Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Biophys J ; 122(11): 2147-2161, 2023 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-36523159

RESUMO

Gram-negative bacteria are equipped with a cell wall that contains a complex matrix of lipids, proteins, and glycans, which form a rigid layer protecting bacteria from the environment. Major components of this outer membrane are the high-molecular weight and amphiphilic lipopolysaccharides (LPSs). They form the extracellular part of a heterobilayer with phospholipids. Understanding LPS properties within the outer membrane is therefore important to develop new antimicrobial strategies. Model systems, such as giant unilamellar vesicles (GUVs), provide a suitable platform for exploring membrane properties and interactions. However, LPS molecules contain large polysaccharide parts that confer high water solubility, which makes LPS incorporation in artificial membranes difficult; this hindrance is exacerbated for LPS with long polysaccharide chains, i.e., the smooth LPS. Here, a novel emulsification step of the inverted emulsion method is introduced to incorporate LPS in the outer or the inner leaflet of GUVs, exclusively. We developed an approach to determine the LPS content on individual GUVs and quantify membrane asymmetry. The asymmetric membranes with outer leaflet LPS show incorporations of 1-16 mol % smooth LPS (corresponding to 16-79 wt %), while vesicles with inner leaflet LPS reach coverages of 2-7 mol % smooth LPS (28-60 wt %). Diffusion coefficient measurements in the obtained GUVs showed that increasing LPS concentrations in the membranes resulted in decreased diffusivity.


Assuntos
Biomimética , Lipopolissacarídeos , Lipopolissacarídeos/metabolismo , Fosfolipídeos/metabolismo , Membranas Artificiais , Lipossomas Unilamelares/metabolismo , Bactérias/metabolismo , Membrana Celular/metabolismo , Proteínas da Membrana Bacteriana Externa/metabolismo
2.
J Biol Chem ; 294(31): 11751-11761, 2019 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-31189652

RESUMO

Myoviruses, bacteriophages with T4-like architecture, must contract their tails prior to DNA release. However, quantitative kinetic data on myovirus particle opening are lacking, although they are promising tools in bacteriophage-based antimicrobial strategies directed against Gram-negative hosts. For the first time, we show time-resolved DNA ejection from a bacteriophage with a contractile tail, the multi-O-antigen-specific Salmonella myovirus Det7. DNA release from Det7 was triggered by lipopolysaccharide (LPS) O-antigen receptors and notably slower than in noncontractile-tailed siphoviruses. Det7 showed two individual kinetic steps for tail contraction and particle opening. Our in vitro studies showed that highly specialized tailspike proteins (TSPs) are necessary to attach the particle to LPS. A P22-like TSP confers specificity for the Salmonella Typhimurium O-antigen. Moreover, crystal structure analysis at 1.63 Šresolution confirmed that Det7 recognized the Salmonella Anatum O-antigen via an ϵ15-like TSP, DettilonTSP. DNA ejection triggered by LPS from either host showed similar velocities, so particle opening is thus a process independent of O-antigen composition and the recognizing TSP. In Det7, at permissive temperatures TSPs mediate O-antigen cleavage and couple cell surface binding with DNA ejection, but no irreversible adsorption occurred at low temperatures. This finding was in contrast to short-tailed Salmonella podoviruses, illustrating that tailed phages use common particle-opening mechanisms but have specialized into different infection niches.


Assuntos
DNA Viral/metabolismo , Fagos de Salmonella/metabolismo , Salmonella typhimurium/virologia , Cristalografia por Raios X , Glicosídeo Hidrolases , Lipopolissacarídeos/farmacologia , Antígenos O/metabolismo , Estrutura Terciária de Proteína , Fagos de Salmonella/efeitos dos fármacos , Salmonella typhimurium/metabolismo , Proteínas da Cauda Viral/química , Proteínas da Cauda Viral/metabolismo
3.
Front Microbiol ; 11: 510638, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33072001

RESUMO

Bacteriophages use a large number of different bacterial cell envelope structures as receptors for surface attachment. As a consequence, bacterial surfaces represent a major control point for the defense against phage attack. One strategy for phage population control is the production of outer membrane vesicles (OMVs). In Gram-negative host bacteria, O-antigen-specific bacteriophages address lipopolysaccharide (LPS) to initiate infection, thus relying on an essential outer membrane glycan building block as receptor that is constantly present also in OMVs. In this work, we have analyzed interactions of Salmonella (S.) bacteriophage P22 with OMVs. For this, we isolated OMVs that were formed in large amounts during mechanical cell lysis of the P22 S. Typhimurium host. In vitro, these OMVs could efficiently reduce the number of infective phage particles. Fluorescence spectroscopy showed that upon interaction with OMVs, bacteriophage P22 released its DNA into the vesicle lumen. However, only about one third of the phage P22 particles actively ejected their genome. For the larger part, no genome release was observed, albeit the majority of phages in the system had lost infectivity towards their host. With OMVs, P22 ejected its DNA more rapidly and could release more DNA against elevated osmotic pressures compared to DNA release triggered with protein-free LPS aggregates. This emphasizes that OMV composition is a key feature for the regulation of infective bacteriophage particles in the system.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA