Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Tipo de documento
Ano de publicação
Intervalo de ano de publicação
1.
Expert Rev Mol Med ; 26: e9, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38618935

RESUMO

Glaucoma and uveitis are non-vascular ocular diseases which are among the leading causes of blindness and visual loss. These conditions have distinct characteristics and mechanisms but share a multifactorial and complex nature, making their management challenging and burdensome for patients and clinicians. Furthermore, the lack of symptoms in the early stages of glaucoma and the diverse aetiology of uveitis hinder timely and accurate diagnoses, which are a cause of poor visual outcomes under both conditions. Although current treatment is effective in most cases, it is often associated with low patient adherence and adverse events, which directly impact the overall therapeutic success. Therefore, long-lasting alternatives with improved safety and efficacy are needed. Gene therapy, particularly utilising adeno-associated virus (AAV) vectors, has emerged as a promising approach to address unmet needs in these diseases. Engineered capsids with enhanced tropism and lower immunogenicity have been proposed, along with constructs designed for targeted and controlled expression. Additionally, several pathways implicated in the pathogenesis of these conditions have been targeted with single or multigene expression cassettes, gene editing and silencing approaches. This review discusses strategies employed in AAV-based gene therapies for glaucoma and non-infectious uveitis and provides an overview of current progress and future directions.


Assuntos
Glaucoma , Uveíte , Humanos , Glaucoma/genética , Glaucoma/terapia , Uveíte/genética , Uveíte/terapia , Olho , Cegueira , Terapia Genética
2.
Gut Microbes ; 16(1): 2357767, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38783686

RESUMO

The ability of bacteria to sense and respond to mechanical forces has important implications for pathogens during infection, as they experience wide fluid shear fluctuations in the host. However, little is known about how mechanical forces encountered in the infected host drive microbial pathogenesis. Herein, we combined mathematical modeling with hydrodynamic bacterial culture to profile transcriptomic and pathogenesis-related phenotypes of multidrug resistant S. Typhimurium (ST313 D23580) under different fluid shear conditions relevant to its transition from the intestinal tract to the bloodstream. We report that D23580 exhibited incremental changes in transcriptomic profiles that correlated with its pathogenic phenotypes in response to these progressive increases in fluid shear. This is the first demonstration that incremental changes in fluid shear forces alter stress responses and gene expression in any ST313 strain and offers mechanistic insight into how forces encountered by bacteria during infection might impact their disease-causing ability in unexpected ways.


Assuntos
Farmacorresistência Bacteriana Múltipla , Fenótipo , Salmonella typhimurium , Salmonella typhimurium/genética , Farmacorresistência Bacteriana Múltipla/genética , Infecções por Salmonella/microbiologia , Infecções por Salmonella/genética , Regulação Bacteriana da Expressão Gênica , Humanos , Hidrodinâmica , Transcriptoma , Estresse Mecânico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA