Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
1.
Anal Chem ; 95(2): 1350-1358, 2023 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-36548393

RESUMO

Patient-centric sampling strategies, where the patient performs self-sampling and ships the sample to a centralized laboratory for readout, are on the verge of widespread adaptation. However, the key to a successful patient-centric workflow is user-friendliness, with few noncritical user interactions, and simple, ideally biohazard-free shipment. Here, we present a capillary-driven microfluidic device designed to perform the critical biomarker capturing step of a multiplexed immunoassay at the time of sample collection. On-chip sample drying enables biohazard-free shipment and allows us to make use of advanced analytics of specialized laboratories that offer the needed analytical sensitivity, reliability, and affordability. Using C-Reactive Protein, MCP1, S100B, IGFBP1, and IL6 as model blood biomarkers, we demonstrate the multiplexing capability and applicability of the device to a patient-centric workflow. The presented quantification of a biomarker panel opens up new possibilities for e-doctor and e-health applications.


Assuntos
Laboratórios , Técnicas Analíticas Microfluídicas , Humanos , Reprodutibilidade dos Testes , Imunoensaio , Biomarcadores , Dispositivos Lab-On-A-Chip , Assistência Centrada no Paciente
2.
Biomed Microdevices ; 24(3): 25, 2022 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-35931869

RESUMO

Pulmonary drug delivery by portable inhalers is the gold standard in lung disease therapy. An increasing focus on environmentally friendly inhalation currently spurs the development of propellant-free devices. However, the absence of propellants in the drug creates a need for suitable sealing systems that can ensure the pathogenic safety of devices. Traditionally, liquid drug inhalers incorporate a spray nozzle and a separate check valve. Here we show a fully integrated MEMS-based spray system for aqueous drug solutions and demonstrate its bacterial safety. The device comprises a thin silicon membrane with spray orifices, which self-seal against a compliant parylene valve seat underneath. This sealing system prevents bacterial ingrowth in its default closed state, while actuation lifts the membrane from the valve seat upon pressurization and sprays an inhalable aerosol from the nozzles. To seal against bacterial contamination effectively, we found that a contact force between the valve seat and the membrane (featuring the spray nozzles) is needed. In our testing, both self-sealing and an otherwise identical unvalved version of the spray chip can be bacterially safe in continued use when thoroughly cleaned of excess fluids and subjected to low bacterial loads for brief periods. However, when directly exposed to [Formula: see text] CFU/ml of our test organism Citrobacter rodentium for 24 h, unvalved systems become contaminated in nearly 90% of cases. In contrast, self-sealing spray chips reduced contamination probability by 70%. This development may enable preservative-free drug formulations in portable inhalers that use propellant-free aqueous drug solutions.


Assuntos
Sistemas Microeletromecânicos , Aerossóis , Nebulizadores e Vaporizadores , Tamanho da Partícula
3.
Opt Express ; 28(2): 1394-1407, 2020 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-32121851

RESUMO

Holes through silicon substrates are used in silicon microsystems, for example in vertical electrical interconnects. In comparison to deep reactive ion etching, laser drilling is a versatile method for forming these holes, but laser drilling suffers from poor hole quality. In this article, water is used in the silicon drilling process to remove debris and the shape deformations of the holes. Water is introduced into the drilling process through the backside of the substrate to minimize negative effects to the drilling process. Drilling of inclined holes is also demonstrated. The inclined holes could find applications in radio frequency devices.

4.
Anal Chem ; 91(9): 5558-5565, 2019 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-30856315

RESUMO

Dried blood spot (DBS) sampling is a promising method for collection of microliter blood samples. However, hematocrit-related bias in combination with subpunch analysis can result in inaccurate quantification of analytes in DBS samples. In this study we use a microfluidic DBS card, designed to automatically collect fixed volume DBS samples irrespective of the blood hematocrit, to measure caffeine concentration in normal finger prick samples obtained from 44 human individuals. Caffeine levels originating from blood drops of unknown volume collected on the volumetric microfluidic DBS card were compared to volume-controlled pipetted DBS samples from the same finger prick. Hematocrit independence and volumetric sampling performances were also verified on caffeine-spiked blood samples in vitro, using both LC-MS/MS and gravimetric methods, on hematocrits from 26 to 62%. The gravimetric measurements show an excellent metering performance of the microfluidic DBS card, with a mean blood sample volume of 14.25 µL ± 3.0% ( n = 51). A measured mean bias below 2.9% compared to normal hematocrit (47%) demonstrates that there is no significant hematocrit-induced bias. LC-MS/MS measurements confirm low CV and hematocrit independence of the sampling system and exhibit no substantial mean bias compared to pipetted DBS. Tests with 44 individuals demonstrated applicability of the microfluidic DBS card for direct finger prick blood sampling, and measured caffeine concentrations show a good agreement with measurements of pipetted DBS. The presented concept demonstrates a good volumetric performance which can help to improve the accuracy of DBS analysis by analyzing a whole spot, equivalent to a defined volume of liquid blood.


Assuntos
Capilares , Teste em Amostras de Sangue Seco/instrumentação , Dispositivos Lab-On-A-Chip , Coleta de Amostras Sanguíneas , Desenho de Equipamento , Voluntários Saudáveis , Humanos , Masculino
5.
Anal Chem ; 91(11): 7125-7130, 2019 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-31063366

RESUMO

Obtaining plasma from a blood sample and preparing it for subsequent analysis is currently a laborious process involving experienced health-care professionals and centrifugation. We circumvent this by utilizing capillary forces and microfluidic engineering to develop an autonomous plasma sampling device that filters and stores an exact amount of plasma as a dried plasma spot (DPS) from a whole blood sample in less than 6 min. We tested 24 prototype devices with whole blood from 10 volunteers, various input volumes (40-80 µL), and different hematocrit levels (39-45%). The resulting mean plasma volume, assessed gravimetrically, was 11.6 µL with a relative standard deviation similar to manual pipetting (3.0% vs 1.4%). LC-MS/MS analysis of caffeine concentrations in the generated DPS (12 duplicates) showed a strong correlation ( R2 = 0.99) to, but no equivalence with, concentrations prepared from corresponding plasma obtained by centrifugation. The presented autonomous DPS device may enable patient-centric plasma sampling through minimally invasive finger-pricking and allow generatation of volume-defined DPS for quantitative blood analysis.


Assuntos
Coleta de Amostras Sanguíneas , Teste em Amostras de Sangue Seco , Dispositivos Lab-On-A-Chip , Adulto , Coleta de Amostras Sanguíneas/normas , Cromatografia Líquida de Alta Pressão/normas , Teste em Amostras de Sangue Seco/normas , Feminino , Humanos , Cinética , Masculino , Pessoa de Meia-Idade , Espectrometria de Massas em Tandem/normas
6.
Anal Chem ; 90(22): 13393-13399, 2018 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-30379058

RESUMO

Whole-blood microsampling provides many benefits such as remote, patient-centric, and minimally invasive sampling. However, blood plasma, and not whole blood, is the prevailing matrix in clinical laboratory investigations. The challenge with plasma microsampling is to extract plasma volumes large enough to reliably detect low-concentration analytes from a small finger prick sample. Here we introduce a passive plasma filtration device that provides a high extraction yield of 65%, filtering 18 µL of plasma from 50 µL of undiluted human whole blood (hematocrit 45%) within less than 10 min. The enabling design element is a wedge-shaped connection between the blood filter and the hydrophilic bottom surface of a capillary channel. Using finger prick and venous blood samples from more than 10 healthy volunteers, we examined the filtration kinetics of the device over a hematocrit range of 35-55% and showed that 73 ± 8% of the total protein content was successfully recovered after filtration. The presented plasma filtration device tackles a major challenge toward patient-centric blood microsampling by providing high-yield plasma filtration, potentially allowing reliable detection of low-concentration analytes from a blood microsample.


Assuntos
Análise Química do Sangue/métodos , Filtração/métodos , Plasma/química , Adolescente , Adulto , Análise Química do Sangue/instrumentação , Proteínas Sanguíneas/análise , Filtração/instrumentação , Hematócrito , Humanos , Masculino , Adulto Jovem
7.
Biomed Microdevices ; 20(4): 101, 2018 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-30523421

RESUMO

Continuous glucose monitoring (CGM) has the potential to greatly improve diabetes management. The aim of this work is to show a proof-of-concept CGM device which performs minimally invasive and minimally delayed in-situ glucose sensing in the dermal interstitial fluid, combining the advantages of microneedle-based and commercially available CGM systems. The device is based on the integration of an ultra-miniaturized electrochemical sensing probe in the lumen of a single hollow microneedle, separately realized using standard silicon microfabrication methods. By placing the sensing electrodes inside the lumen facing an opening towards the dermal space, real-time measurement purely can be performed relying on molecular diffusion over a short distance. Furthermore, the device relies only on passive capillary lumen filling without the need for complex fluid extraction mechanisms. Importantly, the transdermal portion of the device is 50 times smaller than that of commercial products. This allows access to the dermis and simultaneously reduces tissue trauma, along with being virtually painless during insertion. The three-electrode enzymatic sensor alone was previously proven to have satisfactory sensitivity (1.5 nA/mM), linearity (up to 14 mM), selectivity, and long-term stability (up to 4 days) in-vitro. In this work we combine this sensor technology with microneedles for reliable insertion in forearm skin. In-vivo human tests showed the possibility to correctly and dynamically track glycaemia over time, with approximately 10 min delay with respect to capillary blood control values, in line with the expected physiological lag time. The proposed device can thus reduce discomfort and potentially enable less invasive real-time CGM in diabetic patients.


Assuntos
Automonitorização da Glicemia/instrumentação , Microtecnologia/instrumentação , Agulhas , Pele , Desenho de Equipamento , Humanos , Fatores de Tempo
8.
Opt Lett ; 40(15): 3556-9, 2015 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-26258356

RESUMO

We experimentally demonstrate a microelectromechanically (MEMS) tunable photonic ring resonator add-drop filter, fabricated in a simple silicon-on-insulator (SOI) based process. The device uses electrostatic parallel plate actuation to perturb the evanescent field of a silicon waveguide, and achieves a 530 pm resonance wavelength tuning, i.e., more than a fourfold improvement compared to previous MEMS tunable ring resonator add-drop filters. Moreover, our device has a static power consumption below 100 nW, and a tuning rate of -62 pm/V, i.e., the highest reported rate for electrostatic tuning of ring resonator add-drop filters.

9.
Biomed Microdevices ; 16(4): 529-36, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24609991

RESUMO

This paper reports a novel micro electro mechanical system (MEMS) valve with posture controlled flow characteristics for improved treatment of hydrocephalus, a disease that is characterized by elevated pressure in the cerebrospinal fluid (CSF) that surrounds the brain and spinal cord. In contrast to conventional differential pressure CSF valves, the CSF valve presented here features a third port which utilizes hydrostatic pressure from a pressure compensating catheter to adapt CSF drainage to optimized levels irrespective of body position. Prototypes have been fabricated using standard MEMS manufacturing processes and the experimental evaluation successfully showed that the flow rate was adjustable with a varying hydrostatic pressure on the third port. Measured data showed that flow rate was at near ideal values at laying body position and that the flow rate can be adjusted to optimal values at standing body position by selecting an appropriate length of the pressure compensating catheter. This is the first pressure balanced CSF valve intended for body position controlled CSF pressure regulation.


Assuntos
Derivações do Líquido Cefalorraquidiano/instrumentação , Hidrocefalia/líquido cefalorraquidiano , Hidrocefalia/cirurgia , Pressão Intracraniana/fisiologia , Sistemas Microeletromecânicos/métodos , Postura/fisiologia , Encéfalo/metabolismo , Derivações do Líquido Cefalorraquidiano/métodos , Desenho de Equipamento , Humanos , Sistemas Microeletromecânicos/instrumentação
10.
Artigo em Inglês | MEDLINE | ID: mdl-38954436

RESUMO

Tunnel junctions have been suggested as high-throughput electronic single molecule sensors in liquids with several seminal experiments conducted using break junctions with reconfigurable gaps. For practical single molecule sensing applications, arrays of on-chip integrated fixed-gap tunnel junctions that can be built into compact systems are preferable. Fabricating nanogaps by electromigration is one of the most promising approaches to realize on-chip integrated tunnel junction sensors. However, the electrical behavior of fixed-gap tunnel junctions immersed in liquid media has not been systematically studied to date, and the formation of electromigrated nanogap tunnel junctions in liquid media has not yet been demonstrated. In this work, we perform a comparative study of the formation and electrical behavior of arrays of gold nanogap tunnel junctions made by feedback-controlled electromigration immersed in various liquid and gaseous media (deionized water, mesitylene, ethanol, nitrogen, and air). We demonstrate that tunnel junctions can be obtained from microfabricated gold nanoconstrictions inside liquid media. Electromigration of junctions in air produces the highest yield (61-67%), electromigration in deionized water and mesitylene results in a lower yield than in air (44-48%), whereas electromigration in ethanol fails to produce viable tunnel junctions due to interfering electrochemical processes. We map out the stability of the conductance characteristics of the resulting tunnel junctions and identify medium-specific operational conditions that have an impact on the yield of forming stable junctions. Furthermore, we highlight the unique challenges associated with working with arrays of large numbers of tunnel junctions in batches. Our findings will inform future efforts to build single molecule sensors using on-chip integrated tunnel junctions.

11.
ACS Nano ; 18(16): 10788-10797, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38551815

RESUMO

Integration of functional materials and structures on the tips of optical fibers has enabled various applications in micro-optics, such as sensing, imaging, and optical trapping. Direct laser writing is a 3D printing technology that holds promise for fabricating advanced micro-optical structures on fiber tips. To date, material selection has been limited to organic polymer-based photoresists because existing methods for 3D direct laser writing of inorganic materials involve high-temperature processing that is not compatible with optical fibers. However, organic polymers do not feature stability and transparency comparable to those of inorganic glasses. Herein, we demonstrate 3D direct laser writing of inorganic glass with a subwavelength resolution on optical fiber tips. We show two distinct printing modes that enable the printing of solid silica glass structures ("Uniform Mode") and self-organized subwavelength gratings ("Nanograting Mode"), respectively. We illustrate the utility of our approach by printing two functional devices: (1) a refractive index sensor that can measure the indices of binary mixtures of acetone and methanol at near-infrared wavelengths and (2) a compact polarization beam splitter for polarization control and beam steering in an all-in-fiber system. By combining the superior material properties of glass with the plug-and-play nature of optical fibers, this approach enables promising applications in fields such as fiber sensing, optical microelectromechanical systems (MEMS), and quantum photonics.

12.
Adv Sci (Weinh) ; : e2307042, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38225700

RESUMO

Organic electrochemical transistors (OECTs) are promising devices for bioelectronics, such as biosensors. However, current cleanroom-based microfabrication of OECTs hinders fast prototyping and widespread adoption of this technology for low-volume, low-cost applications. To address this limitation, a versatile and scalable approach for ultrafast laser microfabrication of OECTs is herein reported, where a femtosecond laser to pattern insulating polymers (such as parylene C or polyimide) is first used, exposing the underlying metal electrodes serving as transistor terminals (source, drain, or gate). After the first patterning step, conducting polymers, such as poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS), or semiconducting polymers, are spin-coated on the device surface. Another femtosecond laser patterning step subsequently defines the active polymer area contributing to the OECT performance by disconnecting the channel and gate from the surrounding spin-coated film. The effective OECT width can be defined with high resolution (down to 2 µm) in less than a second of exposure. Micropatterning the OECT channel area significantly improved the transistor switching performance in the case of PEDOT:PSS-based transistors, speeding up the devices by two orders of magnitude. The utility of this OECT manufacturing approach is demonstrated by fabricating complementary logic (inverters) and glucose biosensors, thereby showing its potential to accelerate OECT research.

13.
Nanotechnology ; 24(1): 015602, 2013 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-23221022

RESUMO

Functional nanoporous materials are promising for a number of applications ranging from selective biofiltration to fuel cell electrodes. This work reports the functionalization of nanoporous membranes using atomic layer deposition (ALD). ALD is used to conformally deposit platinum (Pt) and aluminum oxide (Al(2)O(3)) on Pt in nanopores to form a metal-insulator stack inside the nanopore. Deposition of these materials inside nanopores allows the addition of extra functionalities to nanoporous materials such as anodic aluminum oxide (AAO) membranes. Conformal deposition of Pt on such materials enables increased performances for electrochemical sensing applications or fuel cell electrodes. An additional conformal Al(2)O(3) layer on such a Pt film forms a metal-insulator-electrolyte system, enabling field effect control of the nanofluidic properties of the membrane. This opens novel possibilities in electrically controlled biofiltration. In this work, the deposition of these two materials on AAO membranes is investigated theoretically and experimentally. Successful process parameters are proposed for a reliable and cost-effective conformal deposition on high aspect ratio three-dimensional nanostructures. A device consisting of a silicon chip supporting an AAO membrane of 6 mm diameter and 1.3 µm thickness with 80 nm diameter pores is fabricated. The pore diameter is reduced to 40 nm by a conformal deposition of 11 nm Pt and 9 nm Al(2)O(3) using ALD.

14.
Adv Healthc Mater ; 12(13): e2202564, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36748807

RESUMO

Blood sampling is a common practice to monitor health, but it entails a series of drawbacks for patients including pain and discomfort. Thus, there is a demand for more convenient ways to obtain samples. Modern analytical techniques enable monitoring of multiple bioanalytes in smaller samples, opening possibilities for new matrices, and microsampling technologies to be adopted. Interstitial fluid (ISF) is an attractive alternative matrix that shows good correlation with plasma concentration dynamics for several analytes and can be sampled in a minimally invasive and painless manner from the skin at the point-of-care. However, there is currently a lack of sampling devices compatible with clinical translation. Here, to tackle state-of-the-art limitations, a cost-effective and compact single-microneedle-based device designed to painlessly collect precisely 1.1 µL of dermal ISF within minutes is presented. The fluid is volume-metered, dried, and stably stored into analytical-grade paper within the microfluidic device. The obtained sample can be mailed to a laboratory, quantitatively analyzed, and provide molecular insights comparable to blood testing. In a human study, the possibility to monitor various classes of molecular analytes is demonstrated in ISF microsamples, including caffeine, hundreds of proteins, and SARS-CoV-2 antibodies, some being detected in ISF for the first time.


Assuntos
COVID-19 , Líquido Extracelular , Humanos , Líquido Extracelular/metabolismo , SARS-CoV-2 , COVID-19/diagnóstico , Pele , Anticorpos Antivirais , Agulhas
15.
Mater Today Bio ; 21: 100706, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37435551

RESUMO

To model complex biological tissue in vitro, a specific layout for the position and numbers of each cell type is necessary. Establishing such a layout requires manual cell placement in three dimensions (3D) with micrometric precision, which is complicated and time-consuming. Moreover, 3D printed materials used in compartmentalized microfluidic models are opaque or autofluorescent, hindering parallel optical readout and forcing serial characterization methods, such as patch-clamp probing. To address these limitations, we introduce a multi-level co-culture model realized using a parallel cell seeding strategy of human neurons and astrocytes on 3D structures printed with a commercially available non-autofluorescent resin at micrometer resolution. Using a two-step strategy based on probabilistic cell seeding, we demonstrate a human neuronal monoculture that forms networks on the 3D printed structure and can establish cell-projection contacts with an astrocytic-neuronal co-culture seeded on the glass substrate. The transparent and non-autofluorescent printed platform allows fluorescence-based immunocytochemistry and calcium imaging. This approach provides facile multi-level compartmentalization of different cell types and routes for pre-designed cell projection contacts, instrumental in studying complex tissue, such as the human brain.

16.
ACS Nano ; 17(9): 8041-8052, 2023 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-37074334

RESUMO

The performance of two-dimensional (2D) materials is promising for electronic, photonic, and sensing devices since they possess large surface-to-volume ratios, high mechanical strength, and broadband light sensitivity. While significant advances have been made in synthesizing and transferring 2D materials onto different substrates, there is still the need for scalable patterning of 2D materials with nanoscale precision. Conventional lithography methods require protective layers such as resist or metals that can contaminate or degrade the 2D materials and deteriorate the final device performance. Current resist-free patterning methods are limited in throughput and typically require custom-made equipment. To address these limitations, we demonstrate the noncontact and resist-free patterning of platinum diselenide (PtSe2), molybdenum disulfide (MoS2), and graphene layers with nanoscale precision at high processing speed while preserving the integrity of the surrounding material. We use a commercial, off-the-shelf two-photon 3D printer to directly write patterns in the 2D materials with features down to 100 nm at a maximum writing speed of 50 mm/s. We successfully remove a continuous film of 2D material from a 200 µm × 200 µm substrate area in less than 3 s. Since two-photon 3D printers are becoming increasingly available in research laboratories and industrial facilities, we expect this method to enable fast prototyping of devices based on 2D materials across various research areas.

18.
Nat Commun ; 14(1): 3305, 2023 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-37280208

RESUMO

Silica glass is a high-performance material used in many applications such as lenses, glassware, and fibers. However, modern additive manufacturing of micro-scale silica glass structures requires sintering of 3D-printed silica-nanoparticle-loaded composites at ~1200 °C, which causes substantial structural shrinkage and limits the choice of substrate materials. Here, 3D printing of solid silica glass with sub-micrometer resolution is demonstrated without the need of a sintering step. This is achieved by locally crosslinking hydrogen silsesquioxane to silica glass using nonlinear absorption of sub-picosecond laser pulses. The as-printed glass is optically transparent but shows a high ratio of 4-membered silicon-oxygen rings and photoluminescence. Optional annealing at 900 °C makes the glass indistinguishable from fused silica. The utility of the approach is demonstrated by 3D printing an optical microtoroid resonator, a luminescence source, and a suspended plate on an optical-fiber tip. This approach enables promising applications in fields such as photonics, medicine, and quantum-optics.

19.
Bioanalysis ; 14(10): 693-701, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35593738

RESUMO

Background: Performing complete blood counts from patients' homes could have a transformative impact on e-based healthcare. Blood microsampling and sample drying are enabling elements for patient-centric healthcare. The aim of this study was to investigate the potential of dry blood samples for image-based cell quantification of red and white blood cells. Methods: A manual sample preparation method was developed and tested for image-based red and white blood cell counting. Results & conclusion: Dry blood samples enable image-based cell counting of red and white blood cells with a good correlation to gold standard hematology analyzer data (average coefficient of variation <6.5%; R2 >0.8) and resolve the basic morphology of white blood cell nuclei. The presented proof-of-principle study is a first step toward patient-centric complete blood counts.


Assuntos
Hematologia , Contagem de Células Sanguíneas/métodos , Células Sanguíneas , Hematologia/métodos , Humanos , Contagem de Leucócitos , Assistência Centrada no Paciente
20.
Adv Mater ; 34(11): e2109823, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35029309

RESUMO

3D tissue models recapitulating human physiology are important for fundamental biomedical research, and they hold promise to become a new tool in drug development. An integrated and defined microvasculature in 3D tissue models is necessary for optimal cell functions. However, conventional bioprinting only allows the fabrication of hydrogel scaffolds containing vessel-like structures with large diameters (>100 µm) and simple geometries. Recent developments in laser photoablation enable the generation of this type of structure with higher resolution and complexity, but the photo-thermal process can compromise cell viability and hydrogel integrity. To address these limitations, the present work reports in situ 3D patterning of collagen hydrogels by femtosecond laser irradiation to create channels and cavities with diameters ranging from 20 to 60 µm. In this process, laser irradiation of the hydrogel generates cavitation gas bubbles that rearrange the collagen fibers, thereby creating stable microchannels. Such 3D channels can be formed in cell- and organoid-laden hydrogel without affecting the viability outside the lumen and can enable the formation of artificial microvasculature by the culture of endothelial cells and cell media perfusion. Thus, this method enables organs-on-a-chip and 3D tissue models featuring complex microvasculature.


Assuntos
Bioimpressão , Engenharia Tecidual , Colágeno/química , Células Endoteliais , Humanos , Hidrogéis/química , Lasers , Impressão Tridimensional , Alicerces Teciduais/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA