Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Ano de publicação
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; 58(3): 741-745, 2019 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-30467935

RESUMO

Supported ionic liquid phase (SILP) catalysis enables a highly efficient, Ru-based, homogeneously catalyzed water-gas shift reaction (WGSR) between 100 °C and 150 °C. The active Ru-complexes have been found to exist in imidazolium chloride melts under operating conditions in a dynamic equilibrium, which is dominated by the [Ru(CO)3 Cl3 ]- complex. Herein we present state-of-the-art theoretical calculations to elucidate the reaction mechanism in more detail. We show that the mechanism includes the intermediate formation and degradation of hydrogen chloride, which effectively reduces the high barrier for the formation of the requisite dihydrogen complex. The hypothesis that the rate-limiting step involves water is supported by using D2 O in continuous catalytic WGSR experiments. The resulting mechanism constitutes a highly competitive alternative to earlier reported generic routes involving nucleophilic addition of hydroxide in the gas phase and in solution.

2.
Data Brief ; 28: 104794, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31871969

RESUMO

This article contains data on structural characterization of the [C2Mim][NTf2] in bulk and in nano-confined environment obtained using MD simulations. These data supplement those presented in the paper "Insights from Molecular Dynamics Simulations on Structural Organization and Diffusive Dynamics of an Ionic Liquid at Solid and Vacuum Interfaces" [1], where force fields with three different charge methods and three charge scaling factors were used for the analysis of the IL in the bulk, at the interface with the vacuum and the IL film in the contact with a hydroxylated alumina surface. Here, we present details on the construction of the model systems in an extended detailed methods section. Furthermore, for best parametrization, structural and dynamic properties of IL in different environment are studied with certain features presented herein.

3.
J Colloid Interface Sci ; 553: 350-363, 2019 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-31220709

RESUMO

HYPOTHESIS: A reliable modelling approach is required for simultaneous characterisation of static and dynamic properties of bulk and interfacial ionic liquids (ILs). This is a prerequisite for a successful investigation of experimentally inaccessible, yet important properties, including those that change significantly with the distance from both vacuum and solid interfaces. SIMULATIONS: We perform molecular dynamics simulations of bulk [C2Mim][NTf2], and thick IL films in contact with vacuum and hydroxylated sapphire surface, using the charge methods CHelpG, RESP-HF and RESP-B3LYP with charge scaling factors 1.0, 0.9 and 0.85. FINDINGS: By determining and employing appropriate system sizes and simulations lengths, and by benchmarking against self-diffusion coefficients, surface tension, X-ray reflectivity, and structural data, we identify RESP-HF/0.9 as the best non-polarizable force field for this IL. We use this optimal parametrisation to predict novel physical properties of confined IL films. First we fully characterise the internal configurations and orientations of IL molecules relative to, and as a function of the distance from the solid and vacuum interfaces. Second, we evaluate densities together with mobilities in-plane and normal to the interfaces and find that strong correlations between the IL's stratification and diffusive transport in the interfacial layers persist for several nanometres deep into IL films.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA