Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 69
Filtrar
1.
Hum Mol Genet ; 32(15): 2411-2421, 2023 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-37154571

RESUMO

We assessed the relationship of gene copy number variation (CNV) in mental health/neurodevelopmental traits and diagnoses, physical health and cognition in a community sample of 7100 unrelated children and youth of European or East Asian ancestry (Spit for Science). Clinically significant or susceptibility CNVs were present in 3.9% of participants and were associated with elevated scores on a continuous measure of attention-deficit/hyperactivity disorder (ADHD) traits (P = 5.0 × 10-3), longer response inhibition (a cognitive deficit found in several mental health and neurodevelopmental disorders; P = 1.0 × 10-2) and increased prevalence of mental health diagnoses (P = 1.9 × 10-6, odds ratio: 3.09), specifically ADHD, autism spectrum disorder anxiety and learning problems/learning disorder (P's < 0.01). There was an increased burden of rare deletions in gene-sets related to brain function or expression in brain associated with more ADHD traits. With the current mental health crisis, our data established a baseline for delineating genetic contributors in pediatric-onset conditions.


Assuntos
Transtorno do Deficit de Atenção com Hiperatividade , Transtorno do Espectro Autista , Adolescente , Humanos , Criança , Saúde Mental , Variações do Número de Cópias de DNA/genética , Transtorno do Espectro Autista/genética , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Transtorno do Deficit de Atenção com Hiperatividade/epidemiologia , Transtorno do Deficit de Atenção com Hiperatividade/genética , Dosagem de Genes
2.
J Med Genet ; 60(12): 1153-1160, 2023 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-37290907

RESUMO

BACKGROUND: We present genomic and phenotypic findings of a transgenerational family consisting of three male offspring, each with a maternally inherited distal 220 kb deletion at locus 16p11.2 (BP2-BP3). Genomic analysis of all family members was prompted by a diagnosis of autism spectrum disorder (ASD) in the eldest child, who also presented with a low body mass index. METHODS: All male offspring underwent extensive neuropsychiatric evaluation. Both parents were also assessed for social functioning and cognition. The family underwent whole-genome sequencing. Further data curation was undertaken from samples ascertained for neurodevelopmental disorders and congenital abnormalities. RESULTS: On medical examination, both the second and third-born male offspring presented with obesity. The second-born male offspring met research diagnostic criteria for ASD at 8 years of age and presented with mild attention deficits. The third-born male offspring was only noted as having motor deficits and received a diagnosis of developmental coordination disorder. Other than the 16p11.2 distal deletion, no additional contributing variants of clinical significance were observed. The mother was clinically evaluated and noted as having a broader autism phenotype. CONCLUSION: In this family, the phenotypes observed are most likely caused by the 16p11.2 distal deletion. The lack of other overt pathogenic mutations identified by genomic sequencing reinforces the variable expressivity that should be heeded in a clinical setting. Importantly, distal 16p11.2 deletions can present with a highly variable phenotype even within a single family. Our additional data curation provides further evidence on the variable clinical presentation among those with pathogenetic 16p11.2 (BP2-BP3) mutations.


Assuntos
Transtorno do Espectro Autista , Transtorno Autístico , Deficiência Intelectual , Criança , Humanos , Masculino , Deleção Cromossômica , Transtorno do Espectro Autista/diagnóstico , Transtorno do Espectro Autista/genética , Transtorno Autístico/genética , Família , Fenótipo , Variação Biológica da População , Cromossomos Humanos Par 16/genética , Deficiência Intelectual/diagnóstico , Deficiência Intelectual/genética
3.
J Med Genet ; 59(10): 931-937, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-34544840

RESUMO

PURPOSE AND SCOPE: The aim of this position statement is to provide recommendations for Canadian healthcare professionals regarding the use of genome-wide sequencing (GWS) in the context of diagnostic testing of the fetus during pregnancy. This statement was developed to facilitate clinical translation of GWS as a prenatal diagnostic test and the development of best practices in Canada, but the applicability of this document is broader and aims to help professionals in other healthcare systems. METHODS OF STATEMENT DEVELOPMENT: A multidisciplinary group was assembled to review existing literature on fetal GWS for genetic diagnosis in the context of suspected monogenic diseases and to make recommendations relevant to the Canadian context. The statement was circulated for comments to the Canadian College of Medical Geneticists (CCMG) membership-at-large and, following incorporation of feedback, approved by the CCMG Board of Directors on 19 February 2021. RESULTS AND CONCLUSIONS: The use of prenatal GWS is indicated for the investigation of multiple fetal anomalies. Its use in the context of isolated fetal anomaly should be guided by available resources and current evidence, which is continually changing. During pregnancy, GWS should be ordered by, or in collaboration with, a medical geneticist. It should be used following detailed phenotyping to interrogate known disease genes, preferably using a trio approach, following detailed fetal phenotyping. Testing should be done with an overall aim to help in the management of the pregnancy, delivery and postnatal care. It should be guided by personal utility of the test for the pregnant person and clinical utility for pregnancy and birth management, as outlined herein. Genetic counselling is crucial in making the parental decision an informed decision. Chromosomal microarray analysis should be completed in parallel or prior to GWS and should be preceded by Quantitative Fluorescent PCR (QF-PCR) for detection of common aneuploidies. In normal circumstances, only pathogenic and likely pathogenic variants with a high likelihood of being associated with the identified fetal anomalies should be reported. Reporting of secondary findings, defined as purposeful analysis of variants in a set of medically actionable genes, should not, by default, be performed in the prenatal context. Laboratories should only report incidental findings that reveal risk of a significant Mendelian condition during infancy and childhood. Should a laboratory have a policy for reporting incidental findings in medically actionable adult-onset conditions, they should only be reported with explicit opt-in consent signed by the tested individuals. Genetic counselling is crucial in disclosing the test results and the implications the results may have for the fetus. It should be emphasised that negative results do not rule out a genetic diagnosis nor guarantee a good prognosis. Postnatal phenotyping and reanalysis of existing data should be considered. Families should be given the opportunity to participate in research studies as appropriate. These recommendations will be routinely re-evaluated as knowledge of the diagnostic and clinical utility of fetal GWS during pregnancy improves.


Assuntos
Aconselhamento Genético , Diagnóstico Pré-Natal , Adulto , Canadá , Criança , Feminino , Feto , Humanos , Gravidez , Cuidado Pré-Natal , Diagnóstico Pré-Natal/métodos
4.
Genet Med ; 24(5): 1027-1036, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35219592

RESUMO

PURPOSE: Genome sequencing (GS) can aid clinical management of multiple pediatric conditions. Insurers require accurate cost information to inform funding and implementation decisions. The objective was to compare the laboratory workflows and microcosts of trio GS testing in children with developmental delay (DD) and in children with cardiac conditions. METHODS: Cost items related to each step in trio GS (child and 2 parents) for both populations were identified and measured. Program costs over 5 years were estimated. Probabilistic and deterministic analyses were conducted. RESULTS: The mean cost per trio GS was CAD$6634.11 (95% CI = 6352.29-6913.40) for DD and CAD$8053.10 (95% CI = 7699.30-8558.10) for cardiac conditions. The 5-year program cost was CAD$28.11 million (95% CI = 26.91-29.29) for DD and CAD$5.63 million (95% CI = 5.38-5.98) for cardiac conditions. Supplies constituted the largest cost component for both populations. The higher cost per sample for the population with cardiac conditions was due to the inclusion of pharmacogenomics, higher bioinformatics labor costs, and a more labor intensive case review. CONCLUSION: This analysis indicated important variation in trio GS workflow and costs between pediatric populations in a single institution. Enhanced understanding of the clinical utility and costs of GS can inform harmonization and implementation decision-making.


Assuntos
Pais , Farmacogenética , Sequência de Bases , Criança , Mapeamento Cromossômico , Humanos
5.
Mol Psychiatry ; 26(5): 1706-1718, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33597717

RESUMO

Mendelian and early-onset severe psychiatric phenotypes often involve genetic variants having a large effect, offering opportunities for genetic discoveries and early therapeutic interventions. Here, the index case is an 18-year-old boy, who at 14 years of age had a decline in cognitive functioning over the course of a year and subsequently presented with catatonia, auditory and visual hallucinations, paranoia, aggression, mood dysregulation, and disorganized thoughts. Exome sequencing revealed a stop-gain mutation in RCL1 (NM_005772.4:c.370 C > T, p.Gln124Ter), encoding an RNA 3'-terminal phosphate cyclase-like protein that is highly conserved across eukaryotic species. Subsequent investigations across two academic medical centers identified eleven additional cases of RCL1 copy number variations (CNVs) with varying neurodevelopmental or psychiatric phenotypes. These findings suggest that dosage variation of RCL1 contributes to a range of neurological and clinical phenotypes.


Assuntos
Variações do Número de Cópias de DNA , Adolescente , Variações do Número de Cópias de DNA/genética , Humanos , Masculino , Mutação/genética , Fenótipo , Sequenciamento do Exoma
6.
Am J Med Genet A ; 188(8): 2421-2428, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35593535

RESUMO

Maternal uniparental disomy of human chromosome 7 [upd(7)mat] is well-characterized as a cause of the growth disorder Silver-Russell syndrome (SRS). However, the causative gene is not currently known. There is growing evidence that molecular changes at the imprinted MEST region in 7q32.2 are associated with a phenotype evocative of SRS. This report details a patient with a SRS-like phenotype and a paternally inherited microdeletion of 79 kilobases (35-fold smaller than the previously reported smallest deletion) in the 7q32.2 region. This microdeletion encompasses only five genes, including MEST, which corroborates the hypothesis that MEST plays a central role in the 7q32.2 microdeletion growth disorder, as well as further implicating MEST in upd(7)mat SRS itself.


Assuntos
Síndrome de Silver-Russell , Cromossomos Humanos Par 7/genética , Impressão Genômica , Transtornos do Crescimento/genética , Humanos , Herança Paterna , Fenótipo , Síndrome de Silver-Russell/diagnóstico , Síndrome de Silver-Russell/genética , Dissomia Uniparental/genética
7.
Am J Med Genet A ; 188(10): 2999-3008, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35899837

RESUMO

Microduplication of the LCR22-A to LCR22-D region on chromosome 22q11.2 is a recurrent copy number variant found in clinical populations undergoing chromosomal microarray, and at lower frequency in controls. Often inherited, there is limited data on intellectual (IQ) and psychological functioning, particularly in those individuals ascertained through a family member rather than because of neurodevelopmental disorders. To investigate the range of cognitive-behavioral phenotypes associated with 22q11.2 duplication, we studied both probands and their non-proband carrier relatives. Twenty-two individuals with 22q11.2 duplication (10 probands, 12 non-proband carriers) were prospectively assessed with a battery of neuropsychological tests, physical examination, and medical record review. Assessment measures with standardized norms included IQ, academic, adaptive, psychiatric, behavioral, and social functioning. IQ and academic skills were within the average range, with a trend toward lower scores in probands versus non-probands. Adaptive skills were within age expectations. Prevalence of attention deficits (probands only) and anxiety (both groups) was high compared with norms. The prevalence of autism spectrum disorder was relatively low (5% of total sample). Assessment of both probands and non-probands with 22q11.2 duplication suggests that the phenotypic spectrum with respect to neurodevelopment overlaps significantly with the general population. IQ and academic abilities are in the average range for most of the individuals with 22q11.2 duplication in our study, regardless of ascertainment as a proband or non-proband relative. Symptoms of attention deficit and anxiety were identified, which require further study. Results of this study further clarify the phenotype of individuals with 22q11.2 duplication, and provides important information for genetic counseling regarding this recurrent copy number variant.


Assuntos
Anormalidades Múltiplas , Transtorno do Espectro Autista , Síndrome de DiGeorge , Anormalidades Múltiplas/genética , Transtorno do Espectro Autista/diagnóstico , Transtorno do Espectro Autista/genética , Duplicação Cromossômica/genética , Cromossomos Humanos Par 22 , Síndrome de DiGeorge/diagnóstico , Síndrome de DiGeorge/genética , Humanos
8.
Can J Neurol Sci ; 47(1): 61-68, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31587668

RESUMO

BACKGROUND: Epilepsy is a common neurological condition that shows a marked genetic predisposition. The advent of next-generation sequencing (NGS) has transformed clinical genetic testing by allowing the rapid screen for causative variants in multiple genes. There are currently no NGS-based multigene panel diagnostic tests available for epilepsy as a licensed clinical diagnostic test in Ontario, Canada. Eligible patient samples are sent out of country for testing by commercial laboratories, which incurs significant cost to the public healthcare system. OBJECTIVE: An expert Working Group of medical geneticists, pediatric neurologists/epileptologists, biochemical geneticists, and clinical molecular geneticists from Ontario was formed by the Laboratories and Genetics Branch of the Ontario Ministry of Health and Long-Term Care to develop a programmatic approach to implementing epilepsy panel testing as a provincial service. RESULTS: The Working Group made several recommendations for testing to support the clinical delivery of care in Ontario. First, an extension of community healthcare outcomes-based program should be incorporated to inform and educate ordering providers when requesting and interpreting a genetic panel test. Second, any gene panel testing must be "evidence-based" and takes into account varied clinical indications to reduce the chance of uncertain and secondary results. Finally, an ongoing evaluative process was recommended to ensure continued test improvement for the future. CONCLUSION: This epilepsy panel testing implementation plan will be a model for genetic care directed toward a specific set of conditions in the province and serve as a prototype for genetic testing for other genetically heterogeneous diseases.


Mise en œuvre d'un test diagnostique permettant en Ontario l'analyse d'un panel de plusieurs gènes liés à l'épilepsie.Contexte:L'épilepsie demeure un trouble neurologique fréquent dont la prédisposition génétique apparaît notable. L'émergence du séquençage de nouvelle génération (SNG) a aussi transformé les tests génétiques en permettant un dépistage rapide des variantes causales que l'on retrouve dans de nombreux gènes. À l'heure actuelle, il n'existe pas, pour l'épilepsie, de tests diagnostiques homologués qui permettent en Ontario l'analyse d'un panel de gènes en vertu du SNG. Les échantillons de patients admissibles sont alors envoyés à l'extérieur du Canada afin d'être analysés par des laboratoires commerciaux, ce qui pèse lourd dans les budgets des systèmes publics de santé. Objectif : Un groupe de travail formé d'experts (généticiens médicaux, neurologues pédiatriques et spécialistes en épileptologie, généticiens biochimiques et généticiens moléculaires cliniques) a été formé par le service des laboratoires et de la génétique des ministères de la Santé et des Soins de Longue durée de l'Ontario afin d'élaborer une démarche programmatique visant à mettre en œuvre des tests diagnostiques basés sur un panel de plusieurs gènes. Ces tests seraient ensuite reconnus à titre de service public. Résultats:En matière de dépistage, ce groupe de travail a ainsi émis plusieurs recommandations visant à accompagner la prestation clinique en Ontario. Tout d'abord, un programme s'inspirant du projet « ECHO ¼ (Extension of Community Healthcare Outcomes) devrait être ajouté dans le but de renseigner et de sensibiliser les prestataires de soins de santé qui demandent et qui interprètent ces tests basés sur un panel de plusieurs gènes. Ensuite, tout test de ce type doit reposer sur des preuves et tenir compte d'une panoplie d'indications cliniques afin de réduire les possibilités d'incertitude et de résultats secondaires. Enfin, il a été recommandé de procéder à un processus continu d'évaluation pour s'assurer que ces tests puissent être améliorés dans le futur. Conclusion:Ce plan de mise en œuvre de tests basés sur un panel de plusieurs gènes deviendra un modèle pour les soins destinés à un ensemble spécifique de problèmes de santé en Ontario. Outre l'épilepsie, il pourra servir comme prototype pour le dépistage d'autres maladies hétérogènes sur le plan génétique.

9.
J Med Genet ; 56(12): 792-800, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31300550

RESUMO

PurposeThe purpose of this document is to provide guidance for the use of next-generation sequencing (NGS, also known as massively parallel sequencing or MPS) in Canadian clinical genetic laboratories for detection of genetic variants in genomic DNA and mitochondrial DNA for inherited disorders, as well as somatic variants in tumour DNA for acquired cancers. They are intended for Canadian clinical laboratories engaged in developing, validating and using NGS methods. METHODS OF STATEMENT DEVELOPMENT: The document was drafted by the Canadian College of Medical Geneticists (CCMG) Ad Hoc Working Group on NGS Guidelines to make recommendations relevant to NGS. The statement was circulated for comment to the CCMG Laboratory Practice and Clinical Practice committees, and to the CCMG membership. Following incorporation of feedback, the document was approved by the CCMG Board of Directors. DISCLAIMER: The CCMG is a Canadian organisation responsible for certifying medical geneticists and clinical laboratory geneticists, and for establishing professional and ethical standards for clinical genetics services in Canada. The current CCMG Practice Guidelines were developed as a resource for clinical laboratories in Canada and should not be considered to be inclusive of all information laboratories should consider in the validation and use of NGS for a clinical laboratory service.


Assuntos
Testes Genéticos/normas , Genética Médica/normas , Guias como Assunto/normas , Sequenciamento de Nucleotídeos em Larga Escala/normas , Canadá , Serviços de Laboratório Clínico/normas , Genômica/normas , Humanos
10.
Am J Med Genet B Neuropsychiatr Genet ; 183(5): 268-276, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32372567

RESUMO

Autism spectrum disorder (ASD) is a relatively common childhood onset neurodevelopmental disorder with a complex genetic etiology. While progress has been made in identifying the de novo mutational landscape of ASD, the genetic factors that underpin the ASD's tendency to run in families are not well understood. In this study, nine extended pedigrees each with three or more individuals with ASD, and others with a lesser autism phenotype, were phenotyped and genotyped in an attempt to identify heritable copy number variants (CNVs). Although these families have previously generated linkage signals, no rare CNV segregated with these signals in any family. A small number of clinically relevant CNVs were identified. Only one CNV was identified that segregated with ASD phenotype; namely, a duplication overlapping DLGAP2 in three male offspring each with an ASD diagnosis. This gene encodes a synaptic scaffolding protein, part of a group of proteins known to be pathologically implicated in ASD. On the whole, however, the heritable nature of ASD in the families studied remains poorly understood.


Assuntos
Transtorno do Espectro Autista/genética , Variações do Número de Cópias de DNA , Análise Mutacional de DNA , Dosagem de Genes , Linhagem , Transtorno Autístico/genética , Criança , Pré-Escolar , Feminino , Ligação Genética , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Genótipo , Humanos , Lactente , Masculino , Mutação , Proteínas do Tecido Nervoso/genética , Fenótipo , Fatores de Risco , Sinapses/metabolismo , Sequenciamento Completo do Genoma
11.
J Med Genet ; 55(4): 215-221, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29496978

RESUMO

BACKGROUND: The aim of this guideline is to provide updated recommendations for Canadian genetic counsellors, medical geneticists, maternal fetal medicine specialists, clinical laboratory geneticists and other practitioners regarding the use of chromosomal microarray analysis (CMA) for prenatal diagnosis. This guideline replaces the 2011 Society of Obstetricians and Gynaecologists of Canada (SOGC)-Canadian College of Medical Geneticists (CCMG) Joint Technical Update. METHODS: A multidisciplinary group consisting of medical geneticists, genetic counsellors, maternal fetal medicine specialists and clinical laboratory geneticists was assembled to review existing literature and guidelines for use of CMA in prenatal care and to make recommendations relevant to the Canadian context. The statement was circulated for comment to the CCMG membership-at-large for feedback and, following incorporation of feedback, was approved by the CCMG Board of Directors on 5 June 2017 and the SOGC Board of Directors on 19 June 2017. RESULTS AND CONCLUSIONS: Recommendations include but are not limited to: (1) CMA should be offered following a normal rapid aneuploidy screen when multiple fetal malformations are detected (II-1A) or for nuchal translucency (NT) ≥3.5 mm (II-2B) (recommendation 1); (2) a professional with expertise in prenatal chromosomal microarray analysis should provide genetic counselling to obtain informed consent, discuss the limitations of the methodology, obtain the parental decisions for return of incidental findings (II-2A) (recommendation 4) and provide post-test counselling for reporting of test results (III-A) (recommendation 9); (3) the resolution of chromosomal microarray analysis should be similar to postnatal microarray platforms to ensure small pathogenic variants are detected. To minimise the reporting of uncertain findings, it is recommended that variants of unknown significance (VOUS) smaller than 500 Kb deletion or 1 Mb duplication not be routinely reported in the prenatal context. Additionally, VOUS above these cut-offs should only be reported if there is significant supporting evidence that deletion or duplication of the region may be pathogenic (III-B) (recommendation 5); (4) secondary findings associated with a medically actionable disorder with childhood onset should be reported, whereas variants associated with adult-onset conditions should not be reported unless requested by the parents or disclosure can prevent serious harm to family members (III-A) (recommendation 8).The working group recognises that there is variability across Canada in delivery of prenatal testing, and these recommendations were developed to promote consistency and provide a minimum standard for all provinces and territories across the country (recommendation 9).


Assuntos
Aconselhamento Genético , Guias de Prática Clínica como Assunto , Diagnóstico Pré-Natal/métodos , Natimorto , Criança , Feminino , Feto/fisiopatologia , Testes Genéticos , Humanos , Gravidez , Cuidado Pré-Natal
12.
Hum Mutat ; 39(11): 1650-1659, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30095202

RESUMO

Conflict resolution in genomic variant interpretation is a critical step toward improving patient care. Evaluating interpretation discrepancies in copy number variants (CNVs) typically involves assessing overlapping genomic content with focus on genes/regions that may be subject to dosage sensitivity (haploinsufficiency (HI) and/or triplosensitivity (TS)). CNVs containing dosage sensitive genes/regions are generally interpreted as "likely pathogenic" (LP) or "pathogenic" (P), and CNVs involving the same known dosage sensitive gene(s) should receive the same clinical interpretation. We compared the Clinical Genome Resource (ClinGen) Dosage Map, a publicly available resource documenting known HI and TS genes/regions, against germline, clinical CNV interpretations within the ClinVar database. We identified 251 CNVs overlapping known dosage sensitive genes/regions but not classified as LP or P; these were sent back to their original submitting laboratories for re-evaluation. Of 246 CNVs re-evaluated, an updated clinical classification was warranted in 157 cases (63.8%); no change was made to the current classification in 79 cases (32.1%); and 10 cases (4.1%) resulted in other types of updates to ClinVar records. This effort will add curated interpretation data into the public domain and allow laboratories to focus attention on more complex discrepancies.


Assuntos
Variações do Número de Cópias de DNA/genética , Genoma Humano/genética , Curadoria de Dados , Bases de Dados Genéticas , Variação Genética/genética , Humanos
13.
Genet Med ; 20(2): 172-180, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-28771244

RESUMO

PurposeHemiplegia is a subtype of cerebral palsy (CP) in which one side of the body is affected. Our earlier study of unselected children with CP demonstrated de novo and clinically relevant rare inherited genomic copy-number variations (CNVs) in 9.6% of participants. Here, we examined the prevalence and types of CNVs specifically in hemiplegic CP.MethodsWe genotyped 97 unrelated probands with hemiplegic CP and their parents. We compared their CNVs to those of 10,851 population controls, in order to identify rare CNVs (<0.1% frequency) that might be relevant to CP. We also sequenced exomes of "CNV-positive" trios.ResultsWe detected de novo CNVs and/or sex chromosome abnormalities in 7/97 (7.2%) of probands, impacting important developmental genes such as GRIK2, LAMA1, DMD, PTPRM, and DIP2C. In 18/97 individuals (18.6%), rare inherited CNVs were found, affecting loci associated with known genomic disorders (17p12, 22q11.21) or involving genes linked to neurodevelopmental disorders.ConclusionWe found an increased rate of de novo CNVs in the hemiplegic CP subtype (7.2%) compared to controls (1%). This result is similar to that for an unselected CP group. Combined with rare inherited CNVs, the genomic data impacts the understanding of the potential etiology of hemiplegic CP in 23/97 (23.7%) of participants.


Assuntos
Paralisia Cerebral/diagnóstico , Paralisia Cerebral/genética , Variações do Número de Cópias de DNA , Predisposição Genética para Doença , Hemiplegia/diagnóstico , Hemiplegia/genética , Fenótipo , Adolescente , Criança , Pré-Escolar , Aberrações Cromossômicas , Estudos Transversais , Feminino , Estudos de Associação Genética , Genótipo , Humanos , Masculino , Neuroimagem/métodos , Linhagem , Estudos Retrospectivos , Fatores de Risco , Sequenciamento do Exoma
14.
Genet Med ; 20(4): 435-443, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-28771251

RESUMO

PurposeGenetic testing is an integral diagnostic component of pediatric medicine. Standard of care is often a time-consuming stepwise approach involving chromosomal microarray analysis and targeted gene sequencing panels, which can be costly and inconclusive. Whole-genome sequencing (WGS) provides a comprehensive testing platform that has the potential to streamline genetic assessments, but there are limited comparative data to guide its clinical use.MethodsWe prospectively recruited 103 patients from pediatric non-genetic subspecialty clinics, each with a clinical phenotype suggestive of an underlying genetic disorder, and compared the diagnostic yield and coverage of WGS with those of conventional genetic testing.ResultsWGS identified diagnostic variants in 41% of individuals, representing a significant increase over conventional testing results (24%; P = 0.01). Genes clinically sequenced in the cohort (n = 1,226) were well covered by WGS, with a median exonic coverage of 40 × ±8 × (mean ±SD). All the molecular diagnoses made by conventional methods were captured by WGS. The 18 new diagnoses made with WGS included structural and non-exonic sequence variants not detectable with whole-exome sequencing, and confirmed recent disease associations with the genes PIGG, RNU4ATAC, TRIO, and UNC13A.ConclusionWGS as a primary clinical test provided a higher diagnostic yield than conventional genetic testing in a clinically heterogeneous cohort.


Assuntos
Estudos de Associação Genética , Doenças Genéticas Inatas/diagnóstico , Doenças Genéticas Inatas/genética , Predisposição Genética para Doença , Testes Genéticos , Análise de Sequência de DNA , Sequenciamento Completo do Genoma , Biologia Computacional/métodos , Variações do Número de Cópias de DNA , Exoma , Feminino , Estudos de Associação Genética/métodos , Estudos de Associação Genética/normas , Testes Genéticos/métodos , Testes Genéticos/normas , Variação Genética , Humanos , Masculino , Anotação de Sequência Molecular , Fenótipo , Análise de Sequência de DNA/métodos , Análise de Sequência de DNA/normas , Sequenciamento do Exoma/métodos , Sequenciamento do Exoma/normas , Sequenciamento Completo do Genoma/métodos , Sequenciamento Completo do Genoma/normas
15.
CMAJ ; 190(5): E126-E136, 2018 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-29431110

RESUMO

BACKGROUND: The Personal Genome Project Canada is a comprehensive public data resource that integrates whole genome sequencing data and health information. We describe genomic variation identified in the initial recruitment cohort of 56 volunteers. METHODS: Volunteers were screened for eligibility and provided informed consent for open data sharing. Using blood DNA, we performed whole genome sequencing and identified all possible classes of DNA variants. A genetic counsellor explained the implication of the results to each participant. RESULTS: Whole genome sequencing of the first 56 participants identified 207 662 805 sequence variants and 27 494 copy number variations. We analyzed a prioritized disease-associated data set (n = 1606 variants) according to standardized guidelines, and interpreted 19 variants in 14 participants (25%) as having obvious health implications. Six of these variants (e.g., in BRCA1 or mosaic loss of an X chromosome) were pathogenic or likely pathogenic. Seven were risk factors for cancer, cardiovascular or neurobehavioural conditions. Four other variants - associated with cancer, cardiac or neurodegenerative phenotypes - remained of uncertain significance because of discrepancies among databases. We also identified a large structural chromosome aberration and a likely pathogenic mitochondrial variant. There were 172 recessive disease alleles (e.g., 5 individuals carried mutations for cystic fibrosis). Pharmacogenomics analyses revealed another 3.9 potentially relevant genotypes per individual. INTERPRETATION: Our analyses identified a spectrum of genetic variants with potential health impact in 25% of participants. When also considering recessive alleles and variants with potential pharmacologic relevance, all 56 participants had medically relevant findings. Although access is mostly limited to research, whole genome sequencing can provide specific and novel information with the potential of major impact for health care.


Assuntos
Variação Genética/genética , Genoma Humano/genética , Análise de Sequência de DNA/métodos , Sequenciamento Completo do Genoma/métodos , Canadá , Feminino , Genes Recessivos/genética , Predisposição Genética para Doença/genética , Humanos , Masculino
16.
Genet Med ; 19(11): 1268-1275, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28471434

RESUMO

PurposeWhole-exome (WES) and whole-genome sequencing (WGS) increase the diagnostic yield in autism spectrum disorder (ASD) compared to chromosomal microarray (CMA), but there have been no comprehensive cost analyses. The objective was to perform such an assessment of CMA, WES, and WGS and compare the incremental cost per additional positive finding in hypothetical testing scenarios.MethodsFive-year patient and program costs were estimated from an institutional perspective. WES and WGS estimates were based on HiSeq 2500 with an additional WGS estimate for HiSeq X platforms. Parameter uncertainty was assessed with probabilistic and deterministic sensitivity analysis.ResultsThe cost per ASD sample was CAD$1,655 (95% CI: 1,611; 1,699) for WES, CAD$2,851 (95% CI: 2,750; 2,956) for WGS on HiSeq X, and CAD$5,519 (95% CI: 5,244; 5,785) on HiSeq 2500, compared to CAD$744 (95% CI 714, 773) for CMA. The incremental cost was over CAD$25,000 per additional positive finding if CMA was replaced by newer technology.ConclusionWhile costs for WES and WGS remain high, future reductions in material and equipment costs, and increased understanding of newly discovered variants and variants of unknown significance will lead to improved value.


Assuntos
Transtorno do Espectro Autista/genética , Sequenciamento do Exoma , Análise em Microsséries/economia , Sequenciamento Completo do Genoma/economia , Transtorno do Espectro Autista/diagnóstico , Transtorno do Espectro Autista/economia , Cromossomos Humanos , Custos e Análise de Custo , Genoma Humano , Humanos
17.
Genet Med ; 19(1): 53-61, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27195815

RESUMO

PURPOSE: The purpose of the current study was to assess the penetrance of NRXN1 deletions. METHODS: We compared the prevalence and genomic extent of NRXN1 deletions identified among 19,263 clinically referred cases to that of 15,264 controls. The burden of additional clinically relevant copy-number variations (CNVs) was used as a proxy to estimate the relative penetrance of NRXN1 deletions. RESULTS: We identified 41 (0.21%) previously unreported exonic NRXN1 deletions ascertained for developmental delay/intellectual disability that were significantly greater than in controls (odds ratio (OR) = 8.14; 95% confidence interval (CI): 2.91-22.72; P < 0.0001). Ten (22.7%) of these had a second clinically relevant CNV. Subjects with a deletion near the 3' end of NRXN1 were significantly more likely to have a second rare CNV than subjects with a 5' NRXN1 deletion (OR = 7.47; 95% CI: 2.36-23.61; P = 0.0006). The prevalence of intronic NRXN1 deletions was not statistically different between cases and controls (P = 0.618). The majority (63.2%) of intronic NRXN1 deletion cases had a second rare CNV at a prevalence twice as high as that for exonic NRXN1 deletion cases (P = 0.0035). CONCLUSIONS: The results support the importance of exons near the 5' end of NRXN1 in the expression of neurodevelopmental disorders. Intronic NRXN1 deletions do not appear to substantially increase the risk for clinical phenotypes.Genet Med 19 1, 53-61.


Assuntos
Moléculas de Adesão Celular Neuronais/genética , Predisposição Genética para Doença , Proteínas do Tecido Nervoso/genética , Transtornos do Neurodesenvolvimento/epidemiologia , Transtornos do Neurodesenvolvimento/genética , Proteínas de Ligação ao Cálcio , Criança , Variações do Número de Cópias de DNA , Éxons/genética , Feminino , Genótipo , Humanos , Íntrons/genética , Masculino , Análise em Microsséries , Moléculas de Adesão de Célula Nervosa , Transtornos do Neurodesenvolvimento/fisiopatologia , Penetrância , Fenótipo , Deleção de Sequência
18.
Am J Med Genet A ; 173(9): 2467-2471, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28742278

RESUMO

We report on a girl diagnosed prenatally with agenesis of the corpus callosum (ACC) on fetal ultrasound and MRI. On postnatal follow-up she was noted to have developmental delay, facial dysmorphism, autism spectrum disorder, and posterior polymorphous corneal dystrophy (PPD). Array-comparative genomic hybridization analysis (Array-CGH) showed a 2.05 Mb de novo interstitial deletion at 10p11.23p11.22. The deleted region overlaps 1 OMIM Morbid Map gene, ZEB1 (the zinc finger E-box binding homeobox transcription factor 1), previously associated with posterior polymorphous corneal dystrophy type 3 (PPCD3). To our best knowledge this is the first reported case with a deletion of the ZEB1 gene in an individual with ACC and PPD, showing that the haploinsufficiency of the ZEB1 is likely the cause of our patient's phenotype.


Assuntos
Agenesia do Corpo Caloso/genética , Transtorno do Espectro Autista/genética , Distrofias Hereditárias da Córnea/genética , Homeobox 1 de Ligação a E-box em Dedo de Zinco/genética , Agenesia do Corpo Caloso/diagnóstico por imagem , Agenesia do Corpo Caloso/fisiopatologia , Transtorno do Espectro Autista/diagnóstico por imagem , Transtorno do Espectro Autista/fisiopatologia , Hibridização Genômica Comparativa , Distrofias Hereditárias da Córnea/diagnóstico por imagem , Distrofias Hereditárias da Córnea/fisiopatologia , Deficiências do Desenvolvimento/diagnóstico por imagem , Deficiências do Desenvolvimento/genética , Deficiências do Desenvolvimento/fisiopatologia , Feminino , Humanos , Recém-Nascido , Imageamento por Ressonância Magnética , Deleção de Sequência/genética , Ultrassonografia Pré-Natal
19.
Am J Med Genet A ; 173(10): 2725-2730, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28840640

RESUMO

Disorders of brain formation can occur from pathogenic variants in various alpha and beta tubulin genes. Heterozygous pathogenic variants in the beta tubulin isotype A gene, TUBB2A, have been recently implicated in brain malformations, seizures, and developmental delay. Limited information is known regarding the phenotypic spectrum associated with pathogenic variants in this gene given the rarity of the condition. We report the sixth individual with a de novo heterozygous TUBB2A pathogenic variant, who presented with a severe neurological phenotype along with unique features of arthrogryposis multiplex congenita, optic nerve hypoplasia, dysmorphic facial features, and vocal cord paralysis, thereby expanding the gene-related phenotype.


Assuntos
Artrogripose/genética , Encefalopatias/genética , Deficiências do Desenvolvimento/genética , Mutação de Sentido Incorreto , Tubulina (Proteína)/genética , Artrogripose/complicações , Artrogripose/patologia , Encefalopatias/complicações , Encefalopatias/patologia , Pré-Escolar , Deficiências do Desenvolvimento/complicações , Deficiências do Desenvolvimento/patologia , Evolução Fatal , Predisposição Genética para Doença , Humanos , Masculino
20.
Am J Med Genet A ; 173(5): 1287-1293, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28371330

RESUMO

We present an 18-year-old boy with cerebral palsy, intellectual disability, speech delay, and seizures. He carries a likely pathogenic 1.3 Mb de novo heterozygous deletion in the 4q21.22 microdeletion syndrome region. He also carries a 436 kb maternally-inherited duplication impacting the first three exons of CHRNA7. The majority of previously published cases with 4q21.22 syndrome shared common features including growth restriction, muscular hypotonia, and absent or severely delayed speech. Using copy number variation (CNV) data available for other subjects, we defined a minimal critical region of 170.8 kb within the syndromic region, encompassing HNRNPD. We also identified a larger 2 Mb critical region encompassing ten protein-coding genes, of which six (PRKG2, RASGEF1B, HNRNPDL, HNRNPD, LIN54, COPS4) have a significantly low number of truncating loss-of-function mutations. Long-range chromatin interaction data suggest that this deletion may alter chromatin interactions at the 4q21.22 microdeletion region. We suggest that the deletion or misregulation of these genes is likely to contribute to the neurodevelopmental and neuromuscular abnormalities in 4q21.22 syndrome.


Assuntos
Paralisia Cerebral/genética , Cromossomos Humanos Par 4/genética , Deficiência Intelectual/genética , Transtornos do Desenvolvimento da Linguagem/genética , Adolescente , Paralisia Cerebral/fisiopatologia , Deleção Cromossômica , Variações do Número de Cópias de DNA/genética , Éxons/genética , Humanos , Deficiência Intelectual/fisiopatologia , Transtornos do Desenvolvimento da Linguagem/fisiopatologia , Masculino , Receptor Nicotínico de Acetilcolina alfa7/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA