Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Tipo de documento
País/Região como assunto
Ano de publicação
Intervalo de ano de publicação
1.
Am J Bot ; 100(12): 2307-17, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24322894

RESUMO

PREMISE OF THE STUDY: Solanum elaeagnifolium (silverleaf nightshade), having originated in the Americas, is now a serious summer-growing, perennial weed in many countries, including Australia. Most surfaces of the plants have a dense covering of trichomes, giving them a silvery-white appearance, hence the common name. We aimed to identify structural and functional properties of its leaves, especially the trichomes, that may affect the uptake of foliar-applied tracer dyes. METHODS: The structure of leaves of Solanum elaeagnifolium was examined by light and scanning electron microscopy. The potential for transport of materials between trichomes and veins was studied with symplastic (carboxyfluorescein diacetate) and apoplastic (lucifer yellow) tracer dyes. KEY RESULTS: Mature leaves had a dense covering of complex, stellate trichomes on both surfaces, particularly the abaxial. The basal cells of Solanum elaeagnifolium trichomes penetrated into the underlying palisade mesophyll layers. The innermost lobes of these basal cells sometimes contacted the bundle sheath of the veins, but were not observed to directly contact the xylem or phloem. We found that neither symplastic nor apoplastic dyes were transferred between the basal cells of the trichomes and the vascular tissues. The trichome layer repelled water-based tracer dyes, while one of four adjuvants tested facilitated entry of both symplastic and apoplastic dyes. CONCLUSIONS: Our results did not support a transport function for the trichomes. The trichomes may protect the mesophytic leaves from invertebrate herbivory, while also probably decreasing radiation absorbed resulting in cooler leaves in this summer-growing species.


Assuntos
Floema/fisiologia , Folhas de Planta/fisiologia , Transpiração Vegetal , Solanum/fisiologia , Tricomas/fisiologia , Xilema/fisiologia , Austrália , Transporte Biológico , Corantes Fluorescentes , Plantas Daninhas
2.
Pest Manag Sci ; 64(4): 402-8, 2008 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-18078302

RESUMO

BACKGROUND: Glyphosate resistance has been confirmed in 58 populations of Lolium rigidum (Gaud.), a major weed of crops in southern Australia. Extensive use of glyphosate in conjunction with minimal soil disturbance has been identified as high risk for resistance to that herbicide. Land managers need a simple method for rapid assessment of the risk of resistance occurring as a result of past and proposed future management practices. Modelled on risk assessment nomographs, a simple calculator for indicating the risk of evolved glyphosate resistance in L. rigidum is described. RESULTS: The calculator uses the generations since first use and the frequency of use of glyphosate in combination with historical cultivation levels as critical factors for determining the risk of glyphosate resistance evolution. Based on the management history of a field, a land manager can graphically determine a glyphosate resistance risk for that field. CONCLUSION: The calculator enables the farmer or the advisor to assess the risk of a weed's population becoming resistant and modify practices accordingly to manage for sustainable glyphosate use. The risk calculator could be modified for other herbicides and different weed species.


Assuntos
Glicina/análogos & derivados , Herbicidas , Lolium/genética , Nomogramas , Resistência a Herbicidas/genética , Medição de Risco/métodos , Glifosato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA