Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 118
Filtrar
1.
Cell ; 184(13): 3452-3466.e18, 2021 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-34139176

RESUMO

Antibodies against the receptor-binding domain (RBD) of the SARS-CoV-2 spike protein prevent SARS-CoV-2 infection. However, the effects of antibodies against other spike protein domains are largely unknown. Here, we screened a series of anti-spike monoclonal antibodies from coronavirus disease 2019 (COVID-19) patients and found that some of antibodies against the N-terminal domain (NTD) induced the open conformation of RBD and thus enhanced the binding capacity of the spike protein to ACE2 and infectivity of SARS-CoV-2. Mutational analysis revealed that all of the infectivity-enhancing antibodies recognized a specific site on the NTD. Structural analysis demonstrated that all infectivity-enhancing antibodies bound to NTD in a similar manner. The antibodies against this infectivity-enhancing site were detected at high levels in severe patients. Moreover, we identified antibodies against the infectivity-enhancing site in uninfected donors, albeit at a lower frequency. These findings demonstrate that not only neutralizing antibodies but also enhancing antibodies are produced during SARS-CoV-2 infection.


Assuntos
Anticorpos Monoclonais/imunologia , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , SARS-CoV-2/imunologia , Glicoproteína da Espícula de Coronavírus/imunologia , Animais , COVID-19/imunologia , Linhagem Celular , Chlorocebus aethiops , Células HEK293 , Humanos , Ligação Proteica/imunologia , Domínios Proteicos/imunologia , Glicoproteína da Espícula de Coronavírus/genética , Células Vero
2.
Immunity ; 56(8): 1939-1954.e12, 2023 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-37442134

RESUMO

Lung infection during severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) via the angiotensin-I-converting enzyme 2 (ACE2) receptor induces a cytokine storm. However, the precise mechanisms involved in severe COVID-19 pneumonia are unknown. Here, we showed that interleukin-10 (IL-10) induced the expression of ACE2 in normal alveolar macrophages, causing them to become vectors for SARS-CoV-2. The inhibition of this system in hamster models attenuated SARS-CoV-2 pathogenicity. Genome-wide association and quantitative trait locus analyses identified a IFNAR2-IL10RB readthrough transcript, COVID-19 infectivity-enhancing dual receptor (CiDRE), which was highly expressed in patients harboring COVID-19 risk variants at the IFNAR2 locus. We showed that CiDRE exerted synergistic effects via the IL-10-ACE2 axis in alveolar macrophages and functioned as a decoy receptor for type I interferons. Collectively, our data show that high IL-10 and CiDRE expression are potential risk factors for severe COVID-19. Thus, IL-10R and CiDRE inhibitors might be useful COVID-19 therapies.


Assuntos
COVID-19 , Humanos , COVID-19/genética , SARS-CoV-2 , Enzima de Conversão de Angiotensina 2/genética , Interleucina-10/genética , Macrófagos Alveolares/metabolismo , Estudo de Associação Genômica Ampla , Peptidil Dipeptidase A/metabolismo
3.
Cell ; 161(5): 1058-1073, 2015 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-26000482

RESUMO

Regnase-1 and Roquin are RNA binding proteins essential for degradation of inflammation-related mRNAs and maintenance of immune homeostasis. However, their mechanistic relationship has yet to be clarified. Here, we show that, although Regnase-1 and Roquin regulate an overlapping set of mRNAs via a common stem-loop structure, they function in distinct subcellular locations: ribosome/endoplasmic reticulum and processing-body/stress granules, respectively. Moreover, Regnase-1 specifically cleaves and degrades translationally active mRNAs and requires the helicase activity of UPF1, similar to the decay mechanisms of nonsense mRNAs. In contrast, Roquin controls translationally inactive mRNAs, independent of UPF1. Defects in both Regnase-1 and Roquin lead to large increases in their target mRNAs, although Regnase-1 tends to control the early phase of inflammation when mRNAs are more actively translated. Our findings reveal that differential regulation of mRNAs by Regnase-1 and Roquin depends on their translation status and enables elaborate control of inflammation.


Assuntos
Inflamação/metabolismo , Estabilidade de RNA , RNA Mensageiro/metabolismo , Ribonucleases/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Animais , Sequência de Bases , Códon de Terminação , Células HeLa , Humanos , Inflamação/genética , Inflamação/imunologia , Camundongos , Dados de Sequência Molecular , Células NIH 3T3 , Conformação de Ácido Nucleico , Polirribossomos/metabolismo , Biossíntese de Proteínas , RNA Mensageiro/química , Proteínas Ribossômicas/metabolismo , Transativadores/metabolismo
4.
Nat Immunol ; 18(8): 899-910, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28604719

RESUMO

Mammalian autophagy-related 8 (Atg8) homologs consist of LC3 proteins and GABARAPs, all of which are known to be involved in canonical autophagy. In contrast, the roles of Atg8 homologs in noncanonical autophagic processes are not fully understood. Here we show a unique role of GABARAPs, in particular gamma-aminobutyric acid (GABA)-A-receptor-associated protein-like 2 (Gabarapl2; also known as Gate-16), in interferon-γ (IFN-γ)-mediated antimicrobial responses. Cells that lacked GABARAPs but not LC3 proteins and mice that lacked Gate-16 alone were defective in the IFN-γ-induced clearance of vacuolar pathogens such as Toxoplasma. Gate-16 but not LC3b specifically associated with the small GTPase ADP-ribosylation factor 1 (Arf1) to mediate uniform distribution of interferon-inducible GTPases. The lack of GABARAPs reduced Arf1 activation, which led to formation of interferon-inducible GTPase-containing aggregates and hampered recruitment of interferon-inducible GTPases to vacuolar pathogens. Thus, GABARAPs are uniquely required for antimicrobial host defense through cytosolic distribution of interferon-inducible GTPases.


Assuntos
Fator 1 de Ribosilação do ADP/imunologia , Autofagia/imunologia , Proteínas de Transporte/imunologia , Interferon gama/imunologia , Proteínas Associadas aos Microtúbulos/imunologia , Toxoplasma/imunologia , Toxoplasmose/imunologia , Fator 1 de Ribosilação do ADP/metabolismo , Animais , Proteínas Reguladoras de Apoptose , Família da Proteína 8 Relacionada à Autofagia , Sistemas CRISPR-Cas , Proteínas de Transporte/metabolismo , Simulação por Computador , Proteínas do Citoesqueleto/imunologia , Proteínas do Citoesqueleto/metabolismo , Ensaio de Imunoadsorção Enzimática , Citometria de Fluxo , Imunofluorescência , GTP Fosfo-Hidrolases/imunologia , GTP Fosfo-Hidrolases/metabolismo , Edição de Genes , Immunoblotting , Imunoprecipitação , Interferon gama/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular , Proteínas de Membrana/imunologia , Proteínas de Membrana/metabolismo , Camundongos , Proteínas Associadas aos Microtúbulos/metabolismo
5.
Immunity ; 52(3): 542-556.e13, 2020 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-32187520

RESUMO

Fibrosis is an incurable disorder of unknown etiology. Segregated-nucleus-containing atypical monocytes (SatMs) are critical for the development of fibrosis. Here we examined the mechanisms that recruit SatMs to pre-fibrotic areas. A screen based on cytokine expression in the fibrotic lung revealed that the chemokine Cxcl12, which is produced by apoptotic nonhematopoietic cells, was essential for SatM recruitment. Analyses of lung tissues at fibrosis onset showed increased expression of Rbm7, a component of the nuclear exosome targeting complex. Rbm7 deletion suppressed bleomycin-induced fibrosis and at a cellular level, suppressed apoptosis of nonhematopoietic cells. Mechanistically, Rbm7 bound to noncoding (nc)RNAs that form subnuclear bodies, including Neat1 speckles. Dysregulated expression of Rbm7 resulted in the nuclear degradation of Neat1 speckles, the dispersion of the DNA repair protein BRCA1, and the triggering of apoptosis. Thus, Rbm7 in epithelial cells plays a critical role in the development of fibrosis by regulating ncRNA decay and thereby the production of chemokines that recruit SatMs.


Assuntos
Apoptose/imunologia , Núcleo Celular/imunologia , Exossomos/imunologia , Fibrose Pulmonar/imunologia , Proteínas de Ligação a RNA/imunologia , Animais , Apoptose/genética , Núcleo Celular/genética , Núcleo Celular/metabolismo , Quimiocina CXCL12/imunologia , Quimiocina CXCL12/metabolismo , Exossomos/genética , Exossomos/metabolismo , Regulação da Expressão Gênica/imunologia , Células HEK293 , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Monócitos/imunologia , Monócitos/metabolismo , Células NIH 3T3 , Fibrose Pulmonar/genética , Fibrose Pulmonar/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo
6.
Cell ; 153(5): 1036-49, 2013 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-23706741

RESUMO

Regnase-1 (also known as Zc3h12a and MCPIP1) is an RNase that destabilizes a set of mRNAs, including Il6 and Il12b, through cleavage of their 3' UTRs. Although Regnase-1 inactivation leads to development of an autoimmune disease characterized by T cell activation and hyperimmunoglobulinemia in mice, the mechanism of Regnase-1-mediated immune regulation has remained unclear. We show that Regnase-1 is essential for preventing aberrant effector CD4(+) T cell generation cell autonomously. Moreover, in T cells, Regnase-1 regulates the mRNAs of a set of genes, including c-Rel, Ox40, and Il2, through cleavage of their 3' UTRs. Interestingly, T cell receptor (TCR) stimulation leads to cleavage of Regnase-1 at R111 by Malt1/paracaspase, freeing T cells from Regnase-1-mediated suppression. Furthermore, Malt1 protease activity is critical for controlling the mRNA stability of T cell effector genes. Collectively, these results indicate that dynamic control of Regnase-1 expression in T cells is critical for controlling T cell activation.


Assuntos
Caspases/metabolismo , Ativação Linfocitária , Proteínas de Neoplasias/metabolismo , Ribonucleases/metabolismo , Linfócitos T Auxiliares-Indutores/imunologia , Animais , Doenças Autoimunes/imunologia , Humanos , Interleucina-2/genética , Células Jurkat , Glicoproteínas de Membrana/genética , Camundongos , Proteína de Translocação 1 do Linfoma de Tecido Linfoide Associado à Mucosa , Ligante OX40 , Proteínas Proto-Oncogênicas c-rel/genética , Receptores de Antígenos de Linfócitos T/metabolismo , Linfócitos T Auxiliares-Indutores/metabolismo , Fatores de Necrose Tumoral/genética
7.
Blood ; 143(3): 243-257, 2024 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-37922454

RESUMO

ABSTRACT: Regulation of lineage biases in hematopoietic stem and progenitor cells (HSPCs) is pivotal for balanced hematopoietic output. However, little is known about the mechanism behind lineage choice in HSPCs. Here, we show that messenger RNA (mRNA) decay factors regnase-1 (Reg1; Zc3h12a) and regnase-3 (Reg3; Zc3h12c) are essential for determining lymphoid fate and restricting myeloid differentiation in HSPCs. Loss of Reg1 and Reg3 resulted in severe impairment of lymphopoiesis and a mild increase in myelopoiesis in the bone marrow. Single-cell RNA sequencing analysis revealed that Reg1 and Reg3 regulate lineage directions in HSPCs via the control of a set of myeloid-related genes. Reg1- and Reg3-mediated control of mRNA encoding Nfkbiz, a transcriptional and epigenetic regulator, was essential for balancing lymphoid/myeloid lineage output in HSPCs in vivo. Furthermore, single-cell assay for transposase-accessible chromatin sequencing analysis revealed that Reg1 and Reg3 control the epigenetic landscape on myeloid-related gene loci in early stage HSPCs via Nfkbiz. Consistently, an antisense oligonucleotide designed to inhibit Reg1- and Reg3-mediated Nfkbiz mRNA degradation primed hematopoietic stem cells toward myeloid lineages by enhancing Nfkbiz expression. Collectively, the collaboration between posttranscriptional control and chromatin remodeling by the Reg1/Reg3-Nfkbiz axis governs HSPC lineage biases, ultimately dictating the fate of lymphoid vs myeloid differentiation.


Assuntos
Medula Óssea , Células-Tronco Hematopoéticas , Linhagem da Célula/genética , Células-Tronco Hematopoéticas/metabolismo , Medula Óssea/metabolismo , Hematopoese/genética , RNA Mensageiro/metabolismo , Diferenciação Celular/genética
8.
Proc Natl Acad Sci U S A ; 120(40): e2214636120, 2023 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-37769257

RESUMO

Many mammalian proteins have circadian cycles of production and degradation, and many of these rhythms are altered posttranscriptionally. We used ribosome profiling to examine posttranscriptional control of circadian rhythms by quantifying RNA translation in the liver over a 24-h period from circadian-entrained mice transferred to constant darkness conditions and by comparing ribosome binding levels to protein levels for 16 circadian proteins. We observed large differences in ribosome binding levels compared to protein levels, and we observed delays between peak ribosome binding and peak protein abundance. We found extensive binding of ribosomes to upstream open reading frames (uORFs) in circadian mRNAs, including the core clock gene Period2 (Per2). An increase in the number of uORFs in the 5'UTR was associated with a decrease in ribosome binding in the main coding sequence and a reduction in expression of synthetic reporter constructs. Mutation of the Per2 uORF increased luciferase and fluorescence reporter expression in 3T3 cells and increased luciferase expression in PER2:LUC MEF cells. Mutation of the Per2 uORF in mice increased Per2 mRNA expression, enhanced ribosome binding on Per2, and reduced total sleep time compared to that in wild-type mice. These results suggest that uORFs affect mRNA posttranscriptionally, which can impact physiological rhythms and sleep.


Assuntos
Ritmo Circadiano , Perfil de Ribossomos , Sono , Animais , Camundongos , Ritmo Circadiano/genética , Luciferases/genética , Fases de Leitura Aberta/genética , RNA Mensageiro/genética , Sono/genética , Proteínas Circadianas Period/genética
9.
Genes Cells ; 29(1): 17-38, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37984375

RESUMO

Irgb6 is a priming immune-related GTPase (IRG) that counteracts Toxoplasma gondii. It is known to be recruited to the low virulent type II T. gondii parasitophorous vacuole (PV), initiating cell-autonomous immunity. However, the molecular mechanism by which immunity-related GTPases become inactivated after the parasite infection remains obscure. Here, we found that Thr95 of Irgb6 is prominently phosphorylated in response to low virulent type II T. gondii infection. We observed that a phosphomimetic T95D mutation in Irgb6 impaired its localization to the PV and exhibited reduced GTPase activity in vitro. Structural analysis unveiled an atypical conformation of nucleotide-free Irgb6-T95D, resulting from a conformational change in the G-domain that allosterically modified the PV membrane-binding interface. In silico docking corroborated the disruption of the physiological membrane binding site. These findings provide novel insights into a T. gondii-induced allosteric inactivation mechanism of Irgb6.


Assuntos
Toxoplasma , Toxoplasma/metabolismo , Fosforilação , GTP Fosfo-Hidrolases/genética , GTP Fosfo-Hidrolases/metabolismo , Vacúolos/metabolismo
10.
Proc Natl Acad Sci U S A ; 118(22)2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-34035171

RESUMO

Immunoevasins are viral proteins that prevent antigen presentation on major histocompatibility complex (MHC) class I, thus evading host immune recognition. Hepatitis C virus (HCV) evades immune surveillance to induce chronic infection; however, how HCV-infected hepatocytes affect immune cells and evade immune recognition remains unclear. Herein, we demonstrate that HCV core protein functions as an immunoevasin. Its expression interfered with the maturation of MHC class I molecules catalyzed by the signal peptide peptidase (SPP) and induced their degradation via HMG-CoA reductase degradation 1 homolog, thereby impairing antigen presentation to CD8+ T cells. The expression of MHC class I in the livers of HCV core transgenic mice and chronic hepatitis C patients was impaired but was restored in patients achieving sustained virological response. Finally, we show that the human cytomegalovirus US2 protein, possessing a transmembrane region structurally similar to the HCV core protein, targets SPP to impair MHC class I molecule expression. Thus, SPP represents a potential target for the impairment of MHC class I molecules by DNA and RNA viruses.


Assuntos
Ácido Aspártico Endopeptidases/metabolismo , Hepacivirus/fisiologia , Evasão da Resposta Imune/fisiologia , Animais , Apresentação de Antígeno/imunologia , Linhagem Celular , Regulação para Baixo , Hepacivirus/imunologia , Antígenos de Histocompatibilidade Classe I/imunologia , Humanos , Camundongos , Proteínas do Core Viral/fisiologia
11.
Proteins ; 91(2): 171-182, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36088633

RESUMO

Antibodies are key proteins produced by the immune system to target pathogen proteins termed antigens via specific binding to surface regions called epitopes. Given an antigen and the sequence of an antibody the knowledge of the epitope is critical for the discovery and development of antibody based therapeutics. In this work, we present a computational protocol that uses template-based modeling and docking to predict epitope residues. This protocol is implemented in three major steps. First, a template-based modeling approach is used to build the antibody structures. We tested several options, including generation of models using AlphaFold2. Second, each antibody model is docked to the antigen using the fast Fourier transform (FFT) based docking program PIPER. Attention is given to optimally selecting the docking energy parameters depending on the input data. In particular, the van der Waals energy terms are reduced for modeled antibodies relative to x-ray structures. Finally, ranking of antigen surface residues is produced. The ranking relies on the docking results, that is, how often the residue appears in the docking poses' interface, and also on the energy favorability of the docking pose in question. The method, called PIPER-Map, has been tested on a widely used antibody-antigen docking benchmark. The results show that PIPER-Map improves upon the existing epitope prediction methods. An interesting observation is that epitope prediction accuracy starting from antibody sequence alone does not significantly differ from that of starting from unbound (i.e., separately crystallized) antibody structure.


Assuntos
Anticorpos , Antígenos , Epitopos/metabolismo , Anticorpos/química , Antígenos/química , Simulação de Dinâmica Molecular , Proteínas/química , Ligação Proteica
12.
BMC Genomics ; 24(1): 184, 2023 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-37024794

RESUMO

BACKGROUND: In-depth knowledge of the cellular and molecular composition of dental pulp (DP) and the crosstalk between DP cells that drive tissue homeostasis are not well understood. To address these questions, we performed a comparative analysis of publicly available single-cell transcriptomes of healthy adult human DP to 5 other reference tissues: peripheral blood mononuclear cells, bone marrow, adipose tissue, lung, and skin. RESULTS: Our analysis revealed that DP resident cells have a unique gene expression profile when compared to the reference tissues, and that DP fibroblasts are the main cell type contributing to this expression profile. Genes coding for pleiotrophin (PTN) and midkine (MDK), homologous heparin-binding growth-factors, possessed the highest differential expression levels in DP fibroblasts. In addition, we identified extensive crosstalk between DP fibroblasts and several other DP resident cells, including Schwann cells, mesenchymal stem cells and odontoblasts, mediated by PTN and MDK. CONCLUSIONS: DP fibroblasts emerge as unappreciated players in DP homeostasis, mainly through their crosstalk with glial cells. These findings suggest that fibroblast-derived growth factors possess major regulatory functions and thus have a potential role as dental therapeutic targets.


Assuntos
Polpa Dentária , Leucócitos Mononucleares , Adulto , Humanos , Midkina , Polpa Dentária/metabolismo , Leucócitos Mononucleares/metabolismo , Citocinas/genética , Fatores de Crescimento de Fibroblastos , Heparina/metabolismo
13.
Nat Immunol ; 12(12): 1167-75, 2011 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-22037600

RESUMO

Toll-like receptor (TLR) signaling activates the inhibitor of transcription factor NF-κB (IκB) kinase (IKK) complex, which governs NF-κB-mediated transcription during inflammation. The RNase regnase-1 serves a critical role in preventing autoimmunity by controlling the stability of mRNAs that encode cytokines. Here we show that the IKK complex controlled the stability of mRNA for interleukin 6 (IL-6) by phosphorylating regnase-1 in response to stimulation via the IL-1 receptor (IL-1R) or TLR. Phosphorylated regnase-1 underwent ubiquitination and degradation. Regnase-1 was reexpressed in IL-1R- or TLR-activated cells after a period of lower expression. Regnase-1 mRNA was negatively regulated by regnase-1 itself via a stem-loop region present in the regnase-1 3' untranslated region. Our data demonstrate that the IKK complex phosphorylates not only IκBα, thereby activating transcription, but also regnase-1, thereby releasing a 'brake' on IL-6 mRNA expression.


Assuntos
Citocinas/genética , Quinase I-kappa B/metabolismo , Estabilidade de RNA , RNA Mensageiro/metabolismo , Receptores de Interleucina-1/metabolismo , Ribonucleases/metabolismo , Receptores Toll-Like/metabolismo , Motivos de Aminoácidos , Animais , Linhagem Celular Tumoral , Regulação da Expressão Gênica , Células HEK293 , Células HeLa , Humanos , Quinases Associadas a Receptores de Interleucina-1/metabolismo , Interleucina-6/genética , Camundongos , Camundongos Knockout , Modelos Biológicos , Ligação Proteica
14.
Chembiochem ; 23(18): e202200303, 2022 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-35893479

RESUMO

Antibodies recognize their cognate antigens with high affinity and specificity, but the prediction of binding sites on the antigen (epitope) corresponding to a specific antibody remains a challenging problem. To address this problem, we developed AbAdapt, a pipeline that integrates antibody and antigen structural modeling with rigid docking in order to derive antibody-antigen specific features for epitope prediction. In this study, we systematically assessed the impact of integrating the state-of-the-art protein modeling method AlphaFold with the AbAdapt pipeline. By incorporating more accurate antibody models, we observed improvement in docking, paratope prediction, and prediction of antibody-specific epitopes. We further applied AbAdapt-AF in an anti-receptor binding domain (RBD) antibody complex benchmark and found AbAdapt-AF outperformed three alternative docking methods. Also, AbAdapt-AF demonstrated higher epitope prediction accuracy than other tested epitope prediction tools in the anti-RBD antibody complex benchmark. We anticipate that AbAdapt-AF will facilitate prediction of antigen-antibody interactions in a wide range of applications.


Assuntos
Anticorpos , Antígenos , Especificidade de Anticorpos , Sítios de Ligação de Anticorpos , Epitopos/química
15.
PLoS Pathog ; 16(6): e1008308, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32574204

RESUMO

One of the determinants for tissue tropism of hepatitis C virus (HCV) is miR-122, a liver-specific microRNA. Recently, it has been reported that interaction of miR-122 to HCV RNA induces a conformational change of the 5'UTR internal ribosome entry site (IRES) structure to form stem-loop II structure (SLII) and hijack of translating 80S ribosome through the binding of SLIII to 40S subunit, which leads to efficient translation. On the other hand, low levels of HCV-RNA replication have also been detected in some non-hepatic cells; however, the details of extrahepatic replication remain unknown. These observations suggest the possibility that miRNAs other than miR-122 can support efficient replication of HCV-RNA in non-hepatic cells. Here, we identified a number of such miRNAs and show that they could be divided into two groups: those that bind HCV-RNA at two locations (miR-122 binding sites I and II), in a manner similar to miR-122 (miR-122-like), and those that target a single site that bridges sites I and II and masking both G28 and C29 in the 5'UTR (non-miR-122-like). Although the enhancing activity of these non-hepatic miRNAs were lower than those of miR-122, substantial expression was detected in various normal tissues. Furthermore, structural modeling indicated that both miR-122-like and non-miR-122-like miRNAs not only can facilitate the formation of an HCV IRES SLII but also can stabilize IRES 3D structure in order to facilitate binding of SLIII to the ribosome. Together, these results suggest that HCV facilitates miR-122-independent replication in non-hepatic cells through recruitment of miRNAs other than miR-122. And our findings can provide a more detailed mechanism of miR-122-dependent enhancement of HCV-RNA translation by focusing on IRES tertiary structure.


Assuntos
Regulação Viral da Expressão Gênica , Hepacivirus/fisiologia , MicroRNAs/metabolismo , Biossíntese de Proteínas , RNA Viral , Proteínas Virais/biossíntese , Replicação Viral/fisiologia , Regiões 5' não Traduzidas , Linhagem Celular Tumoral , Humanos , MicroRNAs/genética , RNA Viral/biossíntese , RNA Viral/genética , Proteínas Virais/genética
16.
Nat Immunol ; 11(10): 936-44, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20729857

RESUMO

Polarization of macrophages to M1 or M2 cells is important for mounting responses against bacterial and helminth infections, respectively. Jumonji domain containing-3 (Jmjd3), a histone 3 Lys27 (H3K27) demethylase, has been implicated in the activation of macrophages. Here we show that Jmjd3 is essential for M2 macrophage polarization in response to helminth infection and chitin, though Jmjd3 is dispensable for M1 responses. Furthermore, Jmjd3 (also known as Kdm6b) is essential for proper bone marrow macrophage differentiation, and this function depends on demethylase activity of Jmjd3. Jmjd3 deficiency affected trimethylation of H3K27 in only a limited number of genes. Among them, we identified Irf4 as encoding a key transcription factor that controls M2 macrophage polarization. Collectively, these results show that Jmjd3-mediated H3K27 demethylation is crucial for regulating M2 macrophage development leading to anti-helminth host responses.


Assuntos
Fatores Reguladores de Interferon/imunologia , Histona Desmetilases com o Domínio Jumonji/imunologia , Ativação de Macrófagos/imunologia , Macrófagos Alveolares/imunologia , Macrófagos/imunologia , Nippostrongylus/imunologia , Infecções por Strongylida/imunologia , Animais , Diferenciação Celular , Polaridade Celular , Quitina/imunologia , Regulação Enzimológica da Expressão Gênica , Histona Desmetilases/metabolismo , Interações Hospedeiro-Parasita/imunologia , Fatores Reguladores de Interferon/genética , Histona Desmetilases com o Domínio Jumonji/genética , Macrófagos/citologia , Metilação , Camundongos , Camundongos Knockout
17.
Phys Chem Chem Phys ; 24(35): 21178-21187, 2022 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-36039911

RESUMO

We present a new water-dependent molecular mechanism for the widely-used protein stabilizing osmolyte, trimethylamine N-oxide (TMAO), whose mode of action has remained controversial. Classical interpretations, such as osmolyte exclusion from the vicinity of protein, cannot adequately explain the behavior of this osmolyte and were challenged by recent data showing the direct interactions of TMAO with proteins, mainly via hydrophobic binding. Solvent effect theories also fail to propose a straightforward mechanism. To explore the role of water and the hydrophobic association, we disabled osmolyte-protein hydrophobic interactions by replacing water with hexane and using lipase enzyme as an anhydrous-stable protein. Biocatalysis experiments showed that under this non-aqueous condition, TMAO does not act as a stabilizer, but strongly deactivates the enzyme. Molecular dynamics (MD) simulations reveal that TMAO accumulates near the enzyme and makes many hydrogen bonds with it, like denaturing osmolytes. Some TMAO molecules even reach the active site and interact strongly with the catalystic traid. In aqueous solvent, the enzyme functions well: the extent of TMAO interactions is reduced and can be divided into both polar and non-polar terms. Structural analysis shows that in water, some TMAO molecules bind to the enzyme surface like a surfactant. We show that these interactions limit water-protein hydrogen bonds and unfavorable water-hydrophobic surface contacts. Moreover, a more hydrophobic environment is formed in the solvation layer, which reduces water dynamics and subsequently, rigidifies the backbone in aqueous solution. We show that osmolyte amphiphilicity and protein surface heterogeneity can address the weaknesses of exclusion and solvent effect theories about the TMAO mechanism.


Assuntos
Metilaminas , Proteínas , Interações Hidrofóbicas e Hidrofílicas , Metilaminas/química , Proteínas/química , Solventes/química , Ureia/química , Água/química
18.
Nucleic Acids Res ; 47(W1): W5-W10, 2019 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-31062021

RESUMO

Here, we describe a web server that integrates structural alignments with the MAFFT multiple sequence alignment (MSA) tool. For this purpose, we have prepared a web-based Database of Aligned Structural Homologs (DASH), which provides structural alignments at the domain and chain levels for all proteins in the Protein Data Bank (PDB), and can be queried interactively or by a simple REST-like API. MAFFT-DASH integration can be invoked with a single flag on either the web (https://mafft.cbrc.jp/alignment/server/) or command-line versions of MAFFT. In our benchmarks using 878 cases from the BAliBase, HomFam, OXFam, Mattbench and SISYPHUS datasets, MAFFT-DASH showed 10-20% improvement over standard MAFFT for MSA problems with weak similarity, in terms of Sum-of-Pairs (SP), a measure of how well a program succeeds at aligning input sequences in comparison to a reference alignment. When MAFFT alignments were supplemented with homologous sequences, further improvement was observed. Potential applications of DASH beyond MSA enrichment include functional annotation through detection of remote homology and assembly of template libraries for homology modeling.


Assuntos
Sequência de Aminoácidos/genética , Proteínas/genética , Alinhamento de Sequência/métodos , Software , Algoritmos , Bases de Dados de Proteínas , Humanos , Análise de Sequência de Proteína/métodos , Análise de Sequência de RNA , Homologia de Sequência
19.
Nucleic Acids Res ; 47(16): 8838-8859, 2019 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-31329944

RESUMO

Regnase-1-mediated mRNA decay (RMD), in which inflammatory mRNAs harboring specific stem-loop structures are degraded, is a critical part of proper immune homeostasis. Prior to initial translation, Regnase-1 associates with target stem-loops but does not carry out endoribonucleolytic cleavage. Single molecule imaging revealed that UPF1 is required to first unwind the stem-loops, thus licensing Regnase-1 to proceed with RNA degradation. Following translation, Regnase-1 physically associates with UPF1 using two distinct points of interaction: The Regnase-1 RNase domain binds to SMG1-phosphorylated residue T28 in UPF1; in addition, an intrinsically disordered segment in Regnase-1 binds to the UPF1 RecA domain, enhancing the helicase activity of UPF1. The SMG1-UPF1-Regnase-1 axis targets pioneer rounds of translation and is critical for rapid resolution of inflammation through restriction of the number of proteins translated by a given mRNA. Furthermore, small-molecule inhibition of SMG1 prevents RNA unwinding in dendritic cells, allowing post-transcriptional control of innate immune responses.


Assuntos
Macrófagos Peritoneais/imunologia , Degradação do RNAm Mediada por Códon sem Sentido/imunologia , Proteínas Serina-Treonina Quinases/genética , RNA Mensageiro/genética , Ribonucleases/genética , Transativadores/genética , Animais , Fibroblastos/citologia , Fibroblastos/imunologia , Células HEK293 , Células HeLa , Homeostase/genética , Homeostase/imunologia , Humanos , Imunidade Inata , Inflamação , Sequências Repetidas Invertidas , Macrófagos/citologia , Macrófagos/imunologia , Macrófagos Peritoneais/citologia , Camundongos , Camundongos Knockout , Mutação , Cultura Primária de Células , Ligação Proteica , Biossíntese de Proteínas , Domínios e Motivos de Interação entre Proteínas , Proteínas Serina-Treonina Quinases/imunologia , RNA Mensageiro/metabolismo , Ribonucleases/deficiência , Ribonucleases/imunologia , Imagem Individual de Molécula , Transativadores/imunologia
20.
Appl Microbiol Biotechnol ; 104(7): 2897-2909, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32060695

RESUMO

Alcohol dehydrogenases (ADHs) catalyze the reversible reduction of a carbonyl group to its corresponding alcohol. ADHs are widely employed for organic synthesis due to their lack of harm to the environment, broad substrate acceptance, and high enantioselectivity. This review focuses on the impact and relevance of ADH enantioselectivities on their biotechnological application. Stereoselective ADHs are beneficial to reduce challenging ketones such as ketones owning two bulky substituents or similar-sized substituents to the carbonyl carbon. Meanwhile, in cascade reactions, non-stereoselective ADHs can be utilized for the quantitative oxidation of racemic alcohol to ketone and dynamic kinetic resolution.


Assuntos
Álcool Desidrogenase/química , Álcool Desidrogenase/metabolismo , Biotecnologia , Álcoois/química , Álcoois/metabolismo , Catálise , Cetonas/metabolismo , Cinética , Oxirredução , Engenharia de Proteínas , Estereoisomerismo , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA