9 compounds without a respiratory safety risk (90% sensitivity, 100% specificity). The assay was sensitive at relevant compound concentrations to influence medicinal chemistry optimization programs and, with an accessible cell model in a 96-well plate format, short protocol and application of automated imaging analysis algorithms, this assay can be readily integrated in routine discovery safety screening to identify and mitigate respiratory toxicity early during drug discovery. Interestingly, when we applied physiologically-based pharmacokinetic (PBPK) modelling to predict epithelial lining fluid exposures of the respiratory tract after inhalation, we found a robust correlation between in vitro occludin assay data and lung pathology in vivo, suggesting the assay can inform translational risk assessment for inhaled small molecules.

2.
Arch Toxicol ; 97(6): 1701-1721, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37046073

RESUMO

Chemically induced steatosis is characterized by lipid accumulation associated with mitochondrial dysfunction, oxidative stress and nucleus distortion. New approach methods integrating in vitro and in silico models are needed to identify chemicals that may induce these cellular events as potential risk factors for steatosis and associated hepatotoxicity. In this study we used high-content imaging for the simultaneous quantification of four cellular markers as sentinels for hepatotoxicity and steatosis in chemically exposed human liver cells in vitro. Furthermore, we evaluated the results with a computational model for the extrapolation of human oral equivalent doses (OED). First, we tested 16 reference chemicals with known capacities to induce cellular alterations in nuclear morphology, lipid accumulation, mitochondrial membrane potential and oxidative stress. Then, using physiologically based pharmacokinetic modeling and reverse dosimetry, OEDs were extrapolated from data of any stimulated individual sentinel response. The extrapolated OEDs were confirmed to be within biologically relevant exposure ranges for the reference chemicals. Next, we tested 14 chemicals found in food, selected from thousands of putative chemicals on the basis of structure-based prediction for nuclear receptor activation. Amongst these, orotic acid had an extrapolated OED overlapping with realistic exposure ranges. Thus, we were able to characterize known steatosis-inducing chemicals as well as data-scarce food-related chemicals, amongst which we confirmed orotic acid to induce hepatotoxicity. This strategy addresses needs of next generation risk assessment and can be used as a first chemical prioritization hazard screening step in a tiered approach to identify chemical risk factors for steatosis and hepatotoxicity-associated events.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Fígado Gorduroso , Humanos , Ácido Orótico , Fígado Gorduroso/induzido quimicamente , Doença Hepática Induzida por Substâncias e Drogas/etiologia , Lipídeos
3.
J Neuroinflammation ; 15(1): 7, 2018 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-29306331

RESUMO

BACKGROUND: Exposure of the developing brain to immune mediators, including antibodies, is postulated to increase risk for neurodevelopmental disorders and neurodegenerative disease. It has been suggested that immunoglobulin G-immune complexes (IgG-IC) activate Fc gamma receptors (FcγR) expressed on neurons to modify signaling events in these cells. However, testing this hypothesis is hindered by a paucity of data regarding neuronal FcγR expression and function. METHODS: FcγR transcript expression in the hippocampus, cortex, and cerebellum of neonatal male and female rats was investigated ex vivo and in mixed cultures of primary hippocampal and cortical neurons and astrocytes using quantitative PCR analyses. Expression at the protein level in mixed cultures of primary hippocampal and cortical neurons and astrocytes was determined by immunocytochemistry, western blotting, proteotype analysis, and flow cytometry. The functionality of these receptors was assessed by measuring changes in intracellular calcium levels, Erk phosphorylation, and IgG internalization following stimulation with IgG-immune complexes. RESULTS: FcgrIa, FcgrIIa, FcgrIIb, FcgrIIIa, and Fcgrt transcripts were detectable in the cortex, hippocampus, and cerebellum at postnatal days 1 and 7. These transcripts were also present in primary hippocampal and cortical cell cultures, where their expression was modulated by IFNγ. Expression of FcγRIa, FcγRIIb, and FcγRIIIa, but not FcγRIIa or FcRn proteins, was confirmed in cultured hippocampal and cortical neurons and astrocytes at the single cell level. A subpopulation of these cells co-expressed the activating FcγRIa and the inhibitory FcγRIIb. Functional analyses demonstrated that exposure of hippocampal and cortical cell cultures to IgG-IC increases intracellular calcium and Erk phosphorylation and triggers FcγR-mediated internalization of IgG. CONCLUSIONS: Our data demonstrate that developing neurons and astrocytes in the hippocampus and the cortex express signaling competent FcγR. These findings suggest that IgG antibodies may influence normal neurodevelopment or function via direct interactions with FcγR on non-immune cells in the brain.


Assuntos
Complexo Antígeno-Anticorpo/metabolismo , Encéfalo/metabolismo , Imunoglobulina G/metabolismo , Receptores de IgG/biossíntese , Transdução de Sinais/fisiologia , Animais , Animais Recém-Nascidos , Encéfalo/citologia , Encéfalo/crescimento & desenvolvimento , Células Cultivadas , Feminino , Expressão Gênica , Masculino , Gravidez , Ratos , Ratos Sprague-Dawley
4.
Chem Res Toxicol ; 31(8): 784-798, 2018 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-29995386

RESUMO

Adverse outcome pathways (AOPs) describe causal relationships between molecular perturbation and adverse cellular effects and are being increasingly adopted for linking in vitro mechanistic toxicology to in vivo data from regulatory toxicity studies. In this work, a case study was performed by developing a bioassay toolbox to assess key events in the recently proposed AOP for chemically induced liver steatosis. The toolbox is comprised of in vitro assays to measure nuclear receptor activation, gene and protein expression, lipid accumulation, mitochondrial respiration, and formation of fatty liver cells. Assay evaluation was performed in human HepaRG hepatocarcinoma cells exposed to the model compound cyproconazole, a fungicide inducing steatosis in rodents. Cyproconazole dose-dependently activated RARα and PXR, two molecular initiating events in the steatosis AOP. Moreover, cyproconazole provoked a disruption of mitochondrial functions and induced triglyceride accumulation and the formation of fatty liver cells as described in the AOP. Gene and protein expression analysis, however, showed expression changes different from those proposed in the AOP, thus suggesting that the current version of the AOP might not fully reflect the complex mechanisms linking nuclear receptor activation and liver steatosis. Our study shows that cyproconazole induces steatosis in human liver cells in vitro and demonstrates the utility of systems-based approaches in the mechanistic assessment of molecular and cellular key events in an AOP. AOP-driven in vitro testing as demonstrated can further improve existing AOPs, provide insight regarding molecular mechanisms of toxicity, and inform predictive risk assessment.


Assuntos
Rotas de Resultados Adversos , Fígado Gorduroso/induzido quimicamente , Fungicidas Industriais/toxicidade , Triazóis/toxicidade , Bioensaio , Linhagem Celular Tumoral , Relação Dose-Resposta a Droga , Fígado Gorduroso/metabolismo , Expressão Gênica , Células HEK293 , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Humanos , Mitocôndrias Hepáticas/efeitos dos fármacos , Modelos Biológicos , Reação em Cadeia da Polimerase , Receptores Citoplasmáticos e Nucleares/metabolismo , Medição de Risco , Triglicerídeos/metabolismo
5.
Drug Metab Dispos ; 42(2): 239-44, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24255117

RESUMO

Cytochrome P450 (P450) enzymes play a critical role in the activation and detoxication of many neurotoxic chemicals. Although research has largely focused on P450-mediated metabolism in the liver, emerging evidence suggests that brain P450s influence neurotoxicity by modulating local metabolite levels. As a first step toward better understanding the relative role of brain P450s in determining neurotoxic outcome, we characterized mRNA expression of specific P450 isoforms in the rodent brain. Adult mice (male and female) and rats (male) were treated with vehicle, phenobarbital, or dexamethasone. Transcripts for CYP2B, CYP3A, CYP1A2, and the orphan CYP4X1 and CYP2S1 were quantified in the liver, hippocampus, cortex, and cerebellum by quantitative (real-time) polymerase chain reaction. These P450s were all detected in the liver with the exception of CYP4X1, which was detected in rat but not mouse liver. P450 expression profiles in the brain varied regionally. With the exception of the hippocampus, there were no sex differences in regional brain P450 expression profiles in mice; however, there were marked species differences. In the liver, phenobarbital induced CYP2B expression in both species. Dexamethasone induced hepatic CYP2B and CYP3A in mice but not rats. In contrast, brain P450s did not respond to these classic hepatic P450 inducers. Our findings demonstrate that P450 mRNA expression in the brain varies by region, regional brain P450 profiles vary between species, and their induction varies from that of hepatic P450s. These novel data will be useful for designing mechanistic studies to examine the relative role of P450-mediated brain metabolism in neurotoxicity.


Assuntos
Encéfalo/enzimologia , Sistema Enzimático do Citocromo P-450/biossíntese , Fígado/enzimologia , RNA Mensageiro/biossíntese , Animais , Encéfalo/efeitos dos fármacos , Sistema Enzimático do Citocromo P-450/genética , Indução Enzimática , Feminino , Isoenzimas , Fígado/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Ratos , Ratos Sprague-Dawley , Fatores Sexuais , Especificidade da Espécie
6.
Nat Genet ; 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38951642

RESUMO

Idiopathic pulmonary fibrosis (IPF) is a progressive lung disease with poor prognosis and limited treatment options. Efforts to identify effective treatments are thwarted by limited understanding of IPF pathogenesis and poor translatability of available preclinical models. Here we generated spatially resolved transcriptome maps of human IPF (n = 4) and bleomycin-induced mouse pulmonary fibrosis (n = 6) to address these limitations. We uncovered distinct fibrotic niches in the IPF lung, characterized by aberrant alveolar epithelial cells in a microenvironment dominated by transforming growth factor beta signaling alongside predicted regulators, such as TP53 and APOE. We also identified a clear divergence between the arrested alveolar regeneration in the IPF fibrotic niches and the active tissue repair in the acutely fibrotic mouse lung. Our study offers in-depth insights into the IPF transcriptional landscape and proposes alveolar regeneration as a promising therapeutic strategy for IPF.

7.
Xenobiotica ; 43(11): 933-47, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23581876

RESUMO

1. Chiral polychlorinated biphenyls (PCBs) such as PCB 136 enantioselectively sensitize the ryanodine receptor (RyR). In light of recent evidence that PCBs cause developmental neurotoxicity via RyR-dependent mechanisms, this suggests that enantioselective PCB metabolism may influence the developmental neurotoxicity of chiral PCBs. However, enantioselective disposition of PCBs has not been fully characterized. 2. The effect of sex and cytochrome P450 (P450) enzyme induction on the enantioselective metabolism of PCB 136 was studied using liver tissue slices prepared from naïve control (CTL), phenobarbital (PB; CYP2B inducer) or dexamethasone (DEX; CYP3A inducer) pretreated adult Sprague-Dawley rats. PCB 136 metabolism was also examined in hippocampal slices derived from untreated rat pups. 3. In liver tissue slices, hydroxylated PCB (OH-PCB) profiles depended on sex and inducer pretreatment, and OH-PCB levels followed the rank orders male > female and PB > DEX > CTL. In contrast, the enantiomeric enrichment of PCB 136 and its metabolites was independent of sex and inducer pretreatment. Only small amounts of PCB 136 partitioned into hippocampal tissue slices and no OH-PCB metabolites were detected. 4. Our results suggest that enantioselective metabolism, sex and induction status of P450 enzymes in the liver may modulate the neurotoxic outcomes of developmental exposure to chiral PCBs.


Assuntos
Dexametasona/farmacologia , Hipocampo/metabolismo , Fígado/metabolismo , Fenobarbital/farmacologia , Bifenilos Policlorados/química , Bifenilos Policlorados/metabolismo , Caracteres Sexuais , Envelhecimento/efeitos dos fármacos , Animais , Animais Recém-Nascidos , Sobrevivência Celular/efeitos dos fármacos , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Feminino , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Hipocampo/citologia , Hipocampo/efeitos dos fármacos , Hipocampo/enzimologia , Hidroxilação/efeitos dos fármacos , Fígado/efeitos dos fármacos , Fígado/enzimologia , Masculino , Ratos , Ratos Sprague-Dawley , Estereoisomerismo , Sobrevivência de Tecidos
8.
Environ Sci Technol ; 46(20): 11393-401, 2012 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-22974126

RESUMO

Epidemiological and laboratory studies link polychlorinated biphenyls and their metabolites to adverse neurodevelopmental outcomes. Several neurotoxic PCB congeners are chiral and undergo enantiomeric enrichment in mammalian species, which may modulate PCB developmental neurotoxicity. This study measures levels and enantiomeric enrichment of PCB 95 and its hydroxylated metabolites (OH-PCBs) in adult female C57Bl/6 mice following subchronic exposure to racemic PCB 95. Tissue levels of PCB 95 and OH-PCBs increased with increasing dose. Dose-dependent enantiomeric enrichment of PCB 95 was observed in brain and other tissues. OH-PCBs also displayed enantiomeric enrichment in blood and liver, but were not detected in adipose and brain. In light of data suggesting enantioselective effects of chiral PCBs on molecular targets linked to PCB developmental neurotoxicity, our observations highlight the importance of accounting for PCB and OH-PCB enantiomeric enrichment in the assessment of PCB developmental neurotoxicity.


Assuntos
Poluentes Ambientais/metabolismo , Bifenilos Policlorados/metabolismo , Animais , Poluentes Ambientais/toxicidade , Feminino , Hidroxilação , Camundongos , Camundongos Endogâmicos C57BL , Bifenilos Policlorados/toxicidade , Estereoisomerismo
9.
Food Chem Toxicol ; 139: 111283, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32201337

RESUMO

Exposure to complex chemical mixtures requires a tiered strategy for efficient mixture risk assessment. As a part of the EuroMix project we developed an adverse outcome pathway (AOP)-based assay toolbox to investigate the combined effects of the liver steatosis-inducing compounds imazalil, thiacloprid, and clothianidin in human HepaRG hepatocarcinoma cells. Compound-specific relative potency factors were determined using a benchmark dose approach. Equipotent mixtures were tested for nuclear receptor activation, gene and protein expression, and triglyceride accumulation, according to the molecular initiating events and key events proposed in the steatosis AOP. All three compounds affected the activity of nuclear receptors, but not key genes/proteins as proposed. Triglyceride accumulation was observed with three different methods. Mixture effects were in agreement with the assumption of dose additivity for all the combinations and endpoints tested. Compound-specific RPFs remained similar over the different endpoints studied downstream the AOP. Therefore, it might be possible to reduce testing to a smaller battery of key tests. The results demonstrate the suitability of our in vitro assay toolbox, integrated within an AOP framework and combined with the RPF approach, for the analysis of steatotic effects of chemical mixtures. However, mRNA results suggest that the steatosis AOP still needs improvement.


Assuntos
Rotas de Resultados Adversos , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Fígado Gorduroso/induzido quimicamente , Praguicidas/toxicidade , Animais , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Expressão Gênica , Células Hep G2 , Humanos , Imidazóis/toxicidade , Fígado/metabolismo , Neoplasias Hepáticas/induzido quimicamente , Receptores Citoplasmáticos e Nucleares , Medição de Risco , Triglicerídeos/metabolismo
10.
Toxicol Sci ; 158(1): 101-115, 2017 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-28431184

RESUMO

Chiral polychlorinated biphenyl (PCB) congeners have been implicated by laboratory and epidemiological studies in PCB developmental neurotoxicity. These congeners are metabolized by cytochrome P450 (P450) enzymes to potentially neurotoxic hydroxylated metabolites (OH-PCBs). The present study explores the enantioselective disposition and toxicity of 2 environmentally relevant, neurotoxic PCB congeners and their OH-PCB metabolites in lactating mice and their offspring following dietary exposure of the dam. Female C57BL/6N mice (8-weeks old) were fed daily, beginning 2 weeks prior to conception and continuing throughout gestation and lactation, with 3.1 µmol/kg bw/d of racemic 2,2',3,5',6-pentachlorobiphenyl (PCB 95) or 2,2',3,3',6,6'-hexachlorobiphenyl (PCB 136) in peanut butter; controls received vehicle (peanut oil) in peanut butter. PCB 95 levels were higher than PCB 136 levels in both dams and pups, consistent with the more rapid metabolism of PCB 136 compared with PCB 95. In pups and dams, both congeners were enriched for the enantiomer eluting second on enantioselective gas chromatography columns. OH-PCB profiles in lactating mice and their offspring were complex and varied according to congener, tissue and age. Developmental exposure to PCB 95 versus PCB 136 differentially affected the expression of P450 enzymes as well as neural plasticity (arc and ppp1r9b) and thyroid hormone-responsive genes (nrgn and mbp). The results suggest that the enantioselective metabolism of PCBs to OH-PCBs may influence neurotoxic outcomes following developmental exposures, a hypothesis that warrants further investigation.


Assuntos
Lactação , Sistema Nervoso/efeitos dos fármacos , Bifenilos Policlorados/farmacocinética , Teratogênicos/toxicidade , Animais , Cromatografia Gasosa , Feminino , Camundongos , Camundongos Endogâmicos C57BL , Bifenilos Policlorados/toxicidade , Estereoisomerismo
11.
Cell Mol Bioeng ; 9(3): 433-442, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27795742

RESUMO

Nanoporous gold (np-Au) is a promising multifunctional material for neural electrodes. We have previously shown that np-Au nanotopography reduces astrocyte surface coverage (linked to undesirable gliosis) while maintaining high neuronal coverage in a cortical primary neuron-glia co-culture model as long as two weeks in vitro. Here, we investigate the potential influence of secreted soluble factors from cells grown on np-Au on the cell type-specific surface coverage of cells grown on conventional tissue culture plastic and test the hypothesis that secretion of factors is responsible for inhibiting astrocyte coverage on np-Au. In order to assess whether factors secreted from cells grown on np-Au surfaces reduced surface coverage by astrocytes, we seeded fresh primary rat neuron-glia co-cultures on conventional polystyrene culture dishes, but maintained the cells in conditioned media from co-cultures grown on np-Au surfaces. After one week in vitro, a preferential reduction in astrocyte surface coverage was not observed, suggesting that soluble factors are not playing a role. In contrast, four hours after cell seeding there were a significant number of non-adhered, yet still viable, cells for the cultures on np-Au surfaces. We hypothesize that the non-adherent cells are mainly astrocytes, because: (i) there was no difference in neuronal cell coverage between np-Au and pl-Au for long culture durations and (ii) neurons are post-mitotic and not expected to increase in number upon attaching to the surface. Overall, the results suggest that the np-Au topography leads to preferential neuronal attachment shortly after cell seeding and limits astrocyte-specific np-Au surface coverage at longer culture durations.

12.
Toxicology ; 338: 59-68, 2015 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-26463278

RESUMO

Polychlorinated biphenyls (PCBs) are metabolized by cytochrome P450 2B enzymes (CYP2B) and nicotine is reported to alter CYP2B activity in the brain and liver. To test the hypothesis that nicotine influences PCB disposition, 2,2',3,5',6-pentachlorobiphenyl (PCB 95) and its metabolites were quantified in tissues of adult male Wistar rats exposed to PCB 95 (6mg/kg/d, p.o.) in the absence or presence of nicotine (1.0mg/kg/d of the tartrate salt, s.c.) for 7 consecutive days. PCB 95 was enantioselectively metabolized to hydroxylated (OH-) PCB metabolites, resulting in a pronounced enrichment of E1-PCB 95 in all tissues investigated. OH-PCBs were detected in blood and liver tissue, but were below the detection limit in adipose, brain and muscle tissues. Co-exposure to nicotine did not change PCB 95 disposition. CYP2B1 mRNA and CYP2B protein were not detected in brain tissues but were detected in liver. Co-exposure to nicotine and PCB 95 increased hepatic CYP2B1 mRNA but did not change CYP2B protein levels relative to vehicle control animals. However, hepatic CYP2B protein in animals co-exposed to PCB 95 and nicotine were reduced compared to animals that received only nicotine. Quantification of CYP2B3, CYP3A2 and CYP1A2 mRNA identified significant effects of nicotine and PCB 95 co-exposure on hepatic CYP3A2 and hippocampal CYP1A2 transcripts. Our findings suggest that nicotine co-exposure does not significantly influence PCB 95 disposition in the rat. However, these studies suggest a novel influence of PCB 95 and nicotine co-exposure on hepatic cytochrome P450 (P450) expression that may warrant further attention due to the increasing use of e-cigarettes and related products.


Assuntos
Sistema Enzimático do Citocromo P-450/metabolismo , Fígado/efeitos dos fármacos , Nicotina/administração & dosagem , Bifenilos Policlorados/metabolismo , Animais , Hidrocarboneto de Aril Hidroxilases/genética , Hidrocarboneto de Aril Hidroxilases/metabolismo , Biotransformação , Encéfalo/efeitos dos fármacos , Encéfalo/enzimologia , Citocromo P-450 CYP1A2 , Citocromo P-450 CYP2B1/genética , Citocromo P-450 CYP2B1/metabolismo , Citocromo P-450 CYP3A/genética , Citocromo P-450 CYP3A/metabolismo , Sistema Enzimático do Citocromo P-450/genética , Família 2 do Citocromo P450 , Citocromos/genética , Citocromos/metabolismo , Regulação Enzimológica da Expressão Gênica , Hidroxilação , Fígado/enzimologia , Masculino , RNA Mensageiro/metabolismo , Ratos Wistar , Especificidade por Substrato , Fatores de Tempo
13.
ACS Appl Mater Interfaces ; 7(13): 7093-100, 2015 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-25706691

RESUMO

Designing neural interfaces that maintain close physical coupling of neurons to an electrode surface remains a major challenge for both implantable and in vitro neural recording electrode arrays. Typically, low-impedance nanostructured electrode coatings rely on chemical cues from pharmaceuticals or surface-immobilized peptides to suppress glial scar tissue formation over the electrode surface (astrogliosis), which is an obstacle to reliable neuron-electrode coupling. Nanoporous gold (np-Au), produced by an alloy corrosion process, is a promising candidate to reduce astrogliosis solely through topography by taking advantage of its tunable length scale. In the present in vitro study on np-Au's interaction with cortical neuron-glia co-cultures, we demonstrate that the nanostructure of np-Au achieves close physical coupling of neurons by maintaining a high neuron-to-astrocyte surface coverage ratio. Atomic layer deposition-based surface modification was employed to decouple the effect of morphology from surface chemistry. Additionally, length scale effects were systematically studied by controlling the characteristic feature size of np-Au through variations in the dealloying conditions. Our results show that np-Au nanotopography, not surface chemistry, reduces astrocyte surface coverage while maintaining high neuronal coverage and may enhance neuron-electrode coupling through nanostructure-mediated suppression of scar tissue formation.


Assuntos
Materiais Revestidos Biocompatíveis/síntese química , Ouro/química , Nanopartículas Metálicas/química , Microeletrodos , Nanoporos/ultraestrutura , Neurônios/fisiologia , Animais , Proliferação de Células/fisiologia , Células Cultivadas , Condutividade Elétrica , Eletrodos Implantados , Desenho de Equipamento , Análise de Falha de Equipamento , Teste de Materiais , Nanopartículas Metálicas/ultraestrutura , Tamanho da Partícula , Ratos
15.
Toxicol Sci ; 138(2): 379-92, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24385416

RESUMO

We recently demonstrated that polychlorinated biphenyl (PCB) congeners with multiple ortho chlorine substitutions sensitize ryanodine receptors (RyRs), and this activity promotes Ca²âº-dependent dendritic growth in cultured neurons. Many ortho-substituted congeners display axial chirality, and we previously reported that the chiral congener PCB 136 (2,2',3,3',6,6'-hexachlorobiphenyl) atropselectively sensitizes RyRs. Here, we test the hypothesis that PCB 136 atropisomers differentially alter dendritic growth and other parameters of neuronal connectivity influenced by RyR activity. (-)-PCB 136, which potently sensitizes RyRs, enhances dendritic growth in primary cultures of rat hippocampal neurons, whereas (+)-PCB 136, which lacks RyR activity, has no effect on dendritic growth. The dendrite-promoting activity of (-)-PCB 136 is observed at concentrations ranging from 0.1 to 100 nM and is blocked by pharmacologic RyR antagonism. Neither atropisomer alters axonal growth or cell viability. Quantification of PCB 136 atropisomers in hippocampal cultures indicates that atropselective effects on dendritic growth are not due to differential partitioning of atropisomers into cultured cells. Imaging of hippocampal neurons loaded with Ca²âº-sensitive dye demonstrates that (-)-PCB 136 but not (+)-PCB 136 increases the frequency of spontaneous Ca²âº oscillations. Similarly, (-)-PCB 136 but not (+)-PCB 136 increases the activity of hippocampal neurons plated on microelectrode arrays. These data support the hypothesis that atropselective effects on RyR activity translate into atropselective effects of PCB 136 atropisomers on neuronal connectivity, and suggest that the variable atropisomeric enrichment of chiral PCBs observed in the human population may be a significant determinant of individual susceptibility for adverse neurodevelopmental outcomes following PCB exposure.


Assuntos
Poluentes Ambientais/toxicidade , Hipocampo/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Bifenilos Policlorados/toxicidade , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Transmissão Sináptica/efeitos dos fármacos , Animais , Animais Recém-Nascidos , Sinalização do Cálcio/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Relação Dose-Resposta a Droga , Cones de Crescimento/efeitos dos fármacos , Hipocampo/metabolismo , Hipocampo/patologia , Hipocampo/fisiopatologia , Microeletrodos , Neurônios/metabolismo , Neurônios/patologia , Bifenilos Policlorados/química , Cultura Primária de Células , Ratos , Ratos Sprague-Dawley , Estereoisomerismo
16.
Neurotoxicol Teratol ; 36: 3-16, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23269408

RESUMO

Evidence implicates environmental factors in the pathogenesis of Autism Spectrum Disorders (ASD). However, the identity of specific environmental chemicals that influence ASD risk, severity or treatment outcome remains elusive. The impact of any given environmental exposure likely varies across a population according to individual genetic substrates, and this increases the difficulty of identifying clear associations between exposure and ASD diagnoses. Heritable genetic vulnerabilities may amplify adverse effects triggered by environmental exposures if genetic and environmental factors converge to dysregulate the same signaling systems at critical times of development. Thus, one strategy for identifying environmental risk factors for ASD is to screen for environmental factors that modulate the same signaling pathways as ASD susceptibility genes. Recent advances in defining the molecular and cellular pathology of ASD point to altered patterns of neuronal connectivity in the developing brain as the neurobiological basis of these disorders. Studies of syndromic ASD and rare highly penetrant mutations or CNVs in ASD suggest that ASD risk genes converge on several major signaling pathways linked to altered neuronal connectivity in the developing brain. This review briefly summarizes the evidence implicating dysfunctional signaling via Ca(2+)-dependent mechanisms, extracellular signal-regulated kinases (ERK)/phosphatidylinositol-3-kinases (PI3K) and neuroligin-neurexin-SHANK as convergent molecular mechanisms in ASD, and then discusses examples of environmental chemicals for which there is emerging evidence of their potential to interfere with normal neuronal connectivity via perturbation of these signaling pathways.


Assuntos
Transtornos Globais do Desenvolvimento Infantil/genética , Interação Gene-Ambiente , Predisposição Genética para Doença/genética , Neurônios/metabolismo , Animais , Criança , Transtornos Globais do Desenvolvimento Infantil/diagnóstico , Transtornos Globais do Desenvolvimento Infantil/epidemiologia , Humanos , Fatores de Risco , Transdução de Sinais/genética , Transdução de Sinais/fisiologia
17.
Rapid Commun Mass Spectrom ; 21(15): 2439-46, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17610244

RESUMO

A new combined doping control screening method for the analysis of anabolic steroids in human urine using liquid chromatography/electrospray ionization orthogonal acceleration time-of-flight mass spectrometry (LCoaTOFMS) and gas chromatography/electron ionization orthogonal acceleration time-of-flight mass spectrometry (GCoaTOFMS) has been developed in order to acquire accurate full scan MS data to be used to detect designer steroids. The developed method allowed the detection of representative prohibited substances, in addition to steroids, at concentrations of 10 ng/mL for anabolic agents and metabolites, 30 ng/mL for corticosteroids, 500 ng/mL for stimulants and beta-blockers, 250 ng/mL for diuretics, and 200 ng/mL for narcotics. Sample preparation was based on liquid-liquid extraction of hydrolyzed human urine, and the final extract was analyzed as trimethylsilylated derivatives in GCoaTOFMS and underivatized in LCoaTOFMS in positive ion mode. The sensitivity, mass accuracy, advantages and limitations of the developed method are presented.


Assuntos
Anabolizantes/urina , Cromatografia Líquida de Alta Pressão/métodos , Drogas Desenhadas/análise , Dopagem Esportivo/prevenção & controle , Cromatografia Gasosa-Espectrometria de Massas/métodos , Espectrometria de Massas por Ionização por Electrospray/métodos , Esteroides/urina , Humanos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA