Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 84
Filtrar
1.
J Intern Med ; 292(2): 296-307, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-34982494

RESUMO

BACKGROUND: Sterol O-acyltransferase 2 (Soat2) encodes acyl-coenzyme A:cholesterol acyltransferase 2 (ACAT2), which synthesizes cholesteryl esters in hepatocytes and enterocytes fated either to storage or to secretion into nascent triglyceride-rich lipoproteins. OBJECTIVES: We aimed to unravel the molecular mechanisms leading to reduced hepatic steatosis when Soat2 is depleted in mice. METHODS: Soat2-/- and wild-type mice were fed a high-fat, a high-carbohydrate, or a chow diet, and parameters of lipid and glucose metabolism were assessed. RESULTS: Glucose, insulin, homeostatic model assessment for insulin resistance (HOMA-IR), oral glucose tolerance (OGTT), and insulin tolerance tests significantly improved in Soat2-/- mice, irrespective of the dietary regimes (2-way ANOVA). The significant positive correlations between area under the curve (AUC) OGTT (r = 0.66, p < 0.05), serum fasting insulin (r = 0.86, p < 0.05), HOMA-IR (r = 0.86, p < 0.05), Adipo-IR (0.87, p < 0.05), hepatic triglycerides (TGs) (r = 0.89, p < 0.05), very-low-density lipoprotein (VLDL)-TG (r = 0.87, p < 0.05) and the hepatic cholesteryl esters in wild-type mice disappeared in Soat2-/- mice. Genetic depletion of Soat2 also increased whole-body oxidation by 30% (p < 0.05) compared to wild-type mice. CONCLUSION: Our data demonstrate that ACAT2-generated cholesteryl esters negatively affect the metabolic control by retaining TG in the liver and that genetic inhibition of Soat2 improves liver steatosis via partitioning of lipids into secretory (VLDL-TG) and oxidative (fatty acids) pathways.


Assuntos
Fígado Gorduroso , Insulinas , Esterol O-Aciltransferase , Animais , Ésteres do Colesterol/metabolismo , Fígado Gorduroso/metabolismo , Glucose/metabolismo , Insulinas/metabolismo , Lipoproteínas VLDL/metabolismo , Fígado/metabolismo , Masculino , Camundongos , Camundongos Knockout , Esterol O-Aciltransferase/genética , Esterol O-Aciltransferase/metabolismo , Triglicerídeos , Esterol O-Aciltransferase 2
2.
J Autoimmun ; 124: 102723, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34481107

RESUMO

The initiation and progression of autoimmune disorders such as multiple sclerosis (MS) is linked to aberrant cholesterol metabolism and overt inflammation. Liver X receptors (LXR) are nuclear receptors that function at the crossroads of cholesterol metabolism and immunity, and their activation is considered a promising therapeutic strategy to attenuate autoimmunity. However, despite clear functional heterogeneity and cell-specific expression profiles, the impact of the individual LXR isoforms on autoimmunity remains poorly understood. Here, we show that LXRα and LXRß have an opposite impact on immune cell function and disease severity in the experimental autoimmune encephalomyelitis model, an experimental MS model. While Lxrα deficiency aggravated disease pathology and severity, absence of Lxrß was protective. Guided by flow cytometry and by using cell-specific knockout models, reduced disease severity in Lxrß-deficient mice was primarily attributed to changes in peripheral T cell physiology and occurred independent from alterations in microglia function. Collectively, our findings indicate that LXR isoforms play functionally non-redundant roles in autoimmunity, potentially having broad implications for the development of LXR-based therapeutic strategies aimed at dampening autoimmunity and neuroinflammation.


Assuntos
Encefalomielite Autoimune Experimental/imunologia , Receptores X do Fígado/metabolismo , Microglia/patologia , Esclerose Múltipla/imunologia , Linfócitos T/imunologia , Animais , Autoimunidade , Colesterol/metabolismo , Modelos Animais de Doenças , Humanos , Receptores X do Fígado/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Inflamação Neurogênica
3.
Hepatology ; 72(2): 656-670, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-31785104

RESUMO

BACKGROUND AND AIMS: Genetically modified mice have been used extensively to study human disease. However, the data gained are not always translatable to humans because of major species differences. Liver-humanized mice (LHM) are considered a promising model to study human hepatic and systemic metabolism. Therefore, we aimed to further explore their lipoprotein metabolism and to characterize key hepatic species-related, physiological differences. APPROACH AND RESULTS: Fah-/- , Rag2-/- , and Il2rg-/- knockout mice on the nonobese diabetic (FRGN) background were repopulated with primary human hepatocytes from different donors. Cholesterol lipoprotein profiles of LHM showed a human-like pattern, characterized by a high ratio of low-density lipoprotein to high-density lipoprotein, and dependency on the human donor. This pattern was determined by a higher level of apolipoprotein B100 in circulation, as a result of lower hepatic mRNA editing and low-density lipoprotein receptor expression, and higher levels of circulating proprotein convertase subtilisin/kexin type 9. As a consequence, LHM lipoproteins bind to human aortic proteoglycans in a pattern similar to human lipoproteins. Unexpectedly, cholesteryl ester transfer protein was not required to determine the human-like cholesterol lipoprotein profile. Moreover, LHM treated with GW3965 mimicked the negative lipid outcomes of the first human trial of liver X receptor stimulation (i.e., a dramatic increase of cholesterol and triglycerides in circulation). Innovatively, LHM allowed the characterization of these effects at a molecular level. CONCLUSIONS: LHM represent an interesting translatable model of human hepatic and lipoprotein metabolism. Because several metabolic parameters displayed donor dependency, LHM may also be used in studies for personalized medicine.


Assuntos
Benzoatos/farmacocinética , Benzilaminas/farmacocinética , Colesterol/metabolismo , Hepatócitos/metabolismo , Lipoproteínas/metabolismo , Receptores X do Fígado/agonistas , Fígado/metabolismo , Animais , Hepatócitos/transplante , Humanos , Fígado/cirurgia , Masculino , Camundongos , Camundongos Knockout
4.
Genes Dev ; 24(4): 381-95, 2010 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-20159957

RESUMO

The orphan receptor LRH-1 and the oxysterol receptors LXRalpha and LXRbeta are established transcriptional regulators of lipid metabolism that appear to control inflammatory processes. Here, we investigate the anti-inflammatory actions of these nuclear receptors in the hepatic acute phase response (APR). We report that selective synthetic agonists induce SUMOylation-dependent recruitment of either LRH-1 or LXR to hepatic APR promoters and prevent the clearance of the N-CoR corepressor complex upon cytokine stimulation. Investigations of the APR in vivo, using LXR knockout mice, indicate that the anti-inflammatory actions of LXR agonists are triggered selectively by the LXRbeta subtype. We further find that hepatic APR responses in small ubiquitin-like modifier-1 (SUMO-1) knockout mice are increased, which is due in part to diminished LRH-1 action at APR promoters. Finally, we provide evidence that the metabolically important coregulator GPS2 functions as a hitherto unrecognized transrepression mediator of interactions between SUMOylated nuclear receptors and the N-CoR corepressor complex. Our study extends the knowledge of anti-inflammatory mechanisms and pathways directed by metabolic nuclear receptor-corepressor networks to the control of the hepatic APR, and implies alternative pharmacological strategies for the treatment of human metabolic diseases associated with inflammation.


Assuntos
Reação de Fase Aguda/imunologia , Peptídeos e Proteínas de Sinalização Intracelular/imunologia , Fígado/imunologia , Receptores Nucleares Órfãos/imunologia , Receptores Citoplasmáticos e Nucleares/imunologia , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/imunologia , Animais , Anti-Inflamatórios/imunologia , Células COS , Chlorocebus aethiops , Feminino , Regulação da Expressão Gênica , Células HeLa , Humanos , Receptores X do Fígado , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout
5.
Mol Cell ; 34(4): 510-8, 2009 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-19481530

RESUMO

Transcriptional coregulators, rather than ligand signals, are suspected to confer context and pathway specificity to nuclear receptor signaling, but the identity of such specifying coregulators and the underlying molecular mechanisms remain largely enigmatic. Here we address this issue in metabolic oxysterol receptor LXR pathways and describe the selective requirement of GPS2 for ABCG1 cholesterol transporter gene transcription and cholesterol efflux from macrophages. We implicate GPS2 in facilitating LXR recruitment to an ABCG1-specific promoter/enhancer unit upon ligand activation and identify functional links to histone H3K9 demethylation. We further describe fundamental differences between ABCG1 and ABCA1 with regard to GPS2 in relation to other coregulators, which are likely to apply to additional LXR-regulated genes. Our work identifies a coregulator-dependent epigenetic mechanism governing the access of a nuclear receptor to communicating regulatory regions in the genome. The pathway and coregulator selectivity of this mechanism implies pharmacological possibilities for the development of selective LXR agonists.


Assuntos
Transportadores de Cassetes de Ligação de ATP/metabolismo , Colesterol/metabolismo , Proteínas de Ligação a DNA/metabolismo , Histonas/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Receptores Citoplasmáticos e Nucleares/metabolismo , Membro 1 da Subfamília G de Transportadores de Cassetes de Ligação de ATP , Transportadores de Cassetes de Ligação de ATP/genética , Animais , Linhagem Celular , Proteínas de Ligação a DNA/genética , Elementos Facilitadores Genéticos , Epistasia Genética , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Receptores X do Fígado , Macrófagos/citologia , Macrófagos/metabolismo , Receptores Nucleares Órfãos , Regiões Promotoras Genéticas , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Receptores Citoplasmáticos e Nucleares/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Receptores X de Retinoides/genética , Receptores X de Retinoides/metabolismo , Transcrição Gênica , Técnicas do Sistema de Duplo-Híbrido
6.
Diabetologia ; 59(3): 634-43, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26684450

RESUMO

AIMS/HYPOTHESIS: Diabetic cardiomyopathy is a myocardial disease triggered by impaired insulin signalling, increased fatty acid uptake and diminished glucose utilisation. Liver X receptors (LXRs) are key transcriptional regulators of metabolic homeostasis. However, their effect in the diabetic heart is largely unknown. METHODS: We cloned murine Lxrα (also known as Nr1h3) behind the α-myosin heavy chain (αMhc; also known as Myh6) promoter to create transgenic (Lxrα-Tg) mice and transgene-negative littermates (wild-type [WT]). A mouse model of type 2 diabetes was induced by a high-fat diet (HFD, 60% energy from fat) over 16 weeks and compared with a low-fat diet (10% energy from fat). A mouse model of type 1 diabetes was induced via streptozotocin injection over 12 weeks. RESULTS: HFD manifested comparable increases in body weight, plasma triacylglycerol and insulin resistance per OGTT in Lxrα-Tg and WT mice. HFD significantly increased left ventricular weight by 21% in WT hearts, but only by 5% in Lxrα-Tg. To elucidate metabolic effects in the heart, microPET (positron emission tomography) imaging revealed that cardiac glucose uptake was increased by 1.4-fold in WT mice on an HFD, but further augmented by 1.7-fold in Lxrα-Tg hearts, in part through 5' adenosine monophosphate-activated protein kinase (AMPK) phosphorylation and restoration of glucose transporter 4 (GLUT4). By contrast, streptozotocin-induced ablation of insulin signalling diminished cardiac glucose uptake levels and caused cardiac dysfunction, indicating that insulin may be important in LXRα-mediated glucose uptake. Chromatin immunoprecipitation assays identified natriuretic peptides, atrial natriuretic peptide (ANP) and B-type natriuretic peptide (BNP), as potential direct targets of cardiac LXRα overexpression. CONCLUSIONS/INTERPRETATION: Cardiac-specific LXRα overexpression ameliorates the progression of HFD-induced left ventricular hypertrophy in association with increased glucose reliance and natriuretic peptide signalling during the early phase of diabetic cardiomyopathy. These findings implicate a potential protective role for LXR in targeting metabolic disturbances underlying diabetes.


Assuntos
Cardiomegalia/metabolismo , Cardiomegalia/terapia , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/terapia , Receptores X do Fígado/fisiologia , Obesidade/complicações , Animais , Imunoprecipitação da Cromatina , Diabetes Mellitus Tipo 2/etiologia , Dieta Hiperlipídica , Modelos Animais de Doenças , Receptores X do Fígado/genética , Camundongos , Camundongos Transgênicos , Miocárdio/metabolismo
7.
Lab Invest ; 96(2): 230-8, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26595172

RESUMO

Nuclear hormone receptor liver X receptor-alpha (LXRα) has a vital role in cholesterol homeostasis and is reported to have a role in adipose function and obesity although this is controversial. Conversely, mesenchymal stem cells (MSCs) are suggested to be a major source of adipocyte generation. Accordingly, we examined the role of LXRα in adipogenesis of MSCs. Adult murine MSCs (mMSCs) were isolated from wild-type (WT) and LXR-null mice. Using WT mMSCs, we further generated cell lines stably overexpressing GFP-LXRα (mMSC/LXRα/GFP) or GFP alone (mMSC/GFP) by retroviral infection. Confluent mMSCs were differentiated into adipocytes by the established protocol. Compared with MSCs isolated from WT mice, MSCs from LXR-null mice showed significantly increased adipogenesis, as determined by lipid droplet accumulation and adipogenesis-related gene expression. Moreover, mMSCs stably overexpressing GFP-LXRα (mMSC/LXRα/GFP) exhibited significantly decreased adipogenesis compared with mMSCs overexpressing GFP alone (mMSC/GFP). Since Wnt/beta-catenin signaling is reported to inhibit adipogenesis, we further examined it. The LXR-null group showed significantly decreased Wnt expression accompanied by a decrease of cellular beta-catenin (vs WT). The mMSC/LXRα/GFP group exhibited significantly increased Wnt expression accompanied by an increase of cellular beta-catenin (vs mMSC/GFP). These data demonstrate that LXRα has an inhibitory effect on adipogenic differentiation in mMSCs with Wnt/beta-catenin signaling. These results provide important insights into the pathophysiology of obesity and obesity-related consequences such as metabolic syndrome and may identify potential therapeutic targets.


Assuntos
Adipócitos/metabolismo , Adipogenia/fisiologia , Diferenciação Celular/fisiologia , Receptores Nucleares Órfãos/metabolismo , Proteínas Wnt/metabolismo , beta Catenina/metabolismo , Animais , Células Cultivadas , Humanos , Receptores X do Fígado , Células-Tronco Mesenquimais/citologia , Camundongos , Receptores Nucleares Órfãos/genética , Via de Sinalização Wnt/fisiologia
8.
J Lipid Res ; 56(4): 771-85, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25724563

RESUMO

Liver X receptor (LXR)α and LXRß play key roles in hepatic de novo lipogenesis through their regulation of lipogenic genes, including sterol regulatory element-binding protein (SREBP)-1c and carbohydrate responsive element-binding protein (ChREBP). LXRs activate lipogenic gene transcription in response to feeding, which is believed to be mediated by insulin. We have previously shown that LXRs are targets for glucose-hexosamine-derived O-linked ß-N-acetylglucosamine (O-GlcNAc) modification enhancing their ability to regulate SREBP-1c promoter activity in vitro. To elucidate insulin-independent effects of feeding on LXR-mediated lipogenic gene expression in vivo, we subjected control and streptozotocin-treated LXRα/ß(+/+) and LXRα/ß(-/-) mice to a fasting-refeeding regime. We show that under hyperglycemic and hypoinsulinemic conditions, LXRs maintain their ability to upregulate the expression of glycolytic and lipogenic enzymes, including glucokinase (GK), SREBP-1c, ChREBPα, and the newly identified shorter isoform ChREBPß. Furthermore, glucose-dependent increases in LXR/retinoid X receptor-regulated luciferase activity driven by the ChREBPα promoter was mediated, at least in part, by O-GlcNAc transferase (OGT) signaling in Huh7 cells. Moreover, we show that LXR and OGT interact and colocalize in the nucleus and that loss of LXRs profoundly reduced nuclear O-GlcNAc signaling and ChREBPα promoter binding activity in vivo. In summary, our study provides evidence that LXRs act as nutrient and glucose metabolic sensors upstream of ChREBP by modulating GK expression, nuclear O-GlcNAc signaling, and ChREBP expression and activity.


Assuntos
Acetilglucosamina/metabolismo , Núcleo Celular/metabolismo , Fígado/citologia , Fígado/metabolismo , Proteínas Nucleares/metabolismo , Receptores Nucleares Órfãos/metabolismo , Transdução de Sinais , Fatores de Transcrição/metabolismo , Acilação/efeitos dos fármacos , Animais , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos , Linhagem Celular , Núcleo Celular/efeitos dos fármacos , Ingestão de Alimentos , Jejum , Regulação da Expressão Gênica/efeitos dos fármacos , Glucose/farmacologia , Humanos , Lipogênese/efeitos dos fármacos , Fígado/efeitos dos fármacos , Fígado/enzimologia , Receptores X do Fígado , Masculino , Camundongos , Proteínas Nucleares/genética , Receptores Nucleares Órfãos/deficiência , Regiões Promotoras Genéticas/genética , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Transporte Proteico/efeitos dos fármacos , Piruvato Quinase/metabolismo , Transdução de Sinais/efeitos dos fármacos , Estreptozocina/efeitos adversos , Fatores de Transcrição/genética , Ativação Transcricional/efeitos dos fármacos , Triglicerídeos/biossíntese , Triglicerídeos/sangue
9.
Eur J Immunol ; 44(7): 1896-903, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24777958

RESUMO

Oxysterols are involved in maintaining cellular cholesterol levels. Recently, oxysterols have been demonstrated to modulate the function of immune cells and tumor growth. These effects can be dependent on the activation of the oxysterol-binding liver X receptors (LXRs) or, as recently demonstrated for T and B cells, DCs and neutrophils, can be independent of LXR activation. LXR-dependent oxysterol effects can be ascribed to the activation of LXRα, LXRß or LXRαß isoforms, which induces transcriptional activation or trans-repression of target genes. The prevalent activation of one isoform seems to be cell-, tissue-, or context-specific, as shown in some pathologic processes, i.e., infectious diseases, atherosclerosis, and autoimmunity. Oxysterol-LXR signaling has recently been shown to inhibit antitumor immune responses, as well as to modulate tumor cell growth. Here, we review the mechanisms that link oxysterols to tumor growth, and discuss possible networks at the basis of LXR-dependent and -independent oxysterol effects on immune cells and tumor development.


Assuntos
Colesterol/metabolismo , Hidroxicolesteróis/metabolismo , Imunidade , Neoplasias/patologia , Receptores Nucleares Órfãos/fisiologia , Animais , Células Dendríticas/imunologia , Humanos , Receptores X do Fígado , Linfócitos/imunologia , Macrófagos/fisiologia , Monócitos/fisiologia , Receptores CCR7/fisiologia , Microambiente Tumoral
10.
Hepatology ; 59(5): 1791-802, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24277692

RESUMO

UNLABELLED: Liver X receptor (LXR) activation stimulates triglyceride (TG) accumulation in the liver. Several lines of evidence indicate that estradiol-17ß (E2) reduces TG levels in the liver; however, the molecular mechanism underlying the E2 effect remains unclear. Here, we show that administration of E2 attenuated sterol regulatory element-binding protein (SREBP)-1 expression and TG accumulation induced by LXR activation in mouse liver. In estrogen receptor alpha (ERα) knockout (KO) and liver-specific ERα KO mice, E2 did not affect SREBP-1 expression or TG levels. Molecular analysis revealed that ERα is recruited to the SREBP-1c promoter through direct binding to LXR and inhibits coactivator recruitment to LXR in an E2-dependent manner. Our findings demonstrate the existence of a novel liver-dependent mechanism controlling TG accumulation through the nonclassical ER/LXR pathway. To confirm that a nonclassical ER/LXR pathway regulates ERα-dependent inhibition of LXR activation, we screened ERα ligands that were able to repress LXR activation without enhancing ERα transcriptional activity, and, as a result, we identified the phytoestrogen, phloretin. In mice, phloretin showed no estrogenic activity; however, it did reduce SREBP-1 expression and TG levels in liver of mice fed a high-fat diet to an extent similar to that of E2. CONCLUSION: We propose that ER ligands reduce TG levels in the liver by inhibiting LXR activation through a nonclassical pathway. Our results also indicate that the effects of ER on TG accumulation can be distinguished from its estrogenic effects by a specific ER ligand.


Assuntos
Fígado Gorduroso/prevenção & controle , Receptores Nucleares Órfãos/fisiologia , Receptores de Estrogênio/fisiologia , Animais , Dieta Hiperlipídica , Estradiol/farmacologia , Feminino , Ligantes , Receptores X do Fígado , Camundongos , Camundongos Endogâmicos C57BL , Receptores Nucleares Órfãos/antagonistas & inibidores , Floretina/farmacologia , Regiões Promotoras Genéticas , Transdução de Sinais , Proteína de Ligação a Elemento Regulador de Esterol 1/genética , Ativação Transcricional , Triglicerídeos/metabolismo
11.
Nat Chem Biol ; 9(2): 126-33, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23292650

RESUMO

Liver X receptors (Lxrα and Lxrß) are ligand-dependent nuclear receptors critical for ventral midbrain neurogenesis in vivo. However, no endogenous midbrain Lxr ligand has so far been identified. Here we used LC/MS and functional assays to identify cholic acid as a new Lxr ligand. Moreover, 24(S),25-epoxycholesterol (24,25-EC) was found to be the most potent and abundant Lxr ligand in the developing mouse midbrain. Both Lxr ligands promoted neural development in an Lxr-dependent manner in zebrafish in vivo. Notably, each ligand selectively regulated the development of distinct midbrain neuronal populations. Whereas cholic acid increased survival and neurogenesis of Brn3a-positive red nucleus neurons, 24,25-EC promoted dopaminergic neurogenesis. These results identify an entirely new class of highly selective and cell type-specific regulators of neurogenesis and neuronal survival. Moreover, 24,25-EC promoted dopaminergic differentiation of embryonic stem cells, suggesting that Lxr ligands may thus contribute to the development of cell replacement and regenerative therapies for Parkinson's disease.


Assuntos
Mesencéfalo/metabolismo , Neurogênese , Receptores Nucleares Órfãos/metabolismo , Animais , Mapeamento Encefálico/métodos , Diferenciação Celular , Núcleo Celular/metabolismo , Colesterol/análogos & derivados , Colesterol/metabolismo , Ácido Cólico/metabolismo , Dopamina/metabolismo , Relação Dose-Resposta a Droga , Células-Tronco Embrionárias/citologia , Ligantes , Receptores X do Fígado , Camundongos , Modelos Biológicos , Fatores de Tempo , Transfecção , Peixe-Zebra
12.
J Immunol ; 190(12): 6520-32, 2013 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-23686490

RESUMO

Liver X receptors (LXRs) exert key functions in lipid homeostasis and in control of inflammation. In this study we have explored the impact of LXR activation on the macrophage response to the endogenous inflammatory cytokine IFN-γ. Transcriptional profiling studies demonstrate that ∼38% of the IFN-γ-induced transcriptional response is repressed by LXR activation in macrophages. LXRs also mediated inhibitory effects on selected IFN-γ-induced genes in primary microglia and in a model of IFN-γ-induced neuroinflammation in vivo. LXR activation resulted in reduced STAT1 recruitment to the promoters tested in this study without affecting STAT1 phosphorylation. A closer look into the mechanism revealed that SUMOylation of LXRs, but not the presence of nuclear receptor corepressor 1, was required for repression of the NO synthase 2 promoter. We have also analyzed whether IFN-γ signaling exerts reciprocal effects on LXR targets. Treatment with IFN-γ inhibited, in a STAT1-dependent manner, the LXR-dependent upregulation of selective targets, including ATP-binding cassette A1 (ABCA1) and sterol response element binding protein 1c. Downregulation of ABCA1 expression correlated with decreased cholesterol efflux to apolipoprotein A1 in macrophages stimulated with IFN-γ. The inhibitory effects of IFN-γ on LXR signaling did not involve reduced binding of LXR/retinoid X receptor heterodimers to target gene promoters. However, overexpression of the coactivator CREB-binding protein/p300 reduced the inhibitory actions of IFN-γ on the Abca1 promoter, suggesting that competition for CREB-binding protein may contribute to STAT1-dependent downregulation of LXR targets. The results from this study suggest an important level of bidirectional negative cross-talk between IFN-γ/STAT1 and LXRs with implications both in the control of IFN-γ-mediated immune responses and in the regulation of lipid metabolism.


Assuntos
Interferon gama/imunologia , Macrófagos/imunologia , Receptores Nucleares Órfãos/imunologia , Receptor Cross-Talk/imunologia , Fator de Transcrição STAT1/imunologia , Animais , Western Blotting , Imunoprecipitação da Cromatina , Regulação da Expressão Gênica/imunologia , Inflamação/imunologia , Metabolismo dos Lipídeos/fisiologia , Receptores X do Fígado , Macrófagos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Análise de Sequência com Séries de Oligonucleotídeos , Receptores Nucleares Órfãos/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Fator de Transcrição STAT1/metabolismo , Transdução de Sinais/fisiologia , Transcriptoma
13.
Am J Physiol Endocrinol Metab ; 306(5): E494-502, 2014 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-24368671

RESUMO

The liver X receptors (LXR)α and LXRß are transcription factors belonging to the nuclear receptor family, which play a central role in metabolic homeostasis, being master regulators of key target genes in the glucose and lipid pathways. Wild-type (WT), LXRα(-/-), and LXRß(-/-) mice were fed a chow diet with (treated) or without (control) the synthetic dual LXR agonist GW3965 for 5 wk. GW3965 raised intrahepatic triglyceride (TG) level but, surprisingly, reduced serum TG level through the activation of serum lipase activity. The serum TG reduction was associated with a repression of both catecholamine-stimulated lipolysis and relative glucose incorporation into lipid in isolated adipocytes through activation of LXRß. We also demonstrated that LXRα is required for basal (nonstimulated) adipocyte metabolism, whereas LXRß acts as a repressor of lipolysis. On the contrary, in skeletal muscle (SM), the lipogenic and cholesterol transporter LXR target genes were markedly induced in WT and LXRα(-/-) mice and to a lesser extent in LXRß(-/-) mice following treatment with GW3965. Moreover, TG content was reduced in SM of LXRß(-/-) mice, associated with increased expression of the main TG-lipase genes Hsl and Atgl. Energy expenditure was increased, and a switch from glucose to lipid oxidation was observed. In conclusion, we provide evidence that LXR might be an essential regulator of the lipid balance between tissues to ensure appropriate control of the flux of fuel. Importantly, we show that, after chronic treatment with GW3965, SM becomes the target tissue for LXR activation, as opposed to liver, in acute treatment.


Assuntos
Adipócitos/efeitos dos fármacos , Homeostase/efeitos dos fármacos , Metabolismo dos Lipídeos/efeitos dos fármacos , Músculo Esquelético/efeitos dos fármacos , Receptores Nucleares Órfãos/agonistas , Adipócitos/metabolismo , Animais , Benzoatos/farmacologia , Benzilaminas/farmacologia , Colesterol/metabolismo , Feminino , Homeostase/fisiologia , Metabolismo dos Lipídeos/fisiologia , Lipólise/efeitos dos fármacos , Lipólise/fisiologia , Receptores X do Fígado , Camundongos , Camundongos Knockout , Músculo Esquelético/metabolismo , Receptores Nucleares Órfãos/genética , Receptores Nucleares Órfãos/metabolismo , Triglicerídeos/sangue
14.
Adv Sci (Weinh) ; 11(20): e2307201, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38549193

RESUMO

Macrophages regulate essential aspects of innate immunity against pathogens. In response to microbial components, macrophages activate primary and secondary inflammatory gene programs crucial for host defense. The liver X receptors (LXRα, LXRß) are ligand-dependent nuclear receptors that direct gene expression important for cholesterol metabolism and inflammation, but little is known about the individual roles of LXRα and LXRß in antimicrobial responses. Here, the results demonstrate that induction of LXRα transcription by prolonged exposure to lipopolysaccharide (LPS) supports inflammatory gene expression in macrophages. LXRα transcription is induced by NF-κB and type-I interferon downstream of TLR4 activation. Moreover, LPS triggers a reprogramming of the LXRα cistrome that promotes cytokine and chemokine gene expression through direct LXRα binding to DNA consensus sequences within cis-regulatory regions including enhancers. LXRα-deficient macrophages present fewer binding of p65 NF-κB and reduced histone H3K27 acetylation at enhancers of secondary inflammatory response genes. Mice lacking LXRα in the hematopoietic compartment show impaired responses to bacterial endotoxin in peritonitis models, exhibiting reduced neutrophil infiltration and decreased expansion and inflammatory activation of recruited F4/80lo-MHC-IIhi peritoneal macrophages. Together, these results uncover a previously unrecognized function for LXRα-dependent transcriptional cis-activation of secondary inflammatory gene expression in macrophages and the host response to microbial ligands.


Assuntos
Inflamação , Receptores X do Fígado , Macrófagos , Transcriptoma , Animais , Camundongos , Modelos Animais de Doenças , Inflamação/genética , Inflamação/metabolismo , Lipopolissacarídeos , Receptores X do Fígado/genética , Receptores X do Fígado/metabolismo , Macrófagos/metabolismo , Macrófagos/imunologia , Camundongos Endogâmicos C57BL
15.
Breast Cancer Res ; 15(3): R51, 2013 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-23809258

RESUMO

INTRODUCTION: Liver × receptors (LXRs) are members of the nuclear receptor family of ligand-dependent transcription factors and have established functions as regulators of cholesterol, glucose, and fatty acid metabolism and inflammatory responses. Published reports of anti-proliferative effects of synthetic LXR ligands on breast, prostate, ovarian, lung, skin, and colorectal cancer cells suggest that LXRs are potential targets in cancer prevention and treatment. METHODS: To further determine the effects of LXR ligands and identify their potential mechanisms of action in breast cancer cells, we carried out microarray analysis of gene expression in four breast cancer cell lines following treatments with the synthetic LXR ligand GW3965. Differentially expressed genes were further subjected to gene ontology and pathway analyses, and their expression profiles and associations with disease parameters and outcomes were examined in clinical samples. Response of E2F target genes were validated by real-time PCR, and the posited role of E2F2 in breast cancer cell proliferation was tested by RNA interference experiments. RESULTS: We observed cell line-specific transcriptional responses as well as a set of common responsive genes. In the common responsive gene set, upregulated genes tend to function in the known metabolic effects of LXR ligands and LXRs whereas the downregulated genes mostly include those which function in cell cycle regulation, DNA replication, and other cell proliferation-related processes. Transcription factor binding site analysis of the downregulated genes revealed an enrichment of E2F binding site sequence motifs. Correspondingly, E2F2 transcript levels are downregulated following LXR ligand treatment. Knockdown of E2F2 expression, similar to LXR ligand treatment, resulted in a significant disruption of estrogen receptor positive breast cancer cell proliferation. Ligand treatment also decreased E2F2 binding to cis-regulatory regions of target genes. Hierarchical clustering of breast cancer patients based on the expression profiles of the commonly downregulated LXR ligand-responsive genes showed a strong association of these genes with patient survival. CONCLUSIONS: Taken together, these results indicate that LXR ligands target gene networks, including those regulated by E2F family members, are critical for tumor biology and disease progression and merit further consideration as potential agents in the prevention and treatment of breast cancers.


Assuntos
Benzoatos/metabolismo , Benzilaminas/metabolismo , Neoplasias da Mama/genética , Fator de Transcrição E2F2/biossíntese , Receptores Nucleares Órfãos/metabolismo , Benzoatos/administração & dosagem , Benzilaminas/administração & dosagem , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Fator de Transcrição E2F2/metabolismo , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Ligantes , Receptores X do Fígado , Regiões Promotoras Genéticas , Transcrição Gênica/efeitos dos fármacos
16.
Mol Carcinog ; 52(11): 835-44, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22610535

RESUMO

The oxysterol receptors LXRα and LXRß are members of the nuclear receptor family and established transcriptional regulators of lipid metabolism with additional anti-inflammatory functions. Recent investigations have indicated an important role of LXRs in the control of proliferation. Here we further extend this knowledge to human colon cancer cells and proliferation in mouse colon. We show that activation of LXRs leads to a robust cell cycle arrest in colorectal adenocarcinoma cell lines. At the molecular level LXRs control expression of several cell cycle genes including Skp2, c-Myc, CDKs, cyclins, and p15. Furthermore, activation of LXRs causes hypo-phosphorylation of the retinoblastoma (Rb) tumor suppressor protein. Experiments performed in vivo show that the colon structure appears to be intact in LXR null mice. However, LXRαß(-/-) mice show a significant increase of proliferation markers in colon compared to wild type mice and administration of the LXR specific agonist, GW3965 significantly reduced expression of proliferation in mouse colon. Taken together, these findings point toward a strong anti-proliferative effect of LXRs in colon revealing the potential of LXR ligands as possible anti cancer agents.


Assuntos
Proliferação de Células , Colo/metabolismo , Colo/patologia , Neoplasias do Colo/metabolismo , Neoplasias do Colo/patologia , Receptores Nucleares Órfãos/metabolismo , Animais , Ciclo Celular , Linhagem Celular Tumoral , Colo/citologia , Regulação da Expressão Gênica , Humanos , Receptores X do Fígado , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptores Nucleares Órfãos/análise , Receptores Nucleares Órfãos/genética
17.
Mol Membr Biol ; 29(7): 299-308, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22694168

RESUMO

The organ content of the mevalonate pathway lipids was investigated in liver-X-receptor (LXR) α, ß and double knock-out mice. An extensive or moderate increase of total cholesterol in the double KO mice was found in all organs elicited by the increase of the esterified form. In LXRα and double KO mice, coenzyme Q (CoQ) was decreased in liver and increased in spleen, thymus and lung, while dolichol was increased in all organs investigated. This effect was confirmed using LXR- agonist GW 3965. Analysis of CoQ distribution in organelles showed that the modifications are present in all cellular compartments and that the increase of the lipid in mitochondria was the result of a net increase of CoQ without changing the number of mitochondria. It appears that LXR influences not only cellular cholesterol homeostasis but also the metabolism of CoQ and dolichol, in an indirect manner.


Assuntos
Colesterol/metabolismo , Dolicóis/metabolismo , Receptores Nucleares Órfãos/metabolismo , Ubiquinona/metabolismo , Animais , Benzoatos/farmacologia , Benzilaminas/farmacologia , Colesterol/genética , Dolicóis/genética , Feminino , Fígado/metabolismo , Receptores X do Fígado , Pulmão/metabolismo , Camundongos , Camundongos Knockout , Mitocôndrias Hepáticas/genética , Mitocôndrias Hepáticas/metabolismo , Especificidade de Órgãos/fisiologia , Receptores Nucleares Órfãos/agonistas , Receptores Nucleares Órfãos/genética , Baço/metabolismo , Timo/metabolismo , Ubiquinona/genética
18.
J Neurosci ; 31(19): 7049-59, 2011 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-21562267

RESUMO

Liver X receptors (LXRs) regulate immune cell function and cholesterol metabolism, both factors that are critically involved in Alzheimer's disease (AD). To investigate the therapeutic potential of long-term LXR activation in amyloid-ß (Aß) peptide deposition in an AD model, 13-month-old, amyloid plaque-bearing APP23 mice were treated with the LXR agonist TO901317. Postmortem analysis demonstrated that TO901317 efficiently crossed the blood-brain barrier. Insoluble and soluble Aß levels in the treated APP23 mice were reduced by 80% and 40%, respectively, compared with untreated animals. Amyloid precursor protein (APP) processing, however, was hardly changed by the compound, suggesting that the observed effects were instead mediated by Aß disposal. Despite the profound effect on Aß levels, spatial learning in the Morris water maze was only slightly improved by the treatment. ABCA1 (ATP-binding cassette transporter 1) and apolipoprotein E (ApoE) protein levels were increased and found to be primarily localized in astrocytes. Experiments using primary microglia demonstrated that medium derived from primary astrocytes exposed to TO901317 stimulated phagocytosis of fibrillar Aß. Conditioned medium from TO901317-treated ApoE(-/-) or LXRα(-/-) astrocytes did not increase phagocytosis of Aß. In APP23 mice, long-term treatment with TO901317 strongly increased the association of microglia and Aß plaques. Short-term treatment of APP/PS1 mice with TO901317 also increased this association, which was dependent on the presence of LXRα and was accompanied by increased ApoE lipidation. Together, these data suggest that astrocytic LXRα activation and subsequent release of ApoE by astrocytes is critical for the ability of microglia to remove fibrillar Aß in response to treatment with TO901317.


Assuntos
Peptídeos beta-Amiloides/metabolismo , Apolipoproteínas E/metabolismo , Astrócitos/metabolismo , Microglia/metabolismo , Receptores Nucleares Órfãos/metabolismo , Fagocitose/fisiologia , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Análise de Variância , Animais , Apolipoproteínas E/genética , Astrócitos/efeitos dos fármacos , Barreira Hematoencefálica/efeitos dos fármacos , Barreira Hematoencefálica/metabolismo , Western Blotting , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Meios de Cultivo Condicionados , Ensaio de Imunoadsorção Enzimática , Hidrocarbonetos Fluorados/farmacologia , Imunoensaio , Imuno-Histoquímica , Receptores X do Fígado , Aprendizagem em Labirinto/efeitos dos fármacos , Aprendizagem em Labirinto/fisiologia , Camundongos , Camundongos Transgênicos , Microglia/efeitos dos fármacos , Receptores Nucleares Órfãos/genética , Sulfonamidas/farmacologia
19.
BMC Genomics ; 13: 50, 2012 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-22292898

RESUMO

BACKGROUND: The liver X receptors (LXRs) are oxysterol sensing nuclear receptors with multiple effects on metabolism and immune cells. However, the complete genome-wide cistrome of LXR in cells of human origin has not yet been provided. RESULTS: We performed ChIP-seq in phorbol myristate acetate-differentiated THP-1 cells (macrophage-type) after stimulation with the potent synthetic LXR ligand T0901317 (T09). Microarray gene expression analysis was performed in the same cellular model. We identified 1357 genome-wide LXR locations (FDR < 1%), of which 526 were observed after T09 treatment. De novo analysis of LXR binding sequences identified a DR4-type element as the major motif. On mRNA level T09 up-regulated 1258 genes and repressed 455 genes. Our results show that LXR actions are focused on 112 genomic regions that contain up to 11 T09 target genes per region under the control of highly stringent LXR binding sites with individual constellations for each region. We could confirm that LXR controls lipid metabolism and transport and observed a strong association with apoptosis-related functions. CONCLUSIONS: This first report on genome-wide binding of LXR in a human cell line provides new insights into the transcriptional network of LXR and its target genes with their link to physiological processes, such as apoptosis.The gene expression microarray and sequence data have been submitted collectively to the NCBI Gene Expression Omnibus http://www.ncbi.nlm.nih.gov/geo under accession number GSE28319.


Assuntos
Cromatina/metabolismo , Regulação da Expressão Gênica , Estudo de Associação Genômica Ampla , Macrófagos/metabolismo , Receptores Nucleares Órfãos/metabolismo , Apoptose , Sítios de Ligação , Linhagem Celular , Regulação para Baixo , Humanos , Metabolismo dos Lipídeos , Receptores X do Fígado , Análise de Sequência com Séries de Oligonucleotídeos , Receptores Nucleares Órfãos/antagonistas & inibidores , Ligação Proteica , Regulação para Cima
20.
Biochim Biophys Acta ; 1801(4): 421-9, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19962449

RESUMO

Cold adaptation elicits a paradoxical simultaneous induction of fatty acid synthesis and beta-oxidation in brown adipose tissue. We show here that cold exposure coordinately induced liver X receptor alpha (LXRalpha), adipocyte determination and differentiation-dependent factor 1 (ADD1)/sterol regulatory element-binding protein-1c (SREBP1c) and peroxisome proliferator-activated receptor gamma coactivator-1alpha (PGC1alpha) in brown and inguinal white adipose tissues, but not in epididymal white adipose tissue. Using in vitro models of white and brown adipocytes we demonstrate that beta-adrenergic stimulation induced expression of LXRalpha, ADD1/SREBP1c and PGC1alpha in cells with a brown-like adipose phenotype. We demonstrate that ADD1/SREBP1c is a powerful inducer of PGC1alpha expression via a conserved E box in the proximal promoter and that beta-adrenergic stimulation led to recruitment of ADD1/SREBP1c to this E box. The ability of ADD1/SREBP1c to activate the PGC1alpha promoter exhibited a striking cell type dependency, suggesting that additional cell type-restricted factors contribute to ADD1/SREBP1c-mediated activation. In conclusion, our data demonstrate a novel role of ADD1/SREBP1c as a regulator of PGC1alpha expression in brown adipose tissue.


Assuntos
Adipócitos Marrons/metabolismo , Regiões Promotoras Genéticas/fisiologia , Proteína de Ligação a Elemento Regulador de Esterol 1/metabolismo , Transativadores/metabolismo , Animais , Diferenciação Celular , Células Cultivadas , Imunoprecipitação da Cromatina , Ensaio de Desvio de Mobilidade Eletroforética , Eletroporação , Receptores X do Fígado , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Receptores Nucleares Órfãos/metabolismo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Sequências Reguladoras de Ácido Nucleico , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Proteína de Ligação a Elemento Regulador de Esterol 1/genética , Transativadores/genética , Fatores de Transcrição
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA