Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
Genes Dev ; 24(9): 916-32, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20382729

RESUMO

Cancer stem cells (CSCs) display plasticity and self-renewal properties reminiscent of normal tissue stem cells, but the events responsible for their emergence remain obscure. We recently identified CSCs in Ewing sarcoma family tumors (ESFTs) and showed that they retain mesenchymal stem cell (MSC) plasticity. In the present study, we addressed the mechanisms that underlie ESFT CSC development. We show that the EWS-FLI-1 fusion gene, associated with 85%-90% of ESFTs and believed to initiate their pathogenesis, induces expression of the embryonic stem cell (ESC) genes OCT4, SOX2, and NANOG in human pediatric MSCs (hpMSCs) but not in their adult counterparts. Moreover, under appropriate culture conditions, hpMSCs expressing EWS-FLI-1 generate a cell subpopulation displaying ESFT CSC features in vitro. We further demonstrate that induction of the ESFT CSC phenotype is the result of the combined effect of EWS-FLI-1 on its target gene expression and repression of microRNA-145 (miRNA145) promoter activity. Finally, we provide evidence that EWS-FLI-1 and miRNA-145 function in a mutually repressive feedback loop and identify their common target gene, SOX2, in addition to miRNA145 itself, as key players in ESFT cell differentiation and tumorigenicity. Our observations provide insight for the first time into the mechanisms whereby a single oncogene can reprogram primary cells to display a CSC phenotype.


Assuntos
Reprogramação Celular , Regulação Neoplásica da Expressão Gênica , Células-Tronco Mesenquimais/citologia , MicroRNAs/metabolismo , Proteína Proto-Oncogênica c-fli-1/metabolismo , Proteína EWS de Ligação a RNA/metabolismo , Fatores de Transcrição SOXB1/metabolismo , Adolescente , Adulto , Diferenciação Celular , Linhagem Celular Tumoral , Criança , Proteínas de Homeodomínio/metabolismo , Humanos , Proteína Homeobox Nanog , Células-Tronco Neoplásicas/citologia , Células-Tronco Neoplásicas/metabolismo , Fator 3 de Transcrição de Octâmero/metabolismo , Fenótipo , Sarcoma de Ewing/fisiopatologia , Células Tumorais Cultivadas
2.
Mol Cancer ; 15(1): 78, 2016 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-27919264

RESUMO

BACKGROUND: Blocking the mechanistic target of rapamycin complex-1 (mTORC1) with chemical inhibitors such as rapamycin has shown limited clinical efficacy in cancer. The tumor microenvironment is characterized by an acidic pH which interferes with cancer therapies. The consequences of acidity on the anti-cancer efficacy of mTORC1 inhibitors have not been characterized and are thus the focus of our study. METHODS: Cancer cell lines were treated with rapamycin in acidic or physiological conditions and cell proliferation was investigated. The effect of acidity on mTORC1 activity was determined by Western blot. The anticancer efficacy of rapamycin in combination with sodium bicarbonate to increase the intratumoral pH was tested in two different mouse models and compared to rapamycin treatment alone. Histological analysis was performed on tumor samples to evaluate proliferation, apoptosis and necrosis. RESULTS: Exposing cancer cells to acidic pH in vitro significantly reduced the anti-proliferative effect of rapamycin. At the molecular level, acidity significantly decreased mTORC1 activity, suggesting that cancer cell proliferation is independent of mTORC1 in acidic conditions. In contrast, the activation of mitogen-activated protein kinase (MAPK) or AKT were not affected by acidity, and blocking MAPK or AKT with a chemical inhibitor maintained an anti-proliferative effect at low pH. In tumor mouse models, the use of sodium bicarbonate increased mTORC1 activity in cancer cells and potentiated the anti-cancer efficacy of rapamycin. Combining sodium bicarbonate with rapamycin resulted in increased tumor necrosis, increased cancer cell apoptosis and decreased cancer cell proliferation as compared to single treatment. CONCLUSIONS: Taken together, these results emphasize the inefficacy of mTORC1 inhibitors in acidic conditions. They further highlight the potential of combining sodium bicarbonate with mTORC1 inhibitors to improve their anti-tumoral efficacy.


Assuntos
Ácidos/efeitos adversos , Neoplasias Colorretais/tratamento farmacológico , Complexos Multiproteicos/metabolismo , Sirolimo/administração & dosagem , Bicarbonato de Sódio/administração & dosagem , Serina-Treonina Quinases TOR/metabolismo , Microambiente Tumoral , Animais , Apoptose , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Neoplasias Colorretais/metabolismo , Quimioterapia Combinada , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Células HT29 , Humanos , Alvo Mecanístico do Complexo 1 de Rapamicina , Camundongos , Complexos Multiproteicos/antagonistas & inibidores , Sirolimo/farmacologia , Bicarbonato de Sódio/farmacologia , Serina-Treonina Quinases TOR/antagonistas & inibidores , Ensaios Antitumorais Modelo de Xenoenxerto
3.
J Pharmacol Exp Ther ; 346(2): 281-9, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23697346

RESUMO

Chronic renal failure (CRF) is associated with the development of secondary hyperparathyroidism and vascular calcifications. We evaluated the efficacy of PA21, a new iron-based noncalcium phosphate binder, in controlling phosphocalcic disorders and preventing vascular calcifications in uremic rats. Rats with adenine-diet-induced CRF were randomized to receive either PA21 0.5, 1.5, or 5% or CaCO3 3% in the diet for 4 weeks, and were compared with uremic and nonuremic control groups. After 4 weeks of phosphate binder treatment, serum calcium, creatinine, and body weight were similar between all CRF groups. Serum phosphorus was reduced with CaCO3 3% (2.06 mM; P ≤ 0.001), PA21 1.5% (2.29 mM; P < 0.05), and PA21 5% (2.21 mM; P ≤ 0.001) versus CRF controls (2.91 mM). Intact parathyroid hormone was strongly reduced in the PA21 5% and CaCO3 3% CRF groups to a similar extent (1138 and 1299 pg/ml, respectively) versus CRF controls (3261 pg/ml; both P ≤ 0.001). A lower serum fibroblast growth factor 23 concentration was observed in the PA21 5%, compared with CaCO3 3% and CRF, control groups. PA21 5% CRF rats had a lower vascular calcification score compared with CaCO3 3% CRF rats and CRF controls. In conclusion, PA21 was as effective as CaCO3 at controlling phosphocalcic disorders but superior in preventing the development of vascular calcifications in uremic rats. Thus, PA21 represents a possible alternative to calcium-based phosphate binders in CRF patients.


Assuntos
Compostos Férricos/uso terapêutico , Falência Renal Crônica/tratamento farmacológico , Calcificação Vascular/prevenção & controle , Adenina , Animais , Aorta/efeitos dos fármacos , Aorta/patologia , Pressão Sanguínea/efeitos dos fármacos , Cálcio/sangue , Carbonato de Cálcio/uso terapêutico , Fatores de Crescimento de Fibroblastos/sangue , Frequência Cardíaca/efeitos dos fármacos , Falência Renal Crônica/induzido quimicamente , Falência Renal Crônica/patologia , Masculino , Hormônio Paratireóideo/sangue , Fósforo/sangue , Ratos , Ratos Wistar , Calcificação Vascular/patologia
4.
J Am Soc Nephrol ; 22(2): 253-61, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21051735

RESUMO

Lithium-induced nephrogenic diabetes insipidus (NDI) is accompanied by polyuria, downregulation of aquaporin 2 (AQP2), and cellular remodeling of the collecting duct (CD). The amiloride-sensitive epithelial sodium channel (ENaC) is a likely candidate for lithium entry. Here, we subjected transgenic mice lacking αENaC specifically in the CD (knockout [KO] mice) and littermate controls to chronic lithium treatment. In contrast to control mice, KO mice did not markedly increase their water intake. Furthermore, KO mice did not demonstrate the polyuria and reduction in urine osmolality induced by lithium treatment in the control mice. Lithium treatment reduced AQP2 protein levels in the cortex/outer medulla and inner medulla (IM) of control mice but only partially reduced AQP2 levels in the IM of KO mice. Furthermore, lithium induced expression of H(+)-ATPase in the IM of control mice but not KO mice. In conclusion, the absence of functional ENaC in the CD protects mice from lithium-induced NDI. These data support the hypothesis that ENaC-mediated lithium entry into the CD principal cells contributes to the pathogenesis of lithium-induced NDI.


Assuntos
Diabetes Insípido Nefrogênico/induzido quimicamente , Canais Epiteliais de Sódio/fisiologia , Cloreto de Lítio/toxicidade , Absorção , Animais , Aquaporina 2/análise , Túbulos Renais Coletores/metabolismo , Túbulos Renais Coletores/patologia , Cloreto de Lítio/farmacocinética , Camundongos , Camundongos Knockout , ATPases Translocadoras de Prótons/análise
5.
Int J Cancer ; 128(9): 2105-13, 2011 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-20635385

RESUMO

Cervical cancer results from infection with high-risk type human papillomaviruses (HPV). Therapeutic vaccines aiming at controlling existing genital HPV infections and associated lesions are usually tested in mice with HPV-expressing tumor cells subcutaneously implanted into their flank. However, effective vaccine-induced regression of these ectopic tumors strongly contrasts with the poor clinical results of these vaccines produced in patients with HPV-associated genital neoplasia. To assess HPV therapeutic vaccines in a more relevant setting, we have, here, established an orthotopic mouse model where tumors in the genital mucosa (GM) develop after an intravaginal instillation of HPV16 E6/E7-expressing tumor cells transduced with a luciferase-encoding lentiviral vector for in vivo imaging of tumor growth. Tumor take was 80-90% after nonoxynol-9 induced damage of the epithelium. Tumors remained localized in the genital tract, and histological analysis showed that most tumors grew within the squamous epithelium of the vaginal wall. Those tumors induced (i) E7-specific CD8 T cells restricted to the GM and draining lymph nodes, in agreement with their mucosal location and (ii) high Foxp3+ CD4+ infiltrates, similarly to those found in natural non-regressing HPV lesions. This novel genital HPV-tumor model by requiring GM homing of vaccine-induced immune responses able to overcome local immuno-suppression may be more representative of the situation occurring in patients upon therapeutic vaccination.


Assuntos
Carcinoma de Células Escamosas/imunologia , Carcinoma de Células Escamosas/patologia , Modelos Animais de Doenças , Infecções por Papillomavirus/complicações , Neoplasias do Colo do Útero/imunologia , Neoplasias do Colo do Útero/patologia , Animais , Carcinoma de Células Escamosas/virologia , Feminino , Humanos , Imuno-Histoquímica , Camundongos , Camundongos Endogâmicos C57BL , Transplante de Neoplasias/imunologia , Transplante de Neoplasias/métodos , Transplante de Neoplasias/patologia , Transplante Heterólogo/imunologia , Transplante Heterólogo/métodos , Transplante Heterólogo/patologia , Neoplasias do Colo do Útero/virologia
6.
J Am Soc Nephrol ; 21(11): 1942-51, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20947633

RESUMO

Mutations in α, ß, or γ subunits of the epithelial sodium channel (ENaC) can downregulate ENaC activity and cause a severe salt-losing syndrome with hyperkalemia and metabolic acidosis, designated pseudohypoaldosteronism type 1 in humans. In contrast, mice with selective inactivation of αENaC in the collecting duct (CD) maintain sodium and potassium balance, suggesting that the late distal convoluted tubule (DCT2) and/or the connecting tubule (CNT) participates in sodium homeostasis. To investigate the relative importance of ENaC-mediated sodium absorption in the CNT, we used Cre-lox technology to generate mice lacking αENaC in the aquaporin 2-expressing CNT and CD. Western blot analysis of microdissected cortical CD (CCD) and CNT revealed absence of αENaC in the CCD and weak αENaC expression in the CNT. These mice exhibited a significantly higher urinary sodium excretion, a lower urine osmolality, and an increased urine volume compared with control mice. Furthermore, serum sodium was lower and potassium levels were higher in the genetically modified mice. With dietary sodium restriction, these mice experienced significant weight loss, increased urinary sodium excretion, and hyperkalemia. Plasma aldosterone levels were significantly elevated under both standard and sodium-restricted diets. In summary, αENaC expression within the CNT/CD is crucial for sodium and potassium homeostasis and causes signs and symptoms of pseudohypoaldosteronism type 1 if missing.


Assuntos
Canais Epiteliais de Sódio/metabolismo , Túbulos Renais Coletores/metabolismo , Túbulos Renais/metabolismo , Potássio/metabolismo , Sódio/metabolismo , Aldosterona/sangue , Animais , Aquaporina 2/metabolismo , Canais Epiteliais de Sódio/genética , Feminino , Homeostase/fisiologia , Córtex Renal/citologia , Córtex Renal/efeitos dos fármacos , Córtex Renal/metabolismo , Túbulos Renais/citologia , Túbulos Renais/efeitos dos fármacos , Túbulos Renais Coletores/citologia , Túbulos Renais Coletores/efeitos dos fármacos , Masculino , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Sódio na Dieta/farmacologia
7.
PLoS Biol ; 4(11): e355, 2006 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-17048991

RESUMO

Expression of imprinted genes is restricted to a single parental allele as a result of epigenetic regulation-DNA methylation and histone modifications. Igf2/H19 is a reciprocally imprinted locus exhibiting paternal Igf2 and maternal H19 expression. Their expression is regulated by a paternally methylated imprinting control region (ICR) located between the two genes. Although the de novo DNA methyltransferases have been shown to be necessary for the establishment of ICR methylation, the mechanism by which they are targeted to the region remains unknown. We demonstrate that CTCFL/BORIS, a paralog of CTCF, is an ICR-binding protein expressed during embryonic male germ cell development, coinciding with the timing of ICR methylation. PRMT7, a protein arginine methyltransferase with which CTCFL interacts, is also expressed during embryonic testis development. Symmetrical dimethyl arginine 3 of histone H4, a modification catalyzed by PRMT7, accumulates in germ cells during this developmental period. This modified histone is also found enriched in both H19 ICR and Gtl2 differentially methylated region (DMR) chromatin of testis by chromatin immunoprecipitation (ChIP) analysis. In vitro studies demonstrate that CTCFL stimulates the histone-methyltransferase activity of PRMT7 via interactions with both histones and PRMT7. Finally, H19 ICR methylation is demonstrated by nuclear co-injection of expression vectors encoding CTCFL, PRMT7, and the de novo DNA methyltransferases, Dnmt3a, -b and -L, in Xenopus oocytes. These results suggest that CTCFL and PRMT7 may play a role in male germline imprinted gene methylation.


Assuntos
Metilação de DNA , Proteínas de Ligação a DNA/fisiologia , Impressão Genômica/fisiologia , Metiltransferases/fisiologia , RNA não Traduzido/metabolismo , Testículo/citologia , Animais , Proteínas de Ligação a DNA/metabolismo , Embrião de Mamíferos/citologia , Embrião não Mamífero , Epigênese Genética , Regulação da Expressão Gênica no Desenvolvimento , Células Germinativas/metabolismo , Células Germinativas/fisiologia , Histonas/química , Histonas/metabolismo , Região de Controle de Locus Gênico/fisiologia , Masculino , Metiltransferases/metabolismo , Camundongos , Modelos Biológicos , Dados de Sequência Molecular , Oócitos/metabolismo , Regiões Promotoras Genéticas , Ligação Proteica , Proteínas Metiltransferases/fisiologia , Proteína-Arginina N-Metiltransferases , Proteínas/genética , RNA Longo não Codificante , RNA não Traduzido/genética , Testículo/embriologia , Xenopus
8.
Infect Immun ; 76(5): 1940-51, 2008 May.
Artigo em Inglês | MEDLINE | ID: mdl-18332214

RESUMO

Cervical cancer, the second leading cause of cancer deaths in women, is the consequence of high-risk human papillomavirus (HPV) infections. Toward the development of therapeutic vaccines that can induce both innate and adaptive mucosal immune responses, we analyzed intravaginal (ivag) vaccine delivery of live attenuated Salmonella enterica serovar Typhimurium expressing HPV16L1 as a model antigen. Innate immune responses were examined in cervicovaginal tissues by determining gene expression patterns by microarray analysis using nylon membranes imprinted with cDNA fragments coding for inflammation-associated genes. At 24 h, a wide range of genes, including those for chemokines and Th1- and Th2-type cytokine and chemokine receptors were up-regulated in mice ivag immunized with Salmonella compared to control mice. However, the majority of transcripts returned to their steady-state levels 1 week after immunization, suggesting a transient inflammatory response. Indeed, cervicovaginal histology of immunized mice showed a massive, but transient, infiltration of macrophages and neutrophils, while T cells were still increased after 7 days. Ivag immunization also induced humoral and antitumor immune responses, i.e., serum and vaginal anti-HPV16VLP antibody titers similar to those induced by oral immunization, and significant protection in tumor protection experiments using HPV16-expressing C3 tumor cells. These results show that ivag immunization with live attenuated Salmonella expressing HPV16 antigens modulates the local mucosal gene expression pattern into a transient proinflammatory profile, elicits strong systemic and mucosal immunity against HPV16, and confers protection against HPV16 tumor cells subcutaneously implanted in mice. Examination of the efficacy with which ivag HPV16E7E6 Salmonella induces regression of tumors located in cervicovaginal tissue is warranted.


Assuntos
Administração Intravaginal , Proteínas do Capsídeo/imunologia , Papillomavirus Humano 16/imunologia , Proteínas Oncogênicas Virais/imunologia , Vacinas contra Papillomavirus/imunologia , Salmonella typhimurium/genética , Animais , Anticorpos Antineoplásicos , Anticorpos Antivirais/análise , Anticorpos Antivirais/sangue , Proteínas do Capsídeo/genética , Colo do Útero/imunologia , Citocinas/biossíntese , Citocinas/genética , Feminino , Perfilação da Expressão Gênica , Papillomavirus Humano 16/genética , Macrófagos/imunologia , Camundongos , Neoplasias/imunologia , Neoplasias/prevenção & controle , Neutrófilos/imunologia , Análise de Sequência com Séries de Oligonucleotídeos , Proteínas Oncogênicas Virais/genética , Vacinas contra Papillomavirus/administração & dosagem , Vacinas contra Papillomavirus/genética , Receptores de Citocinas/biossíntese , Receptores de Citocinas/genética , Salmonella typhimurium/crescimento & desenvolvimento , Linfócitos T/imunologia , Fatores de Tempo , Vagina/imunologia
9.
Cancer Res ; 66(14): 7016-23, 2006 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-16849546

RESUMO

A subset of sarcomas is associated with specific chromosomal translocations that give rise to fusion genes believed to participate in transformation and oncogenesis. Identification of the primary cell environment that provides permissiveness for the oncogenic potential of these fusion genes is essential to understand sarcoma pathogenesis. We have recently shown that expression of the EWS-FLI-1 fusion protein in primary mesenchymal progenitor cells (MPCs) suffices to develop Ewing's sarcoma-like tumors in mice. Because most sarcomas bearing unique chromosomal translocations are believed to originate from common progenitor cells, and because MPCs populate most organs, we expressed the sarcoma-associated fusion proteins FUS/TLS-CHOP, EWS-ATF1, and SYT-SSX1 in MPCs and tested the tumorigenic potential of these cells in vivo. Whereas expression of EWS-ATF1 and SYT-SSX1 failed to transform MPCs, FUS-CHOP-expressing cells formed tumors resembling human myxoid liposarcoma. Transcription profile analysis of these tumors revealed induction of transcripts known to be associated with myxoid liposarcoma and novel candidate genes, including PDGFA, whose expression was confirmed in human tumor samples. MPC(FUS-CHOP) and the previously described MPC(EWS-FLI-1) tumors displayed distinct transcription profiles, consistent with the different target gene repertoires of their respective fusion proteins. Unexpectedly, a set of genes implicated in cell survival and adhesion displayed similar behavior in the two tumors, suggesting events that may be common to primary MPC transformation. Taken together, our observations suggest that expression of FUS-CHOP may be the initiating event in myxoid liposarcoma pathogenesis, and that MPCs may constitute one cell type from which these tumors originate.


Assuntos
Transformação Celular Neoplásica/genética , Lipossarcoma Mixoide/metabolismo , Lipossarcoma Mixoide/patologia , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/patologia , Proteínas de Fusão Oncogênica/biossíntese , Proteína FUS de Ligação a RNA/biossíntese , Fator de Transcrição CHOP/biossíntese , Animais , Células da Medula Óssea/metabolismo , Células da Medula Óssea/patologia , Células da Medula Óssea/fisiologia , Transformação Celular Neoplásica/metabolismo , Transformação Celular Neoplásica/patologia , Humanos , Lipossarcoma Mixoide/genética , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos SCID , Proteínas de Fusão Oncogênica/genética , Proteína FUS de Ligação a RNA/genética , Fator de Transcrição CHOP/genética , Transfecção
10.
Mol Metab ; 6(12): 1625-1633, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-29092796

RESUMO

OBJECTIVE: Hepatic steatosis is the first step leading to non-alcoholic fatty liver disease, which represents a major complication of obesity. Here, we show that MCT1 haploinsufficient mice resist to hepatic steatosis development when fed a high fat diet. They exhibit a reduced hepatic capacity to metabolize monocarboxylates such as lactate compared to wildtype mice. METHODS: To understand how this resistance to steatosis develops, we used HFD fed wildtype mice with hepatic steatosis and MCT1 haploinsufficient mice to study hepatic metabolism. RESULTS: AMPK is constitutively activated in the liver of MCT1 haploinsufficient mice, leading to an inactivation of SREBP1. Therefore, expression of key transcription factors for lipid metabolism, such as PPARα and γ, CHREB, or SREBP1 itself, as well as several enzymes including FAS and CPT1, was not upregulated in these mice when fed a high fat diet. It is proposed that reduced hepatic lactate metabolism is responsible for the protection against hepatic steatosis in MCT1 haploinsufficient mice via a constitutive activation of AMPK and repression of several major elements involved in hepatic lipid metabolism. CONCLUSION: Our results support a role of increased lactate uptake in hepatocytes during HFD that, in turn, induce a metabolic shift stimulating SREBP1 activity and lipid accumulation.


Assuntos
Fígado Gorduroso/metabolismo , Ácido Láctico/metabolismo , Fígado/metabolismo , Transportadores de Ácidos Monocarboxílicos/genética , Proteínas Quinases/metabolismo , Simportadores/genética , Quinases Proteína-Quinases Ativadas por AMP , Animais , Fígado Gorduroso/genética , Haploinsuficiência , Metabolismo dos Lipídeos , Masculino , Camundongos , Transportadores de Ácidos Monocarboxílicos/metabolismo , Proteína de Ligação a Elemento Regulador de Esterol 1/metabolismo , Simportadores/metabolismo
11.
Oncotarget ; 7(24): 36666-36680, 2016 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-27153561

RESUMO

The inhibition of the mechanistic target of rapamycin complex 1 (mTORC1) by chemical inhibitors, such as rapamycin, has demonstrated anti-cancer activity in preclinical and clinical trials. Their efficacy is, however, limited and tumors eventually relapse through resistance formation. In this study, using two different cancer mouse models, we identify tumor hypoxia as a novel mechanism of resistance of cancer cells against mTORC1 inhibitors. Indeed, we show that the activity of mTORC1 is mainly restricted to the non-hypoxic tumor compartment, as evidenced by a mutually exclusive staining pattern of the mTORC1 activity marker pS6 and the hypoxia marker pimonidazole. Consequently, whereas rapamycin reduces cancer cell proliferation in non-hypoxic regions, it has no effect in hypoxic areas, suggesting that cancer cells proliferate independently of mTORC1 under hypoxia. Targeting the hypoxic tumor compartment by knockdown of carbonic anhydrase IX (CAIX) using short hairpin RNA or by chemical inhibition of CAIX with acetazolamide potentiates the anti-cancer activity of rapamycin. Taken together, these data emphasize that hypoxia impairs the anti-cancer efficacy of rapalogs. Therapeutic strategies targeting the hypoxic tumor compartment, such as the inhibition of CAIX, potentiate the efficacy of rapamycin and warrant further clinical evaluation.


Assuntos
Acetazolamida/farmacologia , Anidrase Carbônica IX/antagonistas & inibidores , Neoplasias Colorretais/tratamento farmacológico , Sirolimo/farmacologia , Serina-Treonina Quinases TOR/antagonistas & inibidores , Animais , Antibióticos Antineoplásicos/farmacologia , Anidrase Carbônica IX/genética , Anidrase Carbônica IX/metabolismo , Inibidores da Anidrase Carbônica/farmacologia , Linhagem Celular Tumoral , Neoplasias Colorretais/genética , Neoplasias Colorretais/metabolismo , Sinergismo Farmacológico , Feminino , Células HT29 , Humanos , Hipóxia , Camundongos Endogâmicos C57BL , Camundongos Nus , Neoplasias Experimentais/tratamento farmacológico , Neoplasias Experimentais/genética , Neoplasias Experimentais/metabolismo , Interferência de RNA , Serina-Treonina Quinases TOR/metabolismo , Resultado do Tratamento , Ensaios Antitumorais Modelo de Xenoenxerto
12.
Microbes Infect ; 17(11-12): 755-60, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26340890

RESUMO

Parachlamydia acanthamoebae is an obligate intracellular bacterium naturally infecting free-living amoebae. The role of this bacterium as an agent of pneumonia is suggested by sero-epidemiological studies and molecular surveys. Furthermore, P. acanthamoebae may escape macrophages microbicidal effectors. Recently, we demonstrated that intratracheal inoculation of P. acanthamoebae induced pneumonia in 100% of infected mice. However, the intratracheal route of infection is not the natural way of infection and we therefore developed an intranasal murine model. Mice inoculated with P. acanthamoebae by intranasal inoculation lost 18% of their weight up to 8 days post-inoculation. All mice presented histological signs of pneumonia at day 2, 4, 7, and 10 post-inoculation, whereas no control mice harboured signs of pneumonia. A 5-fold increase in bacterial load was observed from day 0 to day 4 post-inoculation. Lungs of inoculated mice were positive by Parachlamydia-specific immunohistochemistry 4 days post-inoculation, and P. acanthamoebae were localized within macrophages. Thus, we demonstrated that P. acanthamoebae induce a severe pneumonia in mice. This animal model (i) further supports the role of P. acanthamoebae as an agent of pneumonia, confirming the third Koch postulate, and (ii) identified alveolar macrophages as one of the initial cells where P. acanthamoebae is localized following infection.


Assuntos
Chlamydiales/patogenicidade , Pulmão/microbiologia , Pneumonia Bacteriana/microbiologia , Pneumonia Bacteriana/patologia , Administração Intranasal , Animais , Carga Bacteriana , Chlamydiales/imunologia , Modelos Animais de Doenças , Pulmão/patologia , Macrófagos/imunologia , Camundongos , Pneumonia Bacteriana/imunologia
13.
Biomed Res Int ; 2015: 515606, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26221597

RESUMO

Elevated serum phosphorus, calcium, and fibroblast growth factor 23 (FGF23) levels are associated with cardiovascular disease in chronic renal disease. This study evaluated the effects of sucroferric oxyhydroxide (PA21), a new iron-based phosphate binder, versus lanthanum carbonate (La) and sevelamer carbonate (Se), on serum FGF23, phosphorus, calcium, and intact parathyroid hormone (iPTH) concentrations, and the development of vascular calcification in adenine-induced chronic renal failure (CRF) rats. After induction of CRF, renal function was significantly impaired in all groups: uremic rats developed severe hyperphosphatemia, and serum iPTH increased significantly. All uremic rats (except controls) then received phosphate binders for 4 weeks. Hyperphosphatemia and increased serum iPTH were controlled to a similar extent in all phosphate binder-treatment groups. Only sucroferric oxyhydroxide was associated with significantly decreased FGF23. Vascular calcifications of the thoracic aorta were decreased by all three phosphate binders. Calcifications were better prevented at the superior part of the thoracic and abdominal aorta in the PA21 treated rats. In adenine-induced CRF rats, sucroferric oxyhydroxide was as effective as La and Se in controlling hyperphosphatemia, secondary hyperparathyroidism, and vascular calcifications. The role of FGF23 in calcification remains to be confirmed.


Assuntos
Compostos Férricos/uso terapêutico , Homeostase , Falência Renal Crônica/tratamento farmacológico , Lantânio/uso terapêutico , Fosfatos/metabolismo , Sevelamer/uso terapêutico , Sacarose/uso terapêutico , Calcificação Vascular/tratamento farmacológico , Animais , Peso Corporal/efeitos dos fármacos , Modelos Animais de Doenças , Combinação de Medicamentos , Compostos Férricos/farmacologia , Fator de Crescimento de Fibroblastos 23 , Fatores de Crescimento de Fibroblastos/sangue , Homeostase/efeitos dos fármacos , Falência Renal Crônica/sangue , Falência Renal Crônica/complicações , Falência Renal Crônica/urina , Lantânio/farmacologia , Masculino , Mortalidade , Ratos Wistar , Sevelamer/farmacologia , Sacarose/farmacologia , Calcificação Vascular/sangue , Calcificação Vascular/complicações , Calcificação Vascular/urina
14.
PLoS One ; 8(2): e55796, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23405214

RESUMO

The serine protease CAP1/Prss8 is crucial for skin barrier function, lung alveolar fluid clearance and has been unveiled as diagnostic marker for specific cancer types. Here, we show that a constitutive knockout of CAP1/Prss8 leads to embryonic lethality. These embryos presented no specific defects, but it is during this period, and in particular at E13.5, that wildtype placentas show an increased expression of CAP1/Prss8, thus suggesting a placental defect in the knockout situation. The placentas of knockout embryos exhibited significantly reduced vascular development and incomplete cellular maturation. In contrary, epiblast-specific deletion of CAP1/Prss8 allowed development until birth. These CAP1/Prss8-deficient newborns presented abnormal epidermis, and died soon after birth due to impaired skin function. We thus conclude that a late placental insufficiency might be the primary cause of embryonic lethality in CAP1/Prss8 knockouts. This study highlights a novel and crucial role for CAP1/Prss8 in placental development and function.


Assuntos
Orelha Interna/crescimento & desenvolvimento , Perda do Embrião/genética , Embrião de Mamíferos/citologia , Desenvolvimento Embrionário/fisiologia , Regulação da Expressão Gênica no Desenvolvimento , Placentação/fisiologia , Serina Endopeptidases/fisiologia , Animais , Animais Recém-Nascidos , Diferenciação Celular , Embrião de Mamíferos/enzimologia , Feminino , Perfilação da Expressão Gênica , Masculino , Camundongos , Camundongos Knockout , Gravidez , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real
15.
PLoS One ; 8(12): e82505, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24367518

RESUMO

The monocarboxylate transporter 1 (MCT1 or SLC16A1) is a carrier of short-chain fatty acids, ketone bodies, and lactate in several tissues. Genetically modified C57BL/6J mice were produced by targeted disruption of the mct1 gene in order to understand the role of this transporter in energy homeostasis. Null mutation was embryonically lethal, but MCT1 (+/-) mice developed normally. However, when fed high fat diet (HFD), MCT1 (+/-) mice displayed resistance to development of diet-induced obesity (24.8% lower body weight after 16 weeks of HFD), as well as less insulin resistance and no hepatic steatosis as compared to littermate MCT1 (+/+) mice used as controls. Body composition analysis revealed that reduced weight gain in MCT1 (+/-) mice was due to decreased fat accumulation (50.0% less after 9 months of HFD) notably in liver and white adipose tissue. This phenotype was associated with reduced food intake under HFD (12.3% less over 10 weeks) and decreased intestinal energy absorption (9.6% higher stool energy content). Indirect calorimetry measurements showed ∼ 15% increase in O2 consumption and CO2 production during the resting phase, without any changes in physical activity. Determination of plasma concentrations for various metabolites and hormones did not reveal significant changes in lactate and ketone bodies levels between the two genotypes, but both insulin and leptin levels, which were elevated in MCT1 (+/+) mice when fed HFD, were reduced in MCT1 (+/-) mice under HFD. Interestingly, the enhancement in expression of several genes involved in lipid metabolism in the liver of MCT1 (+/+) mice under high fat diet was prevented in the liver of MCT1 (+/-) mice under the same diet, thus likely contributing to the observed phenotype. These findings uncover the critical role of MCT1 in the regulation of energy balance when animals are exposed to an obesogenic diet.


Assuntos
Transportadores de Ácidos Monocarboxílicos/metabolismo , Obesidade/metabolismo , Simportadores/metabolismo , Animais , Composição Corporal/fisiologia , Dieta Hiperlipídica/efeitos adversos , Ingestão de Alimentos/fisiologia , Feminino , Masculino , Camundongos , Camundongos Knockout , Camundongos Mutantes , Transportadores de Ácidos Monocarboxílicos/genética , Obesidade/etiologia , Obesidade/genética , Simportadores/genética , beta-Galactosidase/genética , beta-Galactosidase/metabolismo
16.
Clin Cancer Res ; 18(16): 4365-74, 2012 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-22711708

RESUMO

PURPOSE: Local breast cancer relapse after breast-saving surgery and radiotherapy is associated with increased risk of distant metastasis formation. The mechanisms involved remain largely elusive. We used the well-characterized 4T1 syngeneic, orthotopic breast cancer model to identify novel mechanisms of postradiation metastasis. EXPERIMENTAL DESIGN: 4T1 cells were injected in 20 Gy preirradiated mammary tissue to mimic postradiation relapses, or in nonirradiated mammary tissue, as control, of immunocompetent BALB/c mice. Molecular, biochemical, cellular, histologic analyses, adoptive cell transfer, genetic, and pharmacologic interventions were carried out. RESULTS: Tumors growing in preirradiated mammary tissue had reduced angiogenesis and were more hypoxic, invasive, and metastatic to lung and lymph nodes compared with control tumors. Increased metastasis involved the mobilization of CD11b(+)c-Kit(+)Ly6G(high)Ly6C(low)(Gr1(+)) myeloid cells through the HIF1-dependent expression of Kit ligand (KitL) by hypoxic tumor cells. KitL-mobilized myeloid cells homed to primary tumors and premetastatic lungs, to give rise to CD11b(+)c-Kit(-) cells. Pharmacologic inhibition of HIF1, silencing of KitL expression in tumor cells, and inhibition of c-Kit with an anti-c-Kit-blocking antibody or with a tyrosine kinase inhibitor prevented the mobilization of CD11b(+)c-Kit(+) cells and attenuated metastasis. C-Kit inhibition was also effective in reducing mobilization of CD11b(+)c-Kit(+) cells and inhibiting lung metastasis after irradiation of established tumors. CONCLUSIONS: Our work defines KitL/c-Kit as a previously unidentified axis critically involved in promoting metastasis of 4T1 tumors growing in preirradiated mammary tissue. Pharmacologic inhibition of this axis represents a potential therapeutic strategy to prevent metastasis in breast cancer patients with local relapses after radiotherapy.


Assuntos
Antineoplásicos/farmacologia , Neoplasias Mamárias Experimentais/metabolismo , Neoplasias Mamárias Experimentais/patologia , Proteínas Proto-Oncogênicas c-kit/metabolismo , Transdução de Sinais/efeitos dos fármacos , Fator de Células-Tronco/metabolismo , Animais , Antineoplásicos/administração & dosagem , Antígeno CD11b/metabolismo , Linhagem Celular Tumoral , Modelos Animais de Doenças , Feminino , Humanos , Hipóxia , Fator 1 Induzível por Hipóxia/metabolismo , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/secundário , Neoplasias Mamárias Experimentais/tratamento farmacológico , Neoplasias Mamárias Experimentais/radioterapia , Camundongos , Camundongos Endogâmicos C57BL , Metástase Neoplásica , Recidiva Local de Neoplasia , Neovascularização Patológica/tratamento farmacológico , Carga Tumoral
17.
Mol Endocrinol ; 26(6): 1000-13, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22556341

RESUMO

The glucocorticoid-induced leucine zipper (Tsc22d3-2) is a widely expressed dexamethasone-induced transcript that has been proposed to be important in immunity, adipogenesis, and renal sodium handling based on in vitro studies. To address its function in vivo, we have used Cre/loxP technology to generate mice deficient for Tsc22d3-2. Male knockout mice were viable but surprisingly did not show any major deficiencies in immunological processes or inflammatory responses. Tsc22d3-2 knockout mice adapted to a sodium-deprived diet and to water deprivation conditions but developed a subtle deficiency in renal sodium and water handling. Moreover, the affected animals developed a mild metabolic phenotype evident by a reduction in weight from 6 months of age, mild hyperinsulinemia, and resistance to a high-fat diet. Tsc22d3-2-deficient males were infertile and exhibited severe testis dysplasia from postnatal d 10 onward with increases in apoptotic cells within seminiferous tubules, an increased number of Leydig cells, and significantly elevated FSH and testosterone levels. Thus, our analysis of the Tsc22d3-2-deficient mice demonstrated a previously uncharacterized function of glucocorticoid-induced leucine zipper protein in testis development.


Assuntos
Infertilidade Masculina/genética , Fatores de Transcrição/genética , Adipogenia , Animais , Peso Corporal , Contagem de Células , Células Cultivadas , Citocinas/metabolismo , Dexametasona/farmacologia , Feminino , Fibroblastos/fisiologia , Loci Gênicos , Hiperinsulinismo/genética , Sistema Imunitário/crescimento & desenvolvimento , Fatores Imunológicos/farmacologia , Lipopolissacarídeos/farmacologia , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Macrófagos/metabolismo , Masculino , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Isoformas de Proteínas/genética , Baço/patologia , Testículo/crescimento & desenvolvimento , Testículo/metabolismo , Testículo/patologia , Timo/patologia , Fatores de Transcrição/deficiência
18.
J Clin Invest ; 121(7): 2794-807, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21646719

RESUMO

Metastasis depends on the ability of tumor cells to establish a relationship with the newly seeded tissue that is conducive to their survival and proliferation. However, the factors that render tissues permissive for metastatic tumor growth have yet to be fully elucidated. Breast tumors arising during pregnancy display early metastatic proclivity, raising the possibility that pregnancy may constitute a physiological condition of permissiveness for tumor dissemination. Here we have shown that during murine gestation, metastasis is enhanced regardless of tumor type, and that decreased NK cell activity is responsible for the observed increase in experimental metastasis. Gene expression changes in pregnant mouse lung and liver were shown to be similar to those detected in premetastatic sites and indicative of myeloid cell infiltration. Indeed, myeloid-derived suppressor cells (MDSCs) accumulated in pregnant mice and exerted an inhibitory effect on NK cell activity, providing a candidate mechanism for the enhanced metastatic tumor growth observed in gestant mice. Although the functions of MDSCs are not yet understood in the context of pregnancy, our observations suggest that they may represent a shared mechanism of immune suppression occurring during gestation and tumor growth.


Assuntos
Tolerância Imunológica/fisiologia , Terapia de Imunossupressão , Células Mieloides/fisiologia , Metástase Neoplásica/imunologia , Complicações Neoplásicas na Gravidez/imunologia , Complicações Neoplásicas na Gravidez/patologia , Animais , Linhagem Celular Tumoral , Feminino , Células Matadoras Naturais/citologia , Células Matadoras Naturais/imunologia , Neoplasias Hepáticas/secundário , Neoplasias Pulmonares/secundário , Melanoma/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos NOD , Camundongos SCID , Células Mieloides/citologia , Metástase Neoplásica/patologia , Transplante de Neoplasias , Gravidez
19.
PLoS One ; 6(5): e18640, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21611158

RESUMO

Primary tumor growth induces host tissue responses that are believed to support and promote tumor progression. Identification of the molecular characteristics of the tumor microenvironment and elucidation of its crosstalk with tumor cells may therefore be crucial for improving our understanding of the processes implicated in cancer progression, identifying potential therapeutic targets, and uncovering stromal gene expression signatures that may predict clinical outcome. A key issue to resolve, therefore, is whether the stromal response to tumor growth is largely a generic phenomenon, irrespective of the tumor type or whether the response reflects tumor-specific properties. To address similarity or distinction of stromal gene expression changes during cancer progression, oligonucleotide-based Affymetrix microarray technology was used to compare the transcriptomes of laser-microdissected stromal cells derived from invasive human breast and prostate carcinoma. Invasive breast and prostate cancer-associated stroma was observed to display distinct transcriptomes, with a limited number of shared genes. Interestingly, both breast and prostate tumor-specific dysregulated stromal genes were observed to cluster breast and prostate cancer patients, respectively, into two distinct groups with statistically different clinical outcomes. By contrast, a gene signature that was common to the reactive stroma of both tumor types did not have survival predictive value. Univariate Cox analysis identified genes whose expression level was most strongly associated with patient survival. Taken together, these observations suggest that the tumor microenvironment displays distinct features according to the tumor type that provides survival-predictive value.


Assuntos
Neoplasias da Mama/diagnóstico , Neoplasias da Mama/genética , Neoplasias da Próstata/diagnóstico , Neoplasias da Próstata/genética , Neoplasias da Mama/patologia , Moléculas de Adesão Celular/genética , Moléculas de Adesão Celular/metabolismo , Feminino , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Genes Neoplásicos/genética , Humanos , Estimativa de Kaplan-Meier , Masculino , Especificidade de Órgãos/genética , Prognóstico , Modelos de Riscos Proporcionais , Neoplasias da Próstata/patologia , Células Estromais/metabolismo , Células Estromais/patologia , Microambiente Tumoral , Regulação para Cima/genética
20.
Nat Commun ; 2: 161, 2011 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-21245842

RESUMO

Altered serine protease activity is associated with skin disorders in humans and in mice. The serine protease channel-activating protease-1 (CAP1; also termed protease serine S1 family member 8 (Prss8)) is important for epidermal homeostasis and is thus indispensable for postnatal survival in mice, but its roles and effectors in skin pathology are poorly defined. In this paper, we report that transgenic expression in mouse skin of either CAP1/Prss8 (K14-CAP1/Prss8) or protease-activated receptor-2 (PAR2; Grhl3(PAR2/+)), one candidate downstream target, causes epidermal hyperplasia, ichthyosis and itching. K14-CAP1/Prss8 ectopic expression impairs epidermal barrier function and causes skin inflammation characterized by an increase in thymic stromal lymphopoietin levels and immune cell infiltrations. Strikingly, both gross and functional K14-CAP1/Prss8-induced phenotypes are completely negated when superimposed on a PAR2-null background, establishing PAR2 as a pivotal mediator of pathogenesis. Our data provide genetic evidence for PAR2 as a downstream effector of CAP1/Prss8 in a signalling cascade that may provide novel therapeutic targets for ichthyoses, pruritus and inflammatory skin diseases.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA