Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
1.
Nature ; 591(7850): 420-425, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33473213

RESUMO

The cortex projects to the dorsal striatum topographically1,2 to regulate behaviour3-5, but spiking activity in the two structures has previously been reported to have markedly different relations to sensorimotor events6-9. Here we show that the relationship between activity in the cortex and striatum is spatiotemporally precise, topographic, causal and invariant to behaviour. We simultaneously recorded activity across large regions of the cortex and across the width of the dorsal striatum in mice that performed a visually guided task. Striatal activity followed a mediolateral gradient in which behavioural correlates progressed from visual cue to response movement to reward licking. The summed activity in each part of the striatum closely and specifically mirrored activity in topographically associated cortical regions, regardless of task engagement. This relationship held for medium spiny neurons and fast-spiking interneurons, whereas the activity of tonically active neurons differed from cortical activity with stereotypical responses to sensory or reward events. Inactivation of the visual cortex abolished striatal responses to visual stimuli, supporting a causal role of cortical inputs in driving the striatum. Striatal visual responses were larger in trained mice than untrained mice, with no corresponding change in overall activity in the visual cortex. Striatal activity therefore reflects a consistent, causal and scalable topographical mapping of cortical activity.


Assuntos
Córtex Cerebral/citologia , Córtex Cerebral/fisiologia , Corpo Estriado/citologia , Corpo Estriado/fisiologia , Animais , Feminino , Interneurônios/metabolismo , Aprendizagem , Masculino , Camundongos , Neurônios/metabolismo , Estimulação Luminosa , Desempenho Psicomotor , Recompensa , Córtex Sensório-Motor/fisiologia , Córtex Visual/fisiologia
2.
Nat Methods ; 20(3): 403-407, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36864199

RESUMO

We describe an architecture for organizing, integrating and sharing neurophysiology data within a single laboratory or across a group of collaborators. It comprises a database linking data files to metadata and electronic laboratory notes; a module collecting data from multiple laboratories into one location; a protocol for searching and sharing data and a module for automatic analyses that populates a website. These modules can be used together or individually, by single laboratories or worldwide collaborations.


Assuntos
Laboratórios , Neurofisiologia , Bases de Dados Factuais
3.
Nature ; 576(7786): 266-273, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31776518

RESUMO

Vision, choice, action and behavioural engagement arise from neuronal activity that may be distributed across brain regions. Here we delineate the spatial distribution of neurons underlying these processes. We used Neuropixels probes1,2 to record from approximately 30,000 neurons in 42 brain regions of mice performing a visual discrimination task3. Neurons in nearly all regions responded non-specifically when the mouse initiated an action. By contrast, neurons encoding visual stimuli and upcoming choices occupied restricted regions in the neocortex, basal ganglia and midbrain. Choice signals were rare and emerged with indistinguishable timing across regions. Midbrain neurons were activated before contralateral choices and were suppressed before ipsilateral choices, whereas forebrain neurons could prefer either side. Brain-wide pre-stimulus activity predicted engagement in individual trials and in the overall task, with enhanced subcortical but suppressed neocortical activity during engagement. These results reveal organizing principles for the distribution of neurons encoding behaviourally relevant variables across the mouse brain.


Assuntos
Encéfalo/fisiologia , Comportamento de Escolha , Animais , Mapeamento Encefálico , Feminino , Masculino , Camundongos , Neurônios , Recompensa , Análise e Desempenho de Tarefas , Percepção Visual
4.
Nature ; 571(7765): 361-365, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31243367

RESUMO

A neuronal population encodes information most efficiently when its stimulus responses are high-dimensional and uncorrelated, and most robustly when they are lower-dimensional and correlated. Here we analysed the dimensionality of the encoding of natural images by large populations of neurons in the visual cortex of awake mice. The evoked population activity was high-dimensional, and correlations obeyed an unexpected power law: the nth principal component variance scaled as 1/n. This scaling was not inherited from the power law spectrum of natural images, because it persisted after stimulus whitening. We proved mathematically that if the variance spectrum was to decay more slowly then the population code could not be smooth, allowing small changes in input to dominate population activity. The theory also predicts larger power-law exponents for lower-dimensional stimulus ensembles, which we validated experimentally. These results suggest that coding smoothness may represent a fundamental constraint that determines correlations in neural population codes.


Assuntos
Modelos Neurológicos , Estimulação Luminosa , Córtex Visual/citologia , Córtex Visual/fisiologia , Animais , Feminino , Masculino , Camundongos , Reprodutibilidade dos Testes
5.
J Neurosci ; 42(8): 1375-1382, 2022 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-35027407

RESUMO

A surprising finding of recent studies in mouse is the dominance of widespread movement-related activity throughout the brain, including in early sensory areas. In awake subjects, failing to account for movement risks misattributing movement-related activity to other (e.g., sensory or cognitive) processes. In this article, we (1) review task designs for separating task-related and movement-related activity, (2) review three "case studies" in which not considering movement would have resulted in critically different interpretations of neuronal function, and (3) discuss functional couplings that may prevent us from ever fully isolating sensory, motor, and cognitive-related activity. Our main thesis is that neural signals related to movement are ubiquitous, and therefore ought to be considered first and foremost when attempting to correlate neuronal activity with task-related processes.


Assuntos
Encéfalo , Movimento , Animais , Encéfalo/fisiologia , Cognição/fisiologia , Humanos , Camundongos , Movimento/fisiologia , Neurônios , Desempenho Psicomotor/fisiologia , Vigília
6.
Nature ; 551(7679): 232-236, 2017 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-29120427

RESUMO

Sensory, motor and cognitive operations involve the coordinated action of large neuronal populations across multiple brain regions in both superficial and deep structures. Existing extracellular probes record neural activity with excellent spatial and temporal (sub-millisecond) resolution, but from only a few dozen neurons per shank. Optical Ca2+ imaging offers more coverage but lacks the temporal resolution needed to distinguish individual spikes reliably and does not measure local field potentials. Until now, no technology compatible with use in unrestrained animals has combined high spatiotemporal resolution with large volume coverage. Here we design, fabricate and test a new silicon probe known as Neuropixels to meet this need. Each probe has 384 recording channels that can programmably address 960 complementary metal-oxide-semiconductor (CMOS) processing-compatible low-impedance TiN sites that tile a single 10-mm long, 70 × 20-µm cross-section shank. The 6 × 9-mm probe base is fabricated with the shank on a single chip. Voltage signals are filtered, amplified, multiplexed and digitized on the base, allowing the direct transmission of noise-free digital data from the probe. The combination of dense recording sites and high channel count yielded well-isolated spiking activity from hundreds of neurons per probe implanted in mice and rats. Using two probes, more than 700 well-isolated single neurons were recorded simultaneously from five brain structures in an awake mouse. The fully integrated functionality and small size of Neuropixels probes allowed large populations of neurons from several brain structures to be recorded in freely moving animals. This combination of high-performance electrode technology and scalable chip fabrication methods opens a path towards recording of brain-wide neural activity during behaviour.


Assuntos
Eletrodos , Neurônios/fisiologia , Silício/metabolismo , Animais , Córtex Entorrinal/citologia , Córtex Entorrinal/fisiologia , Feminino , Masculino , Camundongos , Movimento/fisiologia , Córtex Pré-Frontal/citologia , Córtex Pré-Frontal/fisiologia , Ratos , Semicondutores , Vigília/fisiologia
7.
Proc Natl Acad Sci U S A ; 116(29): 14749-14754, 2019 07 16.
Artigo em Inglês | MEDLINE | ID: mdl-31249141

RESUMO

Neurons in sensory areas of the neocortex are known to represent information both about sensory stimuli and behavioral state, but how these 2 disparate signals are integrated across cortical layers is poorly understood. To study this issue, we measured the coding of visual stimulus orientation and of behavioral state by neurons within superficial and deep layers of area V4 in monkeys while they covertly attended or prepared eye movements to visual stimuli. We show that whereas single neurons and neuronal populations in the superficial layers conveyed more information about the orientation of visual stimuli than neurons in deep layers, the opposite was true of information about the behavioral relevance of those stimuli. In particular, deep layer neurons encoded greater information about the direction of planned eye movements than superficial neurons. These results suggest a division of labor between cortical layers in the coding of visual input and visually guided behavior.


Assuntos
Comportamento Animal/fisiologia , Neurônios/fisiologia , Córtex Visual/fisiologia , Percepção Visual/fisiologia , Animais , Atenção/fisiologia , Eletrodos , Potenciais Evocados Visuais/fisiologia , Movimentos Oculares/fisiologia , Macaca mulatta , Masculino , Modelos Animais , Orientação/fisiologia , Lobo Parietal/fisiologia , Estimulação Luminosa , Córtex Visual/citologia
8.
Nature ; 521(7553): 511-515, 2015 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-25849776

RESUMO

A large population of neurons can, in principle, produce an astronomical number of distinct firing patterns. In cortex, however, these patterns lie in a space of lower dimension, as if individual neurons were "obedient members of a huge orchestra". Here we use recordings from the visual cortex of mouse (Mus musculus) and monkey (Macaca mulatta) to investigate the relationship between individual neurons and the population, and to establish the underlying circuit mechanisms. We show that neighbouring neurons can differ in their coupling to the overall firing of the population, ranging from strongly coupled 'choristers' to weakly coupled 'soloists'. Population coupling is largely independent of sensory preferences, and it is a fixed cellular attribute, invariant to stimulus conditions. Neurons with high population coupling are more strongly affected by non-sensory behavioural variables such as motor intention. Population coupling reflects a causal relationship, predicting the response of a neuron to optogenetically driven increases in local activity. Moreover, population coupling indicates synaptic connectivity; the population coupling of a neuron, measured in vivo, predicted subsequent in vitro estimates of the number of synapses received from its neighbours. Finally, population coupling provides a compact summary of population activity; knowledge of the population couplings of n neurons predicts a substantial portion of their n(2) pairwise correlations. Population coupling therefore represents a novel, simple measure that characterizes the relationship of each neuron to a larger population, explaining seemingly complex network firing patterns in terms of basic circuit variables.


Assuntos
Neurônios/citologia , Neurônios/fisiologia , Córtex Visual/citologia , Córtex Visual/fisiologia , Animais , Feminino , Macaca mulatta , Masculino , Camundongos , Modelos Neurológicos , Optogenética , Sinapses/fisiologia
9.
Nature ; 507(7493): 504-7, 2014 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-24670771

RESUMO

We experience the visual world through a series of saccadic eye movements, each one shifting our gaze to bring objects of interest to the fovea for further processing. Although such movements lead to frequent and substantial displacements of the retinal image, these displacements go unnoticed. It is widely assumed that a primary mechanism underlying this apparent stability is an anticipatory shifting of visual receptive fields (RFs) from their presaccadic to their postsaccadic locations before movement onset. Evidence of this predictive 'remapping' of RFs has been particularly apparent within brain structures involved in gaze control. However, critically absent among that evidence are detailed measurements of visual RFs before movement onset. Here we show that during saccade preparation, rather than remap, RFs of neurons in a prefrontal gaze control area massively converge towards the saccadic target. We mapped the visual RFs of prefrontal neurons during stable fixation and immediately before the onset of eye movements, using multi-electrode recordings in monkeys. Following movements from an initial fixation point to a target, RFs remained stationary in retinocentric space. However, in the period immediately before movement onset, RFs shifted by as much as 18 degrees of visual angle, and converged towards the target location. This convergence resulted in a threefold increase in the proportion of RFs responding to stimuli near the target region. In addition, like in human observers, the population of prefrontal neurons grossly mislocalized presaccadic stimuli as being closer to the target. Our results show that RF shifts do not predict the retinal displacements due to saccades, but instead reflect the overriding perception of target space during eye movements.


Assuntos
Córtex Pré-Frontal/fisiologia , Movimentos Sacádicos/fisiologia , Percepção Visual/fisiologia , Animais , Eletrodos , Fixação Ocular/fisiologia , Humanos , Macaca mulatta , Masculino , Modelos Neurológicos , Neurônios/fisiologia , Córtex Pré-Frontal/citologia , Retina/fisiologia , Acuidade Visual/fisiologia , Campos Visuais/fisiologia
10.
Cereb Cortex ; 29(5): 2196-2210, 2019 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-30796825

RESUMO

Cortical activity is organized across multiple spatial and temporal scales. Most research on the dynamics of neuronal spiking is concerned with timescales of 1 ms-1 s, and little is known about spiking dynamics on timescales of tens of seconds and minutes. Here, we used frequency domain analyses to study the structure of individual neurons' spiking activity and its coupling to local population rate and to arousal level across 0.01-100 Hz frequency range. In mouse medial prefrontal cortex, the spiking dynamics of individual neurons could be quantitatively captured by a combination of interspike interval and firing rate power spectrum distributions. The relative strength of coherence with local population often differed across timescales: a neuron strongly coupled to population rate on fast timescales could be weakly coupled on slow timescales, and vice versa. On slow but not fast timescales, a substantial proportion of neurons showed firing anticorrelated with the population. Infraslow firing rate changes were largely determined by arousal rather than by local factors, which could explain the timescale dependence of individual neurons' population coupling strength. These observations demonstrate how neurons simultaneously partake in fast local dynamics, and slow brain-wide dynamics, extending our understanding of infraslow cortical activity beyond the mesoscale resolution of fMRI.


Assuntos
Potenciais de Ação/fisiologia , Neurônios/fisiologia , Córtex Pré-Frontal/fisiologia , Animais , Feminino , Masculino , Camundongos Endogâmicos C57BL , Modelos Neurológicos , Processamento de Sinais Assistido por Computador , Fatores de Tempo
11.
J Neurosci ; 37(3): 480-511, 2017 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-28100734

RESUMO

Distinct networks in the forebrain and the midbrain coordinate to control spatial attention. The critical involvement of the superior colliculus (SC)-the central structure in the midbrain network-in visuospatial attention has been shown by four seminal, published studies in monkeys (Macaca mulatta) performing multialternative tasks. However, due to the lack of a mechanistic framework for interpreting behavioral data in such tasks, the nature of the SC's contribution to attention remains unclear. Here we present and validate a novel decision framework for analyzing behavioral data in multialternative attention tasks. We apply this framework to re-examine the behavioral evidence from these published studies. Our model is a multidimensional extension to signal detection theory that distinguishes between two major classes of attentional mechanisms: those that alter the quality of sensory information or "sensitivity," and those that alter the selective gating of sensory information or "choice bias." Model-based simulations and model-based analyses of data from these published studies revealed a converging pattern of results that indicated that choice-bias changes, rather than sensitivity changes, were the primary outcome of SC manipulation. Our results suggest that the SC contributes to attentional performance predominantly by generating a spatial choice bias for stimuli at a selected location, and that this bias operates downstream of forebrain mechanisms that enhance sensitivity. The findings lead to a testable mechanistic framework of how the midbrain and forebrain networks interact to control spatial attention. SIGNIFICANCE STATEMENT: Attention involves the selection of the most relevant information for differential sensory processing and decision making. While the mechanisms by which attention alters sensory encoding (sensitivity control) are well studied, the mechanisms by which attention alters decisional weighting of sensory evidence (choice-bias control) are poorly understood. Here, we introduce a model of multialternative decision making that distinguishes bias from sensitivity effects in attention tasks. With our model, we simulate experimental data from four seminal studies that microstimulated or inactivated a key attention-related midbrain structure, the superior colliculus (SC). We demonstrate that the experimental effects of SC manipulation are entirely consistent with the SC controlling attention by changing choice bias, thereby shedding new light on how the brain mediates attention.


Assuntos
Atenção/fisiologia , Comportamento de Escolha/fisiologia , Tomada de Decisões/fisiologia , Estimulação Luminosa/métodos , Colículos Superiores/fisiologia , Percepção Visual/fisiologia , Animais , Galinhas , Feminino , Macaca mulatta , Masculino
12.
J Vis ; 14(9)2014 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-25146574

RESUMO

Studies investigating the neural bases of cognitive phenomena increasingly employ multialternative detection tasks that seek to measure the ability to detect a target stimulus or changes in some target feature (e.g., orientation or direction of motion) that could occur at one of many locations. In such tasks, it is essential to distinguish the behavioral and neural correlates of enhanced perceptual sensitivity from those of increased bias for a particular location or choice (choice bias). However, making such a distinction is not possible with established approaches. We present a new signal detection model that decouples the behavioral effects of choice bias from those of perceptual sensitivity in multialternative (change) detection tasks. By formulating the perceptual decision in a multidimensional decision space, our model quantifies the respective contributions of bias and sensitivity to multialternative behavioral choices. With a combination of analytical and numerical approaches, we demonstrate an optimal, one-to-one mapping between model parameters and choice probabilities even for tasks involving arbitrarily large numbers of alternatives. We validated the model with published data from two ternary choice experiments: a target-detection experiment and a length-discrimination experiment. The results of this validation provided novel insights into perceptual processes (sensory noise and competitive interactions) that can accurately and parsimoniously account for observers' behavior in each task. The model will find important application in identifying and interpreting the effects of behavioral manipulations (e.g., cueing attention) or neural perturbations (e.g., stimulation or inactivation) in a variety of multialternative tasks of perception, attention, and decision-making.


Assuntos
Viés , Tomada de Decisões/fisiologia , Modelos Teóricos , Sensibilidade e Especificidade , Percepção Visual/fisiologia , Atenção/fisiologia , Humanos , Detecção de Sinal Psicológico
13.
bioRxiv ; 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38903066

RESUMO

In daily life, organisms interact with a sensory world that dynamically changes from moment to moment. Recurrent neural networks can generate dynamics, but in sensory cortex any dynamic role for the dense recurrent excitatory-excitatory network has been unclear. Here we show a new role for recurrent connections in mouse visual cortex: they support powerful dynamical computations, but via filtering sequences of input instead of generating sequences. Using two-photon optogenetics, we measure responses to natural images and play them back, showing amplification when played back during the correct movie dynamic context and suppression in the incorrect context. The sequence selectivity depends on a network mechanism: inputs to groups of cells produce responses in different local neurons, which interact with later inputs to change responses. We confirm this mechanism by designing sequences of inputs that are amplified or suppressed by the network. Together, these data suggest a novel function, sequence filtering, for recurrent connections in cerebral cortex.

14.
bioRxiv ; 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38496526

RESUMO

Spatiotemporal dynamics of natural odor environment have informative features for animals navigating to an odor source. Population activity in the olfactory bulb (OB) has been shown to follow plume dynamics to a moderate degree (Lewis et al., 2021), but it is unknown whether the ability to follow plume dynamics is driven by individual cells or whether it emerges at the population level. Previous research has explored the responses of individual OB cells to isolated features of plumes, but it is difficult to adequately sample these features as it is still undetermined which features navigating mice employ during olfactory guided search. Here we released odor from an upwind odor source and simultaneously recorded both odor concentration dynamics and cellular response dynamics in awake, head-fixed mice. We found that longer timescale features of odor concentration dynamics were encoded at both the cellular and population level. At the cellular level, plume onset was encoded across all trials and plume offset was encoded for high concentration odors, but not low concentration odors. Although cellular level tracking of plume dynamics was observed to be weak, we found that at the population level, OB activity distinguished whiffs and blanks (accurately detected odor presence versus absence) throughout the duration of a plume. Even ~20 OB cells were enough to accurately encode these features. Our findings indicate that the full range of odor concentration dynamics and high frequency fluctuations are not encoded by OB spiking activity. Instead, relatively lower-frequency dynamics of plumes, such as plume onset, plume offset, whiffs, and blanks, are represented in the OB.

15.
Sci Adv ; 10(5): eadi0645, 2024 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-38306428

RESUMO

Attention can be deployed in multiple forms and facilitates behavior by influencing perceptual sensitivity and choice bias. Attention is also associated with a myriad of changes in sensory neural activity. Yet, the relationship between the behavioral components of attention and the accompanying changes in neural activity remains largely unresolved. We examined this relationship by quantifying sensitivity and bias in monkeys performing a task that dissociated eye movement responses from the focus of covert attention. Unexpectedly, bias, not sensitivity, increased at the focus of covert attention, whereas sensitivity increased at the location of planned eye movements. Furthermore, neuronal activity within visual area V4 varied robustly with bias, but not sensitivity, at the focus of covert attention. In contrast, correlated variability between neuronal pairs was lowest at the location of planned eye movements, and varied with sensitivity, but not bias. Thus, dissociable behavioral components of attention exhibit distinct neuronal signatures within the visual cortex.


Assuntos
Atenção , Córtex Visual , Animais , Atenção/fisiologia , Movimentos Oculares , Primatas , Neurônios/fisiologia , Córtex Visual/fisiologia , Percepção Visual/fisiologia , Estimulação Luminosa
16.
bioRxiv ; 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38915704

RESUMO

Methodological advances in neuroscience have enabled the collection of massive datasets which demand innovative approaches for scientific communication. Existing platforms for data storage lack intuitive tools for data exploration, limiting our ability to interact effectively with these brain-wide datasets. We introduce two public websites: (Data and Atlas) developed for the International Brain Laboratory which provide access to millions of behavioral trials and hundreds of thousands of individual neurons. These interfaces allow users to discover both the raw and processed brain-wide data released by the IBL at the scale of the whole brain, individual sessions, trials, and neurons. By hosting these data interfaces as websites they are available cross-platform with no installation. By releasing each site's code as a modular open-source framework, other researchers can easily develop their own web interfaces and explore their own data. As neuroscience datasets continue to expand, customizable web interfaces offer a glimpse into a future of streamlined data exploration and act as blueprints for future tools.

17.
bioRxiv ; 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-37662298

RESUMO

To understand the neural basis of behavior, it is essential to sensitively and accurately measure neural activity at single neuron and single spike resolution. Extracellular electrophysiology delivers this, but it has biases in the neurons it detects and it imperfectly resolves their action potentials. To minimize these limitations, we developed a silicon probe with much smaller and denser recording sites than previous designs, called Neuropixels Ultra (NP Ultra). This device samples neuronal activity at ultra-high spatial density (~10 times higher than previous probes) with low noise levels, while trading off recording span. NP Ultra is effectively an implantable voltage-sensing camera that captures a planar image of a neuron's electrical field. We use a spike sorting algorithm optimized for these probes to demonstrate that the yield of visually-responsive neurons in recordings from mouse visual cortex improves up to ~3-fold. We show that NP Ultra can record from small neuronal structures including axons and dendrites. Recordings across multiple brain regions and four species revealed a subset of extracellular action potentials with unexpectedly small spatial spread and axon-like features. We share a large-scale dataset of these brain-wide recordings in mice as a resource for studies of neuronal biophysics. Finally, using ground-truth identification of three major inhibitory cortical cell types, we found that these cell types were discriminable with approximately 75% success, a significant improvement over lower-resolution recordings. NP Ultra improves spike sorting performance, detection of subcellular compartments, and cell type classification to enable more powerful dissection of neural circuit activity during behavior.

18.
Elife ; 122023 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-37382590

RESUMO

The ability to associate reward-predicting stimuli with adaptive behavior is frequently attributed to the prefrontal cortex, but the stimulus-specificity, spatial distribution, and stability of prefrontal cue-reward associations are unresolved. We trained head-fixed mice on an olfactory Pavlovian conditioning task and measured the coding properties of individual neurons across space (prefrontal, olfactory, and motor cortices) and time (multiple days). Neurons encoding cues or licks were most common in the olfactory and motor cortex, respectively. By quantifying the responses of cue-encoding neurons to six cues with varying probabilities of reward, we unexpectedly found value coding in all regions we sampled, with some enrichment in the prefrontal cortex. We further found that prefrontal cue and lick codes were preserved across days. Our results demonstrate that individual prefrontal neurons stably encode components of cue-reward learning within a larger spatial gradient of coding properties.


Assuntos
Sinais (Psicologia) , Aprendizagem , Animais , Camundongos , Adaptação Psicológica , Condicionamento Clássico , Recompensa
19.
bioRxiv ; 2023 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-37503284

RESUMO

Targeting deep brain structures during electrophysiology and injections requires intensive training and expertise. Even with experience, researchers often can't be certain that a probe is placed precisely in a target location and this complexity scales with the number of simultaneous probes used in an experiment. Here, we present Pinpoint, open-source software that allows for interactive exploration of stereotaxic insertion plans. Once an insertion plan is created, Pinpoint allows users to save these online and share them with collaborators. 3D modeling tools allow users to explore their insertions alongside rig and implant hardware and ensure plans are physically possible. Probes in Pinpoint can be linked to electronic micro-manipulators allowing real-time visualization of current brain region targets alongside neural data. In addition, Pinpoint can control manipulators to automate and parallelize the insertion process. Compared to previously available software, Pinpoint's easy access through web browsers, extensive features, and real-time experiment integration enable more efficient and reproducible recordings.

20.
Nat Commun ; 14(1): 1858, 2023 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-37012299

RESUMO

Intrinsic timescales characterize dynamics of endogenous fluctuations in neural activity. Variation of intrinsic timescales across the neocortex reflects functional specialization of cortical areas, but less is known about how intrinsic timescales change during cognitive tasks. We measured intrinsic timescales of local spiking activity within columns of area V4 in male monkeys performing spatial attention tasks. The ongoing spiking activity unfolded across at least two distinct timescales, fast and slow. The slow timescale increased when monkeys attended to the receptive fields location and correlated with reaction times. By evaluating predictions of several network models, we found that spatiotemporal correlations in V4 activity were best explained by the model in which multiple timescales arise from recurrent interactions shaped by spatially arranged connectivity, and attentional modulation of timescales results from an increase in the efficacy of recurrent interactions. Our results suggest that multiple timescales may arise from the spatial connectivity in the visual cortex and flexibly change with the cognitive state due to dynamic effective interactions between neurons.


Assuntos
Atenção , Córtex Visual , Masculino , Animais , Atenção/fisiologia , Tempo de Reação , Neurônios/fisiologia , Córtex Visual/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA