Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
Cell Mol Biol Lett ; 28(1): 97, 2023 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-38030974

RESUMO

Arachidonic acid 15-lipoxygenases (ALOX15) play a role in mammalian erythropoiesis but they have also been implicated in inflammatory processes. Seven intact Alox genes have been detected in the mouse reference genome and the mouse Alox15 gene is structurally similar to the orthologous genes of other mammals. However, mouse and human ALOX15 orthologs have different functional characteristics. Human ALOX15 converts C20 polyenoic fatty acids like arachidonic acid mainly to the n-6 hydroperoxide. In contrast, the n-9 hydroperoxide is the major oxygenation product formed by mouse Alox15. Previous experiments indicated that Leu353Phe exchange in recombinant mouse Alox15 humanized the catalytic properties of the enzyme. To investigate whether this functional humanization might also work in vivo and to characterize the functional consequences of mouse Alox15 humanization we generated Alox15 knock-in mice (Alox15-KI), in which the Alox15 gene was modified in such a way that the animals express the arachidonic acid 15-lipoxygenating Leu353Phe mutant instead of the arachidonic acid 12-lipoxygenating wildtype enzyme. These mice develop normally, they are fully fertile but display modified plasma oxylipidomes. In young individuals, the basic hematological parameters were not different when Alox15-KI mice and outbred wildtype controls were compared. However, when growing older male Alox15-KI mice develop signs of dysfunctional erythropoiesis such as reduced hematocrit, lower erythrocyte counts and attenuated hemoglobin concentration. These differences were paralleled by an improved ex vivo osmotic resistance of the peripheral red blood cells. Interestingly, such differences were not observed in female individuals suggesting gender specific effects. In summary, these data indicated that functional humanization of mouse Alox15 induces defective erythropoiesis in aged male individuals.


Assuntos
Araquidonato 15-Lipoxigenase , Peróxido de Hidrogênio , Animais , Feminino , Humanos , Masculino , Camundongos , Araquidonato 12-Lipoxigenase/genética , Araquidonato 15-Lipoxigenase/genética , Ácido Araquidônico , Mamíferos
2.
Int J Mol Sci ; 24(13)2023 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-37446212

RESUMO

Mammalian arachidonic acid lipoxygenases (ALOXs) have been implicated in the pathogenesis of inflammatory diseases, and its pro- and anti-inflammatory effects have been reported for different ALOX-isoforms. Human ALOX15B oxygenates arachidonic acid to its 15-hydroperoxy derivative, whereas the corresponding 8-hydroperoxide is formed by mouse Alox15b (Alox8). This functional difference impacts the biosynthetic capacity of the two enzymes for creating pro- and anti-inflammatory eicosanoids. To explore the functional consequences of the humanization of the reaction specificity of mouse Alox15b in vivo, we tested Alox15b knock-in mice that express the arachidonic acid 15-lipoxygenating Tyr603Asp and His604Val double mutant of Alox15b, instead of the arachidonic acid 8-lipoxygenating wildtype enzyme, in two different animal inflammation models. In the dextran sodium sulfate-induced colitis model, female Alox15b-KI mice lost significantly more bodyweight during the acute phase of inflammation and recovered less rapidly during the resolution phase. Although we observed significant differences in the colonic levels of selected pro- and anti-inflammatory eicosanoids during the time-course of inflammation, there were no differences between the two genotypes at any time-point of the disease. In Freund's complete adjuvant-induced paw edema model, Alox15b-KI mice were less susceptible than outbred wildtype controls, though we did not observe significant differences in pain perception (Hargreaves-test, von Frey-test) when the two genotypes were compared. our data indicate that humanization of the reaction specificity of mouse Alox15b (Alox8) sensitizes mice for dextran sodium sulfate-induced experimental colitis, but partly protects the animals in the complete Freund's adjuvant-induced paw edema model.


Assuntos
Colite , Dextranos , Humanos , Camundongos , Feminino , Animais , Ácido Araquidônico , Inflamação/genética , Mamíferos , Anti-Inflamatórios , Edema/induzido quimicamente , Edema/genética , Modelos Animais de Doenças
3.
Int J Mol Sci ; 23(17)2022 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-36077303

RESUMO

Glutathione peroxidase 4 (Gpx4) and arachidonic acid 15 lipoxygenase (Alox15) are counterplayers in oxidative lipid metabolism and both enzymes have been implicated in spermatogenesis. However, the roles of the two proteins in acrosomal exocytosis have not been explored in detail. Here we characterized Gpx4 distribution in mouse sperm and detected the enzyme not only in the midpiece of the resting sperm but also at the anterior region of the head, where the acrosome is localized. During sperm capacitation, Gpx4 translocated to the post-acrosomal compartment. Sperm from Gpx4+/Sec46Ala mice heterozygously expressing a catalytically silent enzyme displayed an increased expression of phosphotyrosyl proteins, impaired acrosomal exocytosis after in vitro capacitation and were not suitable for in vitro fertilization. Alox15-deficient sperm showed normal acrosome reactions but when crossed into a Gpx4-deficient background spontaneous acrosomal exocytosis was observed during capacitation and these cells were even less suitable for in vitro fertilization. Taken together, our data indicate that heterozygous expression of a catalytically silent Gpx4 variant impairs acrosomal exocytosis and in vitro fertilization. Alox15 deficiency hardly impacted the acrosome reaction but when crossed into the Gpx4-deficient background spontaneous acrosomal exocytosis was induced. The detailed molecular mechanisms for the observed effects may be related to the compromised redox homeostasis.


Assuntos
Reação Acrossômica , Araquidonato 15-Lipoxigenase , Acrossomo/metabolismo , Animais , Araquidonato 15-Lipoxigenase/genética , Araquidonato 15-Lipoxigenase/metabolismo , Exocitose , Fertilização in vitro , Masculino , Camundongos , Fosfolipídeo Hidroperóxido Glutationa Peroxidase , Sêmen , Espermatozoides/metabolismo
4.
Int J Mol Sci ; 22(6)2021 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-33807076

RESUMO

Arachidonic acid lipoxygenases (ALOXs) have been suggested to function as monomeric enzymes, but more recent data on rabbit ALOX15 indicated that there is a dynamic monomer-dimer equilibrium in aqueous solution. In the presence of an active site ligand (the ALOX15 inhibitor RS7) rabbit ALOX15 was crystalized as heterodimer and the X-ray coordinates of the two monomers within the dimer exhibit subtle structural differences. Using native polyacrylamide electrophoresis, we here observed that highly purified and predominantly monomeric rabbit ALOX15 and human ALOX15B are present in two conformers with distinct electrophoretic mobilities. In silico docking studies, molecular dynamics simulations, site directed mutagenesis experiments and kinetic measurements suggested that in aqueous solutions the two enzymes exhibit motional flexibility, which may impact the enzymatic properties.


Assuntos
Araquidonato 15-Lipoxigenase/química , Araquidonato 15-Lipoxigenase/metabolismo , Modelos Moleculares , Conformação Proteica , Substituição de Aminoácidos , Animais , Catálise , Humanos , Isoenzimas , Cinética , Mutação , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Multimerização Proteica , Coelhos
5.
Proc Natl Acad Sci U S A ; 113(30): E4266-75, 2016 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-27412860

RESUMO

ALOX15 (12/15-lipoxygenase) orthologs have been implicated in maturational degradation of intracellular organelles and in the biosynthesis of antiinflammatory and proresolving eicosanoids. Here we hypothesized that lower mammals (mice, rats, pigs) express 12-lipoxygenating ALOX15 orthologs. In contrast, 15-lipoxygenating isoforms are found in higher primates (orangutans, men), and these results suggest an evolution of ALOX15 specificity. To test this hypothesis we first cloned and characterized ALOX15 orthologs of selected Catarrhini representing different stages of late primate evolution and found that higher primates (men, chimpanzees) express 15-lipoxygenating orthologs. In contrast, lower primates (baboons, rhesus monkeys) express 12-lipoxygenating enzymes. Gibbons, which are flanked in evolution by rhesus monkeys (12-lipoxygenating ALOX15) and orangutans (15-lipoxygenating ALOX15), express an ALOX15 ortholog with pronounced dual specificity. To explore the driving force for this evolutionary alterations, we quantified the lipoxin synthase activity of 12-lipoxygenating (rhesus monkey, mouse, rat, pig, humIle418Ala) and 15-lipoxygenating (man, chimpanzee, orangutan, rabbit, ratLeu353Phe) ALOX15 variants and found that, when normalized to their arachidonic acid oxygenase activities, the lipoxin synthase activities of 15-lipoxygenating ALOX15 variants were more than fivefold higher (P < 0.01) [corrected]. Comparative molecular dynamics simulations and quantum mechanics/molecular mechanics calculations indicated that, for the 15-lipoxygenating rabbit ALOX15, the energy barrier for C13-hydrogen abstraction (15-lipoxygenation) was 17 kJ/mol lower than for arachidonic acid 12-lipoxygenation. In contrast, for the 12-lipoxygenating Ile418Ala mutant, the energy barrier for 15-lipoxygenation was 10 kJ/mol higher than for 12-lipoxygenation. Taken together, our data suggest an evolution of ALOX15 specificity, which is aimed at optimizing the biosynthetic capacity for antiinflammatory and proresolving lipoxins.


Assuntos
Araquidonato 15-Lipoxigenase/genética , Araquidonato 15-Lipoxigenase/metabolismo , Evolução Molecular , Lipoxinas/biossíntese , Animais , Anti-Inflamatórios/química , Anti-Inflamatórios/metabolismo , Araquidonato 15-Lipoxigenase/química , Domínio Catalítico , Humanos , Lipoxinas/química , Camundongos , Mutação , Primatas , Coelhos , Ratos , Especificidade da Espécie , Especificidade por Substrato , Suínos
6.
Skin Pharmacol Physiol ; 32(4): 192-200, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31096247

RESUMO

BACKGROUND: Atopic diseases constitute a major health challenge for industrialized countries, and elevated levels of interleukin 4 (IL-4) frequently characterize these disorders. Previous in vitroanalyses have indicated that IL-4 strongly upregulates the expression of IL-4-sensitive genes in human monocytes. OBJECTIVE: To explore whether similar expression alterations may contribute to the pathomechanisms of atopic diseases in vivo we carried out a small-scale case-control clinical study (n = 43), in which we quantified the plasma levels of IgE and IL-4 as well as the expression of selected IL-4-sensitive genes in blood leukocytes. METHODS: 34 allergic patients suffering from allergic rhinitis (n = 11), atopic eczema (n = 11) and allergic asthma (n = 12) as well as 9 healthy control individuals were recruited. IgE and IL-4 plasma levels were determined by ELISA, and the expression of selected IL-4-sensitive gene products in blood leukocytes was quantified by qRT-PCR. In addition, the fatty acid oxygenase activity of isolated monocytes was measured by RP-HPLC analysis of the arachidonic acid oxygenation products (ex vivo activity assays). RESULTS: We found that plasma levels of IgE and IL-4 were significantly elevated in atopic patients but the degree of elevation was not sufficient to upregulate the expression of the selected IL-4-sensitive genes in circulating leukocytes. Moreover, the arachidonic acid oxygenase activity of blood monocytes was not significantly altered in atopic patients. CONCLUSION: Our data suggest that the IL-4 plasma levels of atopic patients are not high enough to impact the expression of IL-4-sensitive genes.


Assuntos
Hipersensibilidade Imediata/sangue , Hipersensibilidade Imediata/genética , Imunoglobulina E/biossíntese , Interleucina-4/biossíntese , Leucócitos/fisiologia , Adulto , Asma/sangue , Asma/genética , Estudos de Casos e Controles , Dermatite Atópica/sangue , Dermatite Atópica/genética , Ensaio de Imunoadsorção Enzimática , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Oxigenases/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Rinite Alérgica/sangue , Rinite Alérgica/genética , Regulação para Cima
7.
Biochim Biophys Acta Gen Subj ; 1862(4): 866-876, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29366917

RESUMO

The guanine-rich RNA sequence binding factor 1 (GRSF1) constitutes an ubiquitously occurring RNA-binding protein (RBP), which belongs to the family of heterogeneous nuclear ribonucleoprotein F/H (hnRNP F/H). It has been implicated in nuclear, cytosolic and mitochondrial RNA metabolism. Although the crystal structures of GRSF1 orthologs have not been solved, amino acid alignments with similar RNA-binding proteins suggested the existence of three RNA-binding domains designated quasi-RNA recognition motifs (qRRMs). Here we established 3D-models for the three qRRMs of human GRSF1 on the basis of the NMR structure of hnRNP F and identified the putative RNA interacting amino acids. Next, we explored the genetic variability of the three qRRMs of human GRSF1 by searching genomic databases and tested the functional consequences of naturally occurring mutants. For this purpose the RNA-binding capacity of wild-type and mutant recombinant GRSF1 protein species was assessed by quantitative RNA electrophoretic mobility shift assays. We found that some of the naturally occurring GRSF1 mutants exhibited a strongly reduced RNA-binding activity although the general protein structure was hardly affected. These data suggested that homozygous allele carriers of these particular mutants express dysfunctional GRSF1 and thus may show defective GRSF1 signaling.


Assuntos
Motivos de Aminoácidos/genética , Mutação , Proteínas de Ligação a Poli(A)/genética , Sequência de Aminoácidos , Sítios de Ligação , Humanos , Cinética , Modelos Moleculares , Proteínas de Ligação a Poli(A)/química , Proteínas de Ligação a Poli(A)/metabolismo , Ligação Proteica , Domínios Proteicos , RNA/química , RNA/genética , RNA/metabolismo , Homologia de Sequência de Aminoácidos
8.
Biochim Biophys Acta Gen Subj ; 1862(4): 946-957, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29288125

RESUMO

The Guanine-rich RNA sequence binding factor 1 (GRSF1) is a member of the heterogeneous nuclear ribonucleoprotein F/H family and has been implicated in RNA processing, RNA transport and translational regulation. Amino acid alignments and homology modeling suggested the existence of three distinct RNA-binding domains and two auxiliary domains. Unfortunately, little is known about the molecular details of GRSF1/RNA interactions. To explore the RNA-binding mechanisms we first expressed full-length human GRSF1 and several truncation mutants, which include the three separated qRRM domains in E. coli, purified the recombinant proteins and quantified their RNA-binding affinity by RNA electrophoretic mobility shift assays. The expression levels varied between 1 and 10mg purified protein per L bacterial liquid culture and for full-length human GRSF1 a binding constant (KD-value) of 0.5µM was determined. In addition, our mechanistic experiments with different truncation mutants allowed the following conclusions: i) Deletion of either of the three RNA-binding domains impaired the RNA-binding affinity suggesting that the simultaneous presence of the three domains is essential for high-affinity RNA-binding. ii) Deletion of the Ala-rich auxiliary domain did hardly affect RNA-binding. Thus, this structural subunit may not be involved in RNA interaction. iii) Deletion of the acidic auxiliary domain improved the RNA-binding suggesting a regulatory role for this structural motif. iv) The isolated RNA-binding domains did not exhibit sizeable RNA-binding affinities. Taken together these data suggest that a cooperative interaction of the three qRRMs is required for high affinity RNA-binding.


Assuntos
Mutação , Proteínas de Ligação a Poli(A)/genética , Motivos de Ligação ao RNA/genética , RNA/genética , Sequência de Aminoácidos , Sítios de Ligação/genética , Ligação Competitiva , Células HEK293 , Humanos , Cinética , Proteínas de Ligação a Poli(A)/metabolismo , Ligação Proteica , RNA/metabolismo
9.
Biochim Biophys Acta Mol Cell Biol Lipids ; 1862(7): 666-675, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28400162

RESUMO

Mammalian lipoxygenases (LOX) have been implicated in cell differentiation and in the pathogenesis of inflammatory, hyperproliferative and neurological diseases. Although the reaction specificity of mammalian LOX with n-6 fatty acids (linoleic acid, arachidonic acid) has been explored in detail little information is currently available on the product patterns formed from n-3 polyenoic fatty acids, which are of particular nutritional importance and serve as substrate for the biosynthesis of pro-resolving inflammatory mediators such as resolvins and maresins. Here we expressed the ALOX15 orthologs of eight different mammalian species as well as human ALOX12 and ALOX15B as recombinant his-tag fusion proteins and characterized their reaction specificity with the most abundantly occurring polyunsaturated fatty acids (PUFAs) including 5,8,11,14,17-eicosapentaenoic acid (EPA) and 4,7,10,13,16,19-docosahexaenoic acid (DHA). We found that the LOX isoforms tested accept these fatty acids as suitable substrates and oxygenate them with variable positional specificity to the corresponding n-6 and n-9 hydroperoxy derivatives. Surprisingly, human ALOX15 as well as the corresponding orthologs of chimpanzee and orangutan, which oxygenates arachidonic acid mainly to 15S-H(p)ETE, exhibit a pronounced dual reaction specificity with DHA forming similar amounts of 14- and 17-H(p)DHA. Moreover, ALOX15 orthologs prefer DHA and EPA over AA when equimolar concentrations of n-3 and n-6 PUFA were supplied simultaneously. Taken together, these data indicate that the reaction specificity of mammalian LOX isoforms is variable and strongly depends on the chemistry of fatty acid substrates. Most mammalian ALOX15 orthologs exhibit dual positional specificity with highly unsaturated n-3 polyunsaturated fatty acids.


Assuntos
Araquidonato 15-Lipoxigenase/metabolismo , Ácidos Docosa-Hexaenoicos/metabolismo , Mamíferos/metabolismo , Animais , Ácido Eicosapentaenoico/metabolismo , Ácidos Graxos Ômega-3/metabolismo , Ácidos Graxos Ômega-6/metabolismo , Ácidos Graxos Insaturados/metabolismo , Humanos , Sensibilidade e Especificidade
10.
Biochim Biophys Acta ; 1831(6): 1079-88, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23438511

RESUMO

12/15-Lipoxygenases (12/15-LOX) have been implicated in inflammatory and hyperproliferative diseases but the numerous aspects of structural biology of these enzymes are far from clear. Early mutagenesis data and structural modeling of enzyme-substrate complexes suggested that Arg403, which is localized at the entrance of the putative substrate binding pocket, might interact with the fatty acid carboxylic group. On the other hand, side-chain of Arg403 is a part of an ionic network with the residues of α2-helix, which undergoes pronounced conformation changes upon inhibitor binding. To explore the role of Arg403 for catalysis in more detail we exchanged positively charged Arg403 to neutral Leu and quantified structural and functional consequences of the alteration at the site of mutation using fluorometric techniques. We found that a loss of electrostatic interaction between Arg403 and negatively charged amino acid residues of α2-helix has only minor impact on protein folding, but partially destabilized the tertiary structure of the enzyme. We hypothesize that interaction of Arg403 with the substrate's carboxylate might be involved in a complex mechanism triggering conformational changes of the α2-helix, which are required for formation of the catalytically competent dimer r12/15-LOX complex at pre-catalytic stages.


Assuntos
Araquidonato 12-Lipoxigenase/química , Araquidonato 12-Lipoxigenase/metabolismo , Araquidonato 15-Lipoxigenase/química , Araquidonato 15-Lipoxigenase/metabolismo , Arginina/metabolismo , Termodinâmica , Animais , Araquidonato 12-Lipoxigenase/genética , Araquidonato 15-Lipoxigenase/genética , Arginina/química , Arginina/genética , Sítios de Ligação , Catálise , Dicroísmo Circular , Ligação de Hidrogênio , Cinética , Modelos Moleculares , Simulação de Dinâmica Molecular , Mutação/genética , Conformação Proteica , Dobramento de Proteína , Multimerização Proteica , Coelhos , Espectrometria de Fluorescência , Eletricidade Estática , Temperatura
11.
Biochim Biophys Acta ; 1811(12): 1001-10, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21875687

RESUMO

12/15-Lipoxygenases (12/15-LOXs) have been implicated in inflammatory and hyperproliferative diseases but the structural biology of these enzymes is not well developed. Most LOXs constitute single polypeptide chain proteins that fold into a two-domain structure. In the crystal structure the two domains are tightly associated, but small angle X-ray scattering data and dynamic fluorescence studies suggested a high degree of structural flexibility involving movement of the N-terminal domain relative to catalytic subunit. When we inspected the interdomain interface we have found a limited number of side-chain contacts which are involved in interactions of these two structural subunits. One of such contact points involves tyrosine 98 of N-terminal domain. This aromatic amino acid is invariant in vertebrate LOXs regardless of overall sequence identity. To explore in more detail the role of aromatic interactions in interdomain association we have mutated Y98 to various residues and quantified the structural and functional consequences of these alterations. We have found that loss of an aromatic moiety at position 98 impaired the catalytic activity and membrane binding capacity of the mutant enzymes. Although CD and fluorescence emission spectra of wild-type and mutant enzyme species were indistinguishable, the mutation led to enlargement of the molecular shape of the enzyme as detected by analytic gel filtration and this structural alteration was shown to be associated with a loss of protein thermal stability. The possible role of tight interdomain association for the enzyme's structural performance is discussed.


Assuntos
Araquidonato 12-Lipoxigenase/química , Araquidonato 15-Lipoxigenase/química , Domínio Catalítico/genética , Proteínas Recombinantes de Fusão/química , Tirosina/metabolismo , Sequência de Aminoácidos , Animais , Araquidonato 12-Lipoxigenase/genética , Araquidonato 12-Lipoxigenase/metabolismo , Araquidonato 15-Lipoxigenase/genética , Araquidonato 15-Lipoxigenase/metabolismo , Biocatálise , Membrana Celular , Cromatografia em Gel , Dicroísmo Circular , Clonagem Molecular , Estabilidade Enzimática , Escherichia coli , Cinética , Modelos Moleculares , Dados de Sequência Molecular , Mutação , Plasmídeos , Estrutura Terciária de Proteína , Coelhos , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Espectrometria de Fluorescência , Transformação Bacteriana , Tirosina/química
12.
Proteins ; 80(3): 703-12, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22189720

RESUMO

Mammalian lipoxygenases (LOXs) have been implicated in cellular defense response and are important for physiological homeostasis. Since their discovery, LOXs have been believed to function as monomeric enzymes that exhibit allosteric properties. In aqueous solutions, the rabbit 12/15-LOX is mainly present as hydrated monomer but changes in the local physiochemical environment suggested a monomer-dimer equilibrium. Because the allosteric character of the enzyme can hardly be explained using a single ligand binding-site model, we proposed that the binding of allosteric effectors may shift the monomer-dimer equilibrium toward dimer formation. To test this hypothesis, we explored the impact of an allosteric effector [13(S)-hydroxyoctadeca-9(Z),11(E)-dienoic acid] on the structural properties of rabbit 12/15-LOX by small-angle X-ray scattering. Our data indicate that the enzyme undergoes ligand-induced dimerization in aqueous solution, and molecular dynamics simulations suggested that LOX dimers may be stable in the presence of substrate fatty acids. These data provide direct structural evidence for the existence of LOX dimers, where two noncovalently linked enzyme molecules might work in unison and, therefore, such mode of association might be related to the allosteric character of 12/15-LOX. Introduction of negatively charged residues (W181E + H585E and L183E + L192E) at the intermonomer interface disturbs the hydrophobic dimer interaction of the wild-type LOX, and this structural alteration may lead to functional distortion of mutant enzymes.


Assuntos
Araquidonato 12-Lipoxigenase/química , Araquidonato 12-Lipoxigenase/metabolismo , Araquidonato 15-Lipoxigenase/química , Araquidonato 15-Lipoxigenase/metabolismo , Regulação Alostérica , Animais , Araquidonato 12-Lipoxigenase/genética , Araquidonato 15-Lipoxigenase/genética , Cristalografia por Raios X , Ligantes , Ácidos Linoleicos/metabolismo , Simulação de Dinâmica Molecular , Mutação , Multimerização Proteica , Coelhos
13.
Biophys Chem ; 288: 106855, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35849958

RESUMO

Lipoxygenases (LOX) are a family lipid oxygenating enzymes that can generate bioactive lipids of clinical relevance from polyunsaturated fatty acids. Most LOXs display a Ca2+-dependent association with membranes for their activity. Nanodiscs (ND) are stable self-assembled discoidal fragments of lipid bilayers that can mimic the plasma membrane. In this study, we evaluated the association of mammalian 15-LOXs (ALOX15 and ALOX15B) and soybean LOX-1 with NDs (LOX-ND), their enzymatic activities and inhibition. Mammalian LOXs associated with NDs showed better retention of enzymatic function compared to soybean LOX-1. Treatment of both LOX-NDs and free enzymes with the pan-LOX inhibitor nordihydroguaiaretic acid (NDGA) showed an approximately 5-fold more effective inhibition of the enzymes associated with NDs compared to the free form. NDs are easy to generate membrane mimics that can be used as an effective tool to determine enzymatic function and inhibition of membrane associated proteins.


Assuntos
Inibidores de Lipoxigenase , Lipoxigenases , Animais , Inibidores de Lipoxigenase/química , Inibidores de Lipoxigenase/farmacologia , Lipoxigenases/química , Lipoxigenases/metabolismo , Mamíferos/metabolismo , Receptores Depuradores Classe E
14.
Biomedicines ; 10(6)2022 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-35740398

RESUMO

Mammalian arachidonic acid lipoxygenases (ALOXs) have been implicated in cell differentiation and in the pathogenesis of inflammation. The mouse genome involves seven functional Alox genes and the encoded enzymes share a high degree of amino acid conservation with their human orthologs. There are, however, functional differences between mouse and human ALOX orthologs. Human ALOX15B oxygenates arachidonic acid exclusively to its 15-hydroperoxy derivative (15S-HpETE), whereas 8S-HpETE is dominantly formed by mouse Alox15b. The structural basis for this functional difference has been explored and in vitro mutagenesis humanized the reaction specificity of the mouse enzyme. To explore whether this mutagenesis strategy may also humanize the reaction specificity of mouse Alox15b in vivo, we created Alox15b knock-in mice expressing the arachidonic acid 15-lipoxygenating Tyr603Asp+His604Val double mutant instead of the 8-lipoxygenating wildtype enzyme. These mice are fertile, display slightly modified plasma oxylipidomes and develop normally up to an age of 24 weeks. At later developmental stages, male Alox15b-KI mice gain significantly less body weight than outbred wildtype controls, but this effect was not observed for female individuals. To explore the possible reasons for the observed gender-specific growth arrest, we determined the basic hematological parameters and found that aged male Alox15b-KI mice exhibited significantly attenuated red blood cell parameters (erythrocyte counts, hematocrit, hemoglobin). Here again, these differences were not observed in female individuals. These data suggest that humanization of the reaction specificity of mouse Alox15b impairs the functionality of the hematopoietic system in males, which is paralleled by a premature growth arrest.

15.
Front Cell Dev Biol ; 10: 871585, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35531094

RESUMO

Arachidonic acid lipoxygenases (ALOXs) have been implicated in the immune response of mammals. The reaction specificity of these enzymes is decisive for their biological functions and ALOX classification is based on this enzyme property. Comparing the amino acid sequences and the functional properties of selected mammalian ALOX15 orthologs we previously hypothesized that the reaction specificity of these enzymes can be predicted based on their amino acid sequences (Triad Concept) and that mammals, which are ranked in evolution below gibbons, express arachidonic acid 12-lipoxygenating ALOX15 orthologs. In contrast, Hominidae involving the great apes and humans possess 15-lipoxygenating enzymes (Evolutionary Hypothesis). These two hypotheses were based on sequence data of some 60 mammalian ALOX15 orthologs and about half of them were functionally characterized. Here, we compared the ALOX15 sequences of 152 mammals representing all major mammalian subclades expressed 44 novel ALOX15 orthologs and performed extensive mutagenesis studies of their triad determinants. We found that ALOX15 genes are absent in extant Prototheria but that corresponding enzymes frequently occur in Metatheria and Eutheria. More than 90% of them catalyze arachidonic acid 12-lipoxygenation and the Triad Concept is applicable to all of them. Mammals ranked in evolution above gibbons express arachidonic acid 15-lipoxygenating ALOX15 orthologs but enzymes with similar specificity are only present in less than 5% of mammals ranked below gibbons. This data suggests that ALOX15 orthologs have been introduced during Prototheria-Metatheria transition and put the Triad Concept and the Evolutionary Hypothesis on a much broader and more reliable experimental basis.

16.
FEBS J ; 288(4): 1387-1406, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-32627384

RESUMO

After 300 million years of evolution, the first land-living mammals reentered the marine environment some 50 million years ago. The driving forces for this dramatic lifestyle change are still a matter of discussion but the struggle for food resources and the opportunity to escape predators probably contributed. Reentering the oceans requires metabolic adaption putting evolutionary pressure on a number of genes. To explore whether eicosanoid signaling has been part of this adaptive response, we first explored whether the genomes of marine mammals involve functional genes encoding for key enzymes of eicosanoid biosynthesis. Cyclooxygenase (COX) and lipoxygenase (ALOX) genes are present in the genome of all marine mammals tested. Interestingly, ALOX12B, which has been implicated in skin development of land-living mammals, is lacking in whales and dolphins and genes encoding for its sister enzyme (ALOXE3) involve premature stop codons and/or frameshifting point mutations, which interrupt the open reading frames. ALOX15 orthologs have been detected in all marine mammals, and the recombinant enzymes exhibit similar catalytic properties as those of land-living species. All marine mammals express arachidonic acid 12-lipoxygenating ALOX15 orthologs, and these data are consistent with the Evolutionary Hypothesis of ALOX15 specificity. These enzymes exhibit membrane oxygenase activity and introduction of big amino acids at the triad positions altered the reaction specificity in favor of arachidonic acid 15-lipoxygenation. Thus, the ALOX15 orthologs of marine mammals follow the Triad concept explaining their catalytic specificity.


Assuntos
Adaptação Fisiológica/genética , Eicosanoides/biossíntese , Genoma/genética , Mamíferos/genética , Mamíferos/metabolismo , Aminoácidos/metabolismo , Animais , Araquidonato 15-Lipoxigenase/genética , Araquidonato 15-Lipoxigenase/metabolismo , Ácido Araquidônico/metabolismo , Evolução Molecular , Expressão Gênica , Lipoxigenase/genética , Lipoxigenase/metabolismo , Mamíferos/classificação , Mutação , Oceanos e Mares , Prostaglandina-Endoperóxido Sintases/genética , Prostaglandina-Endoperóxido Sintases/metabolismo , Água do Mar , Especificidade da Espécie , Especificidade por Substrato
17.
Biochim Biophys Acta Gen Subj ; 1864(11): 129678, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32645484

RESUMO

BACKGROUND: The guanine-rich RNA sequence binding factor 1 (GRSF1) is an RNA-binding protein of the hnRNP H/F family, which has been implicated in erythropoiesis, regulation of the redox homeostasis, embryonic brain development, mitochondrial function and cellular senescence. The molecular basis for GRSF1-RNA interaction has extensively been studied in the past but for the time being GRSF1 binding proteins have not been identified. METHODS: To search for GRSF1 binding proteins we first employed the yeast two-hybrid system and screened a cDNA library of human fetal brain for potential GRSF1 binding proteins. Subsequently, we explored the protein-protein-interaction of the recombiant proteins, carried out immunoprecipitation experiments to confirm the interaction of the native proteins in living cells and performed truncation studies to identify the protein-binding motif of GRSF1. RESULTS: Using the yeast two-hybrid system we identified the COMM-domain containing protein 1 (COMMD1) as specific GRSF1 binding protein and in vitro truncation studies suggested that COMMD1 interacts with the alanine-rich domain of GRSF1. Co-immunoprecipitation strategies indicated that COMMD1-GRSF1 interaction was RNA independent and also occurred in living cells expressing the two native proteins. CONCLUSION: In mammalian cells the COMM-domain containing protein 1 (COMMD1) specifically interacts with the Ala-rich domain of GRSF1 in an RNA-independent manner. GENERAL SIGNIFICANCE: This is the first report describing a specific GRSF1 binding protein.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas de Ligação a Poli(A)/metabolismo , RNA/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/química , Células HEK293 , Humanos , Proteínas de Ligação a Poli(A)/química , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Mapas de Interação de Proteínas
18.
Artigo em Inglês | MEDLINE | ID: mdl-31676437

RESUMO

The tree shrew (Tupaia belangeri) is a rat-sized mammal, which is more closely related to humans than mice and rats. However, the use of tree shrew to explore the patho-mechanisms of human inflammatory disorders has been limited since nothing is known about eicosanoid metabolism in this mammalian species. Eicosanoids are important lipid mediators exhibiting pro- and anti-inflammatory activities, which are biosynthesized via lipoxygenase and cyclooxygenase pathways. When we searched the tree shrew genome for the presence of cyclooxygenase and lipoxygenase isoforms we found copies of functional COX1, COX2 and LOX genes. Interestingly, we identified four copies of ALOX15 genes, which encode for four structurally distinct ALOX15 orthologs (tupALOX15a-d). To explore the catalytic properties of these enzymes we expressed tupALOX15a and tupALOX15c as catalytically active proteins and characterized their enzymatic properties. As predicted by the Evolutionary Hypothesis of ALOX15 specificity we found that the two enzymes converted arachidonic acid predominantly to 12S-HETE and they also exhibited membrane oxygenase activities. However, their reaction kinetic properties (KM for arachidonic acid and oxygen, T- and pH-dependence) and their substrate specificities were remarkably different. In contrast to mice and humans, tree shrew ALOX15 isoforms are highly expressed in the brain suggesting a role of these enzymes in cerebral function. The genomic multiplicity and the tissue expression patterns of tree shrew ALOX15 isoforms need to be considered when the results of in vivo inflammation studies obtained in this animal are translated into the human situation.


Assuntos
Araquidonato 15-Lipoxigenase/metabolismo , Evolução Molecular , Tupaia/metabolismo , Animais , Araquidonato 15-Lipoxigenase/genética , Ácido Araquidônico/metabolismo , Encéfalo/enzimologia , Isoenzimas/genética , Isoenzimas/metabolismo , Pulmão/enzimologia , Modelos Animais , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Especificidade da Espécie , Baço/enzimologia , Tupaia/genética
19.
Artigo em Inglês | MEDLINE | ID: mdl-32151768

RESUMO

His596 of human ALOX12 has been suggested to interact with the COO--group of arachidonic acid during ALOX catalysis. In mammalian ALOX15 orthologs Gln596 occupies this position and this amino acid exchange might contribute to the functional differences between the two ALOX-isoforms. To explore the role of Gln596 for ALOX15 functionality we mutated this amino acid to different residues in rabbit and human ALOX15 and investigated the impact of these mutations on structural, catalytic and allosteric enzyme properties. To shed light on the molecular basis of the observed functional alterations we performed in silico substrate docking studies and molecular dynamics simulations and also explored the impact of Gln596 exchange on the protein structure. The combined theoretical and experimental data suggest that Gln596 may not directly interact with the COO--group of arachidonic acid. In contrast, mutations at Gln596 destabilize the secondary and tertiary structure of ALOX15 orthologs, which may be related to a disturbance of the electrostatic interaction network with other amino acids in the immediate surrounding. Moreover, our MD-simulations suggest that the geometry of the dimer interface depends on the structure of substrate bound inside the substrate-binding pocket and that Gln596Ala exchange impairs the allosteric properties of the enzyme. Taken together, these data indicate the structural and functional importance of Gln596 for ALOX15 catalysis.


Assuntos
Sítio Alostérico , Araquidonato 15-Lipoxigenase/química , Simulação de Acoplamento Molecular , Substituição de Aminoácidos , Animais , Araquidonato 15-Lipoxigenase/genética , Araquidonato 15-Lipoxigenase/metabolismo , Ácido Araquidônico/química , Ácido Araquidônico/metabolismo , Estabilidade Enzimática , Glutamina/química , Glutamina/genética , Humanos , Ligação Proteica , Conformação Proteica em alfa-Hélice , Coelhos , Especificidade por Substrato
20.
Antioxid Redox Signal ; 32(1): 1-17, 2020 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-31642348

RESUMO

Aims: Most mammalian genomes involve several genes encoding for functionally distinct arachidonate lipoxygenase (ALOX isoforms). Proinflammatory leukotrienes are formed via the ALOX5 pathway, but 12/15-lipoxygenating ALOX isoforms have been implicated in the biosynthesis of pro-resolving mediators. In vitro mutagenesis of the triad determinants abolished the leukotriene synthesizing activity of ALOX5, but the biological consequences of these alterations have not been studied. To fill this gap, we created Alox5 knock-in mice, which express the 12/15-lipoxygenating Phe359Trp + Ala424Ile + Asn425Met Alox5 triple mutant and characterized its phenotypic alterations. Results: The mouse Alox5 triple mutant functions as arachidonic acid 15-lipoxygenating enzyme, which also forms 12S-hydroxy and 8S-hydroxy arachidonic acid. In contrast to the wild-type enzyme, the triple mutant effectively oxygenates linoleic acid to 13S-hydroxy linoleic acid (13S-HODE), which functions as activating ligand of the type-2 nuclear receptor peroxisome proliferator-activated receptor gamma (PPARγ). Knock-in mice expressing the mutant enzyme are viable, fertile, and develop normally. The mice cannot synthesize proinflammatory leukotrienes but show significantly attenuated plasma levels of lipolytic endocannabinoids. When aging, the animals gained significantly more body weight, which may be related to the fivefold higher levels of 13-HODE in the adipose tissue. Innovation: These data indicate for the first time that in vivo mutagenesis of the triad determinants of mouse Alox5 abolished the biosynthetic capacity of the enzyme for proinflammatory leukotrienes and altered the catalytic properties of the protein favoring the formation of 13-HODE. Conclusion:In vivo triple mutation of the mouse Alox5 gene impacts the body weight homeostasis of aging mice via augmented formation of the activating PPARγ ligand 13-HODE.


Assuntos
Envelhecimento/genética , Araquidonato 5-Lipoxigenase/genética , Araquidonato 5-Lipoxigenase/metabolismo , Mutação , Envelhecimento/metabolismo , Alanina/genética , Animais , Asparagina/genética , Peso Corporal , Feminino , Técnicas de Introdução de Genes , Leucotrienos/metabolismo , Ácido Linoleico/metabolismo , Masculino , Camundongos , PPAR gama , Fenilalanina/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA