Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
1.
Plant Physiol ; 189(3): 1450-1465, 2022 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-35266544

RESUMO

Light stimulates carotenoid synthesis in plants during photomorphogenesis through the expression of PHYTOENE SYNTHASE (PSY), a key gene in carotenoid biosynthesis. The orange carrot (Daucus carota) synthesizes and accumulates high amounts of carotenoids in the taproot that grows underground. Contrary to other organs, light impairs carrot taproot development and represses the expression of carotenogenic genes, such as DcPSY1 and DcPSY2, reducing carotenoid accumulation. By means of RNA sequencing, in a previous analysis, we observed that carrot PHYTOCHROME RAPIDLY REGULATED1 (DcPAR1) is more highly expressed in the underground grown taproot compared with those grown in light. PAR1 is a transcriptional cofactor with a negative role in shade avoidance syndrome regulation in Arabidopsis (Arabidopsis thaliana) through the dimerization with PHYTOCHROME-INTERACTING FACTORs (PIFs), allowing a moderate synthesis of carotenoids. Here, we show that overexpressing AtPAR1 in carrot increases carotenoid production in taproots grown underground as well as DcPSY1 expression. The high expression of AtPAR1 and DcPAR1 led us to hypothesize a functional role of DcPAR1 that was verified through in vivo binding to AtPIF7 and overexpression in Arabidopsis, where AtPSY expression and carotenoid accumulation increased together with a photomorphogenic phenotype. Finally, DcPAR1 antisense carrot lines presented a dramatic decrease in carotenoid levels and in relative expression of key carotenogenic genes as well as impaired taproot development. These results suggest that DcPAR1 is a key factor for secondary root development and carotenoid synthesis in carrot taproot grown underground.


Assuntos
Arabidopsis , Daucus carota , Fitocromo , Arabidopsis/genética , Arabidopsis/metabolismo , Carotenoides/metabolismo , Daucus carota/genética , Daucus carota/metabolismo , Regulação da Expressão Gênica de Plantas , Fitocromo/metabolismo
2.
Int J Mol Sci ; 23(20)2022 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-36293018

RESUMO

ALFIN-like transcription factors (ALs) are involved in several physiological processes such as seed germination, root development and abiotic stress responses in plants. In carrot (Daucus carota), the expression of DcPSY2, a gene encoding phytoene synthase required for carotenoid biosynthesis, is induced after salt and abscisic acid (ABA) treatment. Interestingly, the DcPSY2 promoter contains multiple ALFIN response elements. By in silico analysis, we identified two putative genes with the molecular characteristics of ALs, DcAL4 and DcAL7, in the carrot transcriptome. These genes encode nuclear proteins that transactivate reporter genes and bind to the carrot DcPSY2 promoter in yeast. The expression of both genes is induced in carrot under salt stress, especially DcAL4 which also responds to ABA treatment. Transgenic homozygous T3 Arabidopsis thaliana lines that stably express DcAL4 and DcAL7 show a higher survival rate with respect to control plants after chronic salt stress. Of note is that DcAL4 lines present a better performance in salt treatments, correlating with the expression level of DcAL4, AtPSY and AtDXR and an increase in carotenoid and chlorophyll contents. Likewise, DcAL4 transgenic kiwi (Actinidia deliciosa) lines show increased carotenoid and chlorophyll content and higher survival rate compared to control plants after chronic salt treatment. Therefore, DcAL4 and DcAL7 encode functional transcription factors, while ectopic expression of DcAL4 provides increased tolerance to salinity in Arabidopsis and Kiwi plants.


Assuntos
Actinidia , Arabidopsis , Daucus carota , Arabidopsis/metabolismo , Ácido Abscísico/farmacologia , Ácido Abscísico/metabolismo , Daucus carota/genética , Daucus carota/metabolismo , Actinidia/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Regulação da Expressão Gênica de Plantas , Plantas Geneticamente Modificadas/metabolismo , Estresse Salino/genética , Estresse Fisiológico/genética , Carotenoides/metabolismo , Clorofila/metabolismo , Proteínas Nucleares/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
3.
Artigo em Alemão | MEDLINE | ID: mdl-34596701

RESUMO

BACKGROUND: The rise of an infectious disease crisis such as the SARS-CoV­2 pandemic posed significant challenges for the administrative structures of the public health service, which resulted in varying levels of efficiency in outbreak management as a function of staffing and digital resources. This substantially impeded the integration of innovative pandemic outbreak management tools. Innovative crisis management, such as cluster tracking, risk group testing, georeferencing, or the integration of wastewater surveillance recommended by the EU Commission, was made significantly more difficult. AIM: In this case study in Berchtesgadener Land, we present the integration of an area-wide georeferenced wastewater surveillance system that captured 95% of the entire population since November 2020. METHODOLOGY: Sampling occurred twice a week at nine municipal wastewater treatment plants and directly from the main sewer at three locations. Samples were pre-treated by centrifugation and subsequently analyzed by digital droplet polymerase chain reaction (PCR) targeting four specific genes of SARS-CoV­2. RESULTS: The integration of an area-wide georeferenced wastewater surveillance system was successful. Wastewater occurrences are plotted for each municipality against cumulative infections over seven days per 100,000 inhabitants. Changes in the infection pattern in individual communities are noticeable ten days ahead of the official case numbers with a sensitivity of approximately 20 in 100,000 inhabitants. DISCUSSION: The integration of this innovative approach to provide a comprehensive overview of the situation by employing a digital dashboard and the use of an early warning system via quantitative wastewater surveillance resulted in very efficient, proactive management, which might serve as a blueprint for other municipalities in Germany.


Assuntos
COVID-19 , SARS-CoV-2 , COVID-19/epidemiologia , Alemanha/epidemiologia , Humanos , Saúde Pública , Águas Residuárias , Vigilância Epidemiológica Baseada em Águas Residuárias
4.
Int J Mol Sci ; 22(3)2021 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-33530294

RESUMO

Light is an important cue that stimulates both plastid development and biosynthesis of carotenoids in plants. During photomorphogenesis or de-etiolation, photoreceptors are activated and molecular factors for carotenoid and chlorophyll biosynthesis are induced thereof. In fruits, light is absorbed by chloroplasts in the early stages of ripening, which allows a gradual synthesis of carotenoids in the peel and pulp with the onset of chromoplasts' development. In roots, only a fraction of light reaches this tissue, which is not required for carotenoid synthesis, but it is essential for root development. When exposed to light, roots start greening due to chloroplast development. However, the colored taproot of carrot grown underground presents a high carotenoid accumulation together with chromoplast development, similar to citrus fruits during ripening. Interestingly, total carotenoid levels decrease in carrots roots when illuminated and develop chloroplasts, similar to normal roots exposed to light. The recent findings of the effect of light quality upon the induction of molecular factors involved in carotenoid synthesis in leaves, fruit, and roots are discussed, aiming to propose consensus mechanisms in order to contribute to the understanding of carotenoid synthesis regulation by light in plants.


Assuntos
Vias Biossintéticas , Carotenoides/metabolismo , Desenvolvimento Vegetal , Fenômenos Fisiológicos Vegetais , Plastídeos/genética , Cloroplastos , Frutas/genética , Frutas/metabolismo , Luz , Fotossíntese , Folhas de Planta/genética , Folhas de Planta/metabolismo , Folhas de Planta/efeitos da radiação , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Raízes de Plantas/efeitos da radiação
5.
Mol Genet Genomics ; 295(6): 1379-1392, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32656704

RESUMO

Carotenoids are terpenoid pigments synthesized by all photosynthetic and some non-photosynthetic organisms. In plants, these lipophilic compounds are involved in photosynthesis, photoprotection, and phytohormone synthesis. In plants, carotenoid biosynthesis is induced by several environmental factors such as light including photoreceptors, such as phytochromes (PHYs) and negatively regulated by phytochrome interacting factors (PIFs). Daucus carota (carrot) is one of the few plant species that synthesize and accumulate carotenoids in the storage root that grows in darkness. Contrary to other plants, light inhibits secondary root growth and carotenoid accumulation suggesting the existence of new mechanisms repressed by light that regulate both processes. To identify genes induced by dark and repressed by light that regulate carotenoid synthesis and carrot root development, in this work an RNA-Seq analysis was performed from dark- and light-grown carrot roots. Using this high-throughput sequencing methodology, a de novo transcriptome model with 63,164 contigs was obtained, from which 18,488 were differentially expressed (DEG) between the two experimental conditions. Interestingly, light-regulated genes are preferably expressed in dark-grown roots. Enrichment analysis of GO terms with DEGs genes, validation of the transcriptome model and DEG analysis through qPCR allow us to hypothesize that genes involved in photomorphogenesis and light perception such as PHYA, PHYB, PIF3, PAR1, CRY2, FYH3, FAR1 and COP1 participate in the synthesis of carotenoids and carrot storage root development.


Assuntos
Vias Biossintéticas/genética , Carotenoides/metabolismo , Biologia Computacional/métodos , Daucus carota/genética , Daucus carota/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/metabolismo , Daucus carota/crescimento & desenvolvimento , Perfilação da Expressão Gênica , Pigmentação , Proteínas de Plantas/genética
6.
Biotechnol Bioeng ; 117(7): 2209-2222, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32311081

RESUMO

Apple (Malus domestica) fruits accumulate negligible levels of carotenoids, antioxidant pigments that are precursors for vitamin A in humans. As vitamin A deficiency is an important public health issue, we aimed at increasing carotenoids in apple by constitutively expressing the Arabidopsis thaliana DXR gene, one of the key regulatory steps in the plastidial isoprenoid pathway. For this purpose, we optimized an Agrobacterium-mediated transformation method in the commercial Fuji Raku Raku variety. This resulted in a shoot establishment efficiency of 0.75% at 20 weeks after infection. Molecular and microscopical analyses revealed that 80% of the hygromycin resistant shoots contained and expressed AtDXR:eGFP and that the AtDXR:eGFP fusion protein located in plastids. Transgenic seedlings displayed up to 3-fold increase in total carotenoids and in individual carotenoids compared to the WT, correlating with an increased transcript abundance of endogenous carotenogenic genes such as MdDXS, MdPSY1, MdPSY2, MdPSY3, MdLCYB1, and MdLCYB2. In addition, buds of 2-year-old transgenic dormant trees showed an increment up to 3-fold in lutein, and transient transformation of fruits revealed that AtDXR induced a 2-fold increment in total carotenoids. Thus, these results suggest that DXR may be a good candidate for increasing carotenoid levels in apple fruits through metabolic engineering.


Assuntos
Agrobacterium/genética , Aldose-Cetose Isomerases/genética , Proteínas de Arabidopsis/genética , Arabidopsis/genética , Carotenoides/metabolismo , Malus/genética , Aldose-Cetose Isomerases/metabolismo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Malus/metabolismo , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Transformação Genética
7.
J Exp Bot ; 69(16): 4113-4126, 2018 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-29860511

RESUMO

Phytoene synthase (PSY) is the first committed enzyme of the carotenoid biosynthesis pathway and the most important point of regulation. Carotenoids are precursors of abscisic acid (ABA), which mediates abiotic stress tolerance responses in plants. ABA activates the synthesis of its own precursors through induction of PSY expression. Carrot, a species that accumulates very high amounts of carotenoids in its reserve root, has two PSY paralog genes that are expressed differentially in the root. Here, we determined that DcPSY2 expression is induced by salt stress and ABA. A DcPSY2 promoter fragment was obtained and characterized. Bioinformatic analysis showed the presence of three ABA responsive elements (ABREs). Through overexpressing pPSY2:GFP in Nicotiana tabacum we determined that all three ABREs are necessary for the ABA response. In the carrot transcriptome, we identified three ABRE binding protein (DcAREB) transcription factor candidates that localized in the nucleus, but only one, DcAREB3, was induced under ABA treatment in carrot roots. We found that AREB transcription factors bind to the carrot DcPSY2 promoter and transactivate the expression of reporter genes. We conclude that DcPSY2 is involved in ABA-mediated salt stress tolerance in carrot through the binding of AREB transcription factors to its promoter.


Assuntos
Ácido Abscísico/metabolismo , Daucus carota/metabolismo , Geranil-Geranildifosfato Geranil-Geraniltransferase/biossíntese , Estresse Salino , Daucus carota/genética , Indução Enzimática , Regulação Enzimológica da Expressão Gênica , Regulação da Expressão Gênica de Plantas
8.
Subcell Biochem ; 79: 35-69, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27485218

RESUMO

Carotenoids are the most important biocolor isoprenoids responsible for yellow, orange and red colors found in nature. In plants, they are synthesized in plastids of photosynthetic and sink organs and are essential molecules for photosynthesis, photo-oxidative damage protection and phytohormone synthesis. Carotenoids also play important roles in human health and nutrition acting as vitamin A precursors and antioxidants. Biochemical and biophysical approaches in different plants models have provided significant advances in understanding the structural and functional roles of carotenoids in plants as well as the key points of regulation in their biosynthesis. To date, different plant models have been used to characterize the key genes and their regulation, which has increased the knowledge of the carotenoid metabolic pathway in plants. In this chapter a description of each step in the carotenoid synthesis pathway is presented and discussed.


Assuntos
Antioxidantes/metabolismo , Carotenoides/biossíntese , Pigmentos Biológicos/biossíntese , Reguladores de Crescimento de Plantas/biossíntese , Carotenoides/metabolismo , Humanos , Fotossíntese/genética , Pigmentos Biológicos/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Plantas/metabolismo , Vitamina A/biossíntese , Vitamina A/metabolismo
9.
Subcell Biochem ; 79: 199-217, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27485223

RESUMO

Carrot (Daucus carota) is one of the most important vegetable cultivated worldwide and the main source of dietary provitamin A. Contrary to other plants, almost all carrot varieties accumulate massive amounts of carotenoids in the root, resulting in a wide variety of colors, including those with purple, yellow, white, red and orange roots. During the first weeks of development the root, grown in darkness, is thin and pale and devoid of carotenoids. At the second month, the thickening of the root and the accumulation of carotenoids begins, and it reaches its highest level at 3 months of development. This normal root thickening and carotenoid accumulation can be completely altered when roots are grown in light, in which chromoplasts differentiation is redirected to chloroplasts development in accordance with an altered carotenoid profile. Here we discuss the current evidence on the biosynthesis of carotenoid in carrot roots in response to environmental cues that has contributed to our understanding of the mechanism that regulates the accumulation of carotenoids, as well as the carotenogenic gene expression and root development in D. carota.


Assuntos
Carotenoides/biossíntese , Daucus carota/metabolismo , Pigmentos Biológicos/biossíntese , beta Caroteno/biossíntese , Carotenoides/metabolismo , Daucus carota/crescimento & desenvolvimento , Regulação da Expressão Gênica de Plantas , Humanos , Pigmentos Biológicos/metabolismo , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Plastídeos/genética , Plastídeos/metabolismo , Vitamina A/biossíntese , Vitamina A/metabolismo , beta Caroteno/genética
10.
Subcell Biochem ; 79: 239-72, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27485225

RESUMO

Carotenoids are precursors of carotenoid derived molecules termed apocarotenoids, which include isoprenoids with important functions in plant-environment interactions such as the attraction of pollinators and the defense against pathogens and herbivores. Apocarotenoids also include volatile aromatic compounds that act as repellents, chemoattractants, growth simulators and inhibitors, as well as the phytohormones abscisic acid and strigolactones. In plants, apocarotenoids can be found in several types of plastids (etioplast, leucoplast and chromoplast) and among different plant tissues such as flowers and roots. The structural similarity of some flower and spice isoprenoid volatile organic compounds (ß-ionone and safranal) to carotenoids has led to the recent discovery of carotenoid-specific cleavage oxygenases, including carotenoid cleavage dioxygenases and 9-cis-epoxydioxygenases, which tailor and transform carotenoids into apocarotenoids. The great diversity of apocarotenoids is a consequence of the huge amount of carotenoid precursors, the variations in specific cleavage sites and the modifications after cleavage. Lycopene, ß-carotene and zeaxanthin are the precursors of the main apocarotenoids described to date, which include bixin, crocin, picrocrocin, abscisic acid, strigolactone and mycorradicin.The current chapter will give rise to an overview of the biosynthesis and function of the most important apocarotenoids in plants, as well as the current knowledge about the carotenoid cleavage oxygenase enzymes involved in these biosynthetic pathways.


Assuntos
Carotenoides/metabolismo , Plantas/metabolismo , Terpenos/metabolismo , Compostos Orgânicos Voláteis/metabolismo , Carotenoides/biossíntese , Dioxigenases/genética , Dioxigenases/metabolismo , Regulação da Expressão Gênica de Plantas , Norisoprenoides/metabolismo , Proteínas de Plantas/biossíntese , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plastídeos/genética , Plastídeos/metabolismo
11.
BMC Med Inform Decis Mak ; 17(1): 114, 2017 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-28768511

RESUMO

BACKGROUND: The internet is an increasingly relevant source of health information. We aimed to assess the quality of German dentists' websites on periodontitis, hypothesizing that it was significantly associated with a number of practice-specific parameters. METHODS: We searched four electronic search engines and included pages which were freely accessible, posted by a dental practice in Germany, and mentioned periodontal disease/therapy. Websites were assessed for (1) technical and functional aspects, (2) generic quality and risk of bias, (3) disease-specific information. For 1 and 2, validated tools (LIDA/DISCERN) were used for assessment. For 3, we developed a criterion catalogue encompassing items on etiologic and prognostic factors for periodontitis, the diagnostic and treatment process, and the generic chance of tooth retention in periodontitis patients. Inter- and intra-rater reliabilities were largely moderate. Generalized linear modeling was used to assess the association between the information quality (measured as % of maximally available scores) and practice-specific characteristics. RESULTS: Seventy-one websites were included. Technical and functional aspects were reported in significantly higher quality (median: 71%, 25/75th percentiles: 67/79%) than all other aspects (p < 0.05). Generic risk of bias and most disease-specific aspects showed significantly lower reporting quality (median range was 0-40%), with poorest reporting for prognostic factors (9;0/27%), diagnostic process (0;0/33%) and chances of tooth retention (0;0/2%). We found none of the practice-specific parameters to have significant impact on the overall quality of the websites. CONCLUSIONS: Most German dentists' websites on periodontitis are not fully trustworthy and relevant information are not or insufficiently considered. There is great need to improve the information quality from such websites at least with regards to periodontitis.


Assuntos
Odontólogos/estatística & dados numéricos , Internet/estatística & dados numéricos , Informática Médica/estatística & dados numéricos , Periodontite , Alemanha , Humanos , Internet/normas
12.
Heliyon ; 10(5): e27384, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38486766

RESUMO

Environmental oligotrophic bacteria are suspected to be highly relevant carriers of antimicrobial resistance (AMR). However, there is a lack of validated methods for monitoring in the aquatic environment. Since extended-spectrum ß-lactamases (ESBLs) play a particularly important role in the clinical sector, a culturing method based on R2A-medium spiked with different combinations of ß-lactams was applied to quantify ß-lactamase-producing environmental bacteria from surface waters. In German surface water samples (n = 28), oligotrophic bacteria ranging from 4.0 × 103 to 1.7 × 104 CFU per 100 mL were detected on the nutrient-poor medium spiked with 3rd generation cephalosporins and carbapenems. These numbers were 3 log10 higher compared to ESBL-producing Enterobacteriales of clinical relevance from the same water samples. A MALDI-TOF MS identification of the isolates demonstrated, that the method leads to the isolation of environmentally relevant strains with Pseudomonas, Flavobacterium, and Janthinobacterium being predominant ß-lactam resistant genera. Subsequent micro-dilution antibiotic susceptibility tests (Micronaut-S test) confirmed the expression of ß-lactamases. The qPCR analysis of surface waters DNA extracts showed the presence of ß-lactamase genes (blaTEM, blaCMY-2, blaOXA-48, blaVIM-2, blaSHV, and blaNDM-1) at concentrations of 3.7 (±1.2) to 1.0 (±1.9) log10 gene copies per 100 mL. Overall, the results demonstrate a widespread distribution of cephalosporinase and carbapenemase enzymes in oligotrophic environmental bacteria that have to be considered as a reservoir of ARGs and contribute to the spread of antibiotic resistance.

13.
Plant Physiol Biochem ; 208: 108507, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38467083

RESUMO

The excess of salts in soils causes stress in most plants, except for some halophytes that can tolerate higher levels of salinity. The excess of Na+ generates an ionic imbalance, reducing the K+ content and altering cellular metabolism, thus impacting in plant growth and development. Additionally, salinity in soil induces water stress due to osmotic effects and increments the production of reactive oxygen species (ROS) that affect the cellular structure, damaging membranes and proteins, and altering the electrochemical potential of H+, which directly affects nutrient absorption by membrane transporters. However, plants possess mechanisms to overcome the toxicity of the sodium ions, such as internalization into the vacuole or exclusion from the cell, synthesis of enzymes or protective compounds against ROS, and the synthesis of metabolites that help to regulate the osmotic potential of plants. Physiologic and molecular mechanisms of salinity tolerance in plants will be addressed in this review. Furthermore, a revision of strategies taken by researchers to confer salt stress tolerance on agriculturally important species are discussed. These strategies include conventional breeding and genetic engineering as transgenesis and genome editing by CRISPR/Cas9.


Assuntos
Melhoramento Vegetal , Salinidade , Espécies Reativas de Oxigênio , Plantas Tolerantes a Sal/genética , Desenvolvimento Vegetal , Estresse Fisiológico
14.
Arch Biochem Biophys ; 539(2): 110-6, 2013 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-23876238

RESUMO

Carrot (Daucus carota) is a biannual plant that accumulates massive amounts of carotenoid pigments in the storage root. Although the root of carrot plants was white before domestication, intensive breeding generated the currently known carotenoid-rich varieties, including the widely popular orange carrots that accumulate very high levels of the pro-vitamin A carotenoids ß-carotene and, to a lower extent, α-carotene. Recent studies have shown that the developmental program responsible for the accumulation of these health-promoting carotenes in underground roots can be completely altered when roots are exposed to light. Illuminated root sections do not enlarge as much as dark-grown roots, and they contain chloroplasts with high levels of lutein instead of the ß-carotene-rich chromoplasts found in underground roots. Analysis of carotenoid gene expression in roots either exposed or not to light has contributed to better understand the contribution of developmental and environmental cues to the root carotenoid profile. In this review, we summarize the main conclusions of this work in the context of our current knowledge of how carotenoid biosynthesis and accumulation is regulated at transcriptional and post-transcriptional levels in carrot roots and other model systems for the study of plant carotenogenesis such as Arabidopsis de-etiolation and tomato fruit ripening.


Assuntos
Carotenoides/biossíntese , Daucus carota/química , Raízes de Plantas/metabolismo , Arabidopsis/química , Arabidopsis/metabolismo , Biodegradação Ambiental , Carotenoides/química , Carotenoides/metabolismo , Daucus carota/enzimologia , Daucus carota/genética , Regulação da Expressão Gênica de Plantas , Luz , Solanum lycopersicum/química , Solanum lycopersicum/metabolismo , Raízes de Plantas/química , Raízes de Plantas/enzimologia , Plastídeos/enzimologia , Plastídeos/genética , Plastídeos/metabolismo , Temperatura
15.
Plants (Basel) ; 12(10)2023 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-37653842

RESUMO

Background: Carotenoids, which are secondary metabolites derived from isoprenoids, play a crucial role in photo-protection and photosynthesis, and act as precursors for abscisic acid, a hormone that plays a significant role in plant abiotic stress responses. The biosynthesis of carotenoids in higher plants initiates with the production of phytoene from two geranylgeranyl pyrophosphate molecules. Phytoene synthase (PSY), an essential catalytic enzyme in the process, regulates this crucial step in the pathway. In Daucus carota L. (carrot), two PSY genes (DcPSY1 and DcPSY2) have been identified but only DcPSY2 expression is induced by ABA. Here we show that the ectopic expression of DcPSY2 in Nicotiana tabacum L. (tobacco) produces in L3 and L6 a significant increase in total carotenoids and chlorophyll a, and a significant increment in phytoene in the T1L6 line. Tobacco transgenic T1L3 and T1L6 lines subjected to chronic NaCl stress showed an increase of between 2 and 3- and 6-fold in survival rate relative to control lines, which correlates directly with an increase in the expression of endogenous carotenogenic and abiotic-related genes, and with ABA levels. Conclusions: These results provide evidence of the functionality of DcPSY2 in conferring salt stress tolerance in transgenic tobacco T1L3 and T1L6 lines.

16.
Plants (Basel) ; 12(15)2023 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-37570943

RESUMO

Plant carotenoids are synthesized and accumulated in plastids through a highly regulated pathway. Lycopene ß-cyclase (LCYB) is a key enzyme involved directly in the synthesis of α-carotene and ß-carotene through the cyclization of trans-lycopene. Daucus carota harbors two LCYB genes, of which DcLCYB2 (annotated as CCS-Like) is mostly expressed in mature storage roots, an organ that accumulates high α-carotene and ß-carotene content. In this work, we determined that DcLCYB2 of the orange Nantes variety presents plastid localization and encodes for a functional LCYB enzyme determined by means of heterologous complementation in Escherichia coli. Also, ectopic expression of DcLCYB2 in tobacco (Nicotiana tabacum) and kiwi (Actinidia deliciosa) plants increases total carotenoid content showing its functional role in plants. In addition, transgenic tobacco T2 homozygous plants showed better performance under chronic salt treatment, while kiwi transgenic calli also presented a higher survival rate under salt treatments than control calli. Our results allow us to propose DcLCYB2 as a prime candidate to engineer carotenoid biofortified crops as well as crops resilient to saline environments.

17.
Int J Hyg Environ Health ; 253: 114241, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37611533

RESUMO

With the advent of molecular biology diagnostics, different quantitative PCR assays have been developed for use in Source Tracking (ST), with none of them showing 100% specificity and sensitivity. Most studies have been conducted at a regional level and mainly in fecal slurry rather than in animal wastewater. The use of a single molecular assay has most often proven to fall short in discriminating with precision the sources of fecal contamination. This work is a multicenter European ST study to compare bacterial and mitochondrial molecular assays and was set to evaluate the efficiency of nine previously described qPCR assays targeting human-, cow/ruminant-, pig-, and poultry-associated fecal contamination. The study was conducted in five European countries with seven fecal indicators and nine ST assays being evaluated in a total of 77 samples. Animal fecal slurry samples and human and non-human wastewater samples were analyzed. Fecal indicators measured by culture and qPCR were generally ubiquitous in the samples. The ST qPCR markers performed at high levels in terms of quantitative sensitivity and specificity demonstrating large geographical application. Sensitivity varied between 73% (PLBif) and 100% for the majority of the tested markers. On the other hand, specificity ranged from 53% (CWMit) and 97% (BacR). Animal-associated ST qPCR markers were generally detected in concentrations greater than those found for the respective human-associated qPCR markers, with mean concentration for the Bacteroides qPCR markers varying between 8.74 and 7.22 log10 GC/10 mL for the pig and human markers, respectively. Bacteroides spp. and mitochondrial DNA qPCR markers generally presented higher Spearman's rank coefficient in the pooled fecal samples tested, particularly the human fecal markers with a coefficient of 0.79. The evaluation of the performance of Bacteroides spp., mitochondrial DNA and Bifidobacterium spp. ST qPCR markers support advanced pollution monitoring of impaired aquatic environments, aiming to elaborate strategies for target-oriented water quality management.


Assuntos
DNA Mitocondrial , Águas Residuárias , Bovinos , Feminino , Animais , Suínos , Bacteroides/genética , Bioensaio , Qualidade da Água
18.
Sci Total Environ ; 903: 166540, 2023 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-37634730

RESUMO

Wastewater-based SARS-CoV-2 epidemiology (WBE) has proven as an excellent tool to monitor pandemic dynamics supporting individual testing strategies. WBE can also be used as an early warning system for monitoring the emergence of novel pathogens or viral variants. However, for a timely transmission of results, sophisticated sample logistics and analytics performed in decentralized laboratories close to the sampling sites are required. Since multiple decentralized laboratories commonly use custom in-house workflows for sample purification and PCR-analysis, comparative quality control of the analytical procedures is essential to report reliable and comparable results. In this study, we performed an interlaboratory comparison at laboratories specialized for PCR and high-throughput-sequencing (HTS)-based WBE analysis. Frozen reserve samples from low COVID-19 incidence periods were spiked with different inactivated authentic SARS-CoV-2 variants in graduated concentrations and ratios. Samples were sent to the participating laboratories for analysis using laboratory specific methods and the reported viral genome copy numbers and the detection of viral variants were compared with the expected values. All PCR-laboratories reported SARS-CoV-2 genome copy equivalents (GCE) for all spiked samples with a mean intra- and inter-laboratory variability of 19 % and 104 %, respectively, largely reproducing the spike-in scheme. PCR-based genotyping was, in dependence of the underlying PCR-assay performance, able to predict the relative amount of variant specific substitutions even in samples with low spike-in amount. The identification of variants by HTS, however, required >100 copies/ml wastewater and had limited predictive value when analyzing at a genome coverage below 60 %. This interlaboratory test demonstrates that despite highly heterogeneous isolation and analysis procedures, overall SARS-CoV-2 GCE and mutations were determined accurately. Hence, decentralized SARS-CoV-2 wastewater monitoring is feasible to generate comparable analysis results. However, since not all assays detected the correct variant, prior evaluation of PCR and sequencing workflows as well as sustained quality control such as interlaboratory comparisons are mandatory for correct variant detection.

19.
Plant Mol Biol ; 79(1-2): 47-59, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22427026

RESUMO

Carrot is an important nutritional crop due to the high levels of pro-vitamin A carotenoids (ß-carotene and, to a lower extent, α-carotene) that accumulate in its storage root during secondary growth. In this work we show that in carrots, contrary to that reported for aerial organs of other plant species, light has a profound effect on root development by inhibiting root thickening, preventing the differentiation of chromoplasts and eventually repressing the expression of most genes required for the biosynthesis of ß-carotene and α-carotene and to a lesser extent genes for xanthophylls and apocarotenoids biosynthesis. We observed a correlation in the carotenoid profile and the patterns of gene expression during the development of root segments grown either in the light or in the dark, which suggests a transcriptional regulation for carotenoid synthesis during carrot root development. Furthermore, our work supports the conclusion that the differentiation of chromoplasts coincides with carotenoid accumulation during the later stages of development of underground storage roots.


Assuntos
Carotenoides/genética , Daucus carota/genética , Regulação da Expressão Gênica de Plantas/efeitos da radiação , Luz , Organogênese/efeitos da radiação , Raízes de Plantas/genética , Plastídeos/efeitos da radiação , Carotenoides/biossíntese , Carotenoides/química , Cloroplastos/metabolismo , Cloroplastos/efeitos da radiação , Escuridão , Daucus carota/crescimento & desenvolvimento , Daucus carota/efeitos da radiação , Regulação da Expressão Gênica no Desenvolvimento/efeitos da radiação , Microscopia de Fluorescência , Especificidade de Órgãos/genética , Especificidade de Órgãos/efeitos da radiação , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/efeitos da radiação , Plastídeos/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
20.
Methods Enzymol ; 671: 273-283, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35878981

RESUMO

Carrot (Daucus carota) is a useful plant model for the study of carotenoid biosynthesis, specifically in roots which are enriched in carotenoids. Carrot genome and transcriptome sequences, complemented by optimized methods for carrot transformation, contribute to a comprehensive toolbox for exploring pathway regulation. To expand the repertoire of tools available for the study of D. carota, we present protocols for the isolation of protoplasts from D. carota cell suspension cultures and polyethylene glycol (PEG)-mediated transformation. To obtain carrot protoplasts, in vitro somatic embryogenesis from epicotyls is induced. The somatic embryogenic tissue that develops is transferred to liquid medium to obtain a suspension of cells which are homogenized and incubated with cell-wall degrading enzymes to release protoplasts. For transfection, protoplasts are incubated with a plasmid encoding a protein of interest prior to examination of protein localization by light microscopy. As an example, we demonstrate nuclear localization of a carrot transcription factor, DcAREB3.


Assuntos
Daucus carota , Carotenoides/metabolismo , Daucus carota/genética , Daucus carota/metabolismo , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Protoplastos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA