Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Appl Opt ; 48(30): 5811-22, 2009 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-19844319

RESUMO

We investigate hydrometeor habits at the AIDA chamber with a newly developed in-line holographic microscope HOLographic Imager for Microscopic Objects (HOLIMO). Sizes and habits of ice crystals and droplets in a mixed-phase cloud experiment are related to relative humidity with respect to ice (RH(ice)), temperature (T), and experiment time. This experiment is initiated with supercooled water drops. As a result, ice crystals within a maximum particle diameter size range of 2 to 118 microm (average size of 19 microm) are detected and 63% of them reveal regular habits. The observed particle habits match those predicted for a given RH(ice) and T. Two different growth modes emerge from this cloud. The first one appears during water injection and reveals mainly optical particle sizes in the range of 5 to 250 microm. The second mode grows to sizes of 5 to 63 microm, just after the particles of the first one fall out. It is found that an increasing aspect ratio chi of maximum length over thickness from 2 to 20 as obtained by HOLIMO corresponds to a decreasing linear depolarization ratio from 0.1 to 0.04, as independently obtained by depolarization measurements.

2.
Appl Opt ; 46(20): 4465-76, 2007 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-17579702

RESUMO

Results of the depolarization ratio (delta) of single ice particles in fixed orientations are presented to determine whether discrimination between nonspherical ice crystals (causing depolarization) and spherical water droplets (inducing no depolarization) can be made. A T-matrix method is used to compute delta over a range of particle diameters from 0.13 to 4 microm and aspect ratios chi=d/h (d is the diameter and h the height of the particle) from 0.3 to 3, where ice crystals are assumed to have a circular cylindrical shape. The depolarization ratio is primarily dependent on the orientation of the particle. Some orientations return no depolarization, whereas others generate values reaching almost delta=1. Considering the depolarization averaged over all orientations, a dependence of delta with the particle size is observed where values close to 0.25 are reached. No strong influence of the aspect ratio on the depolarization for a given particle size of 2 mum is evident, as values remain in a range between 0.2 and 0.3.

3.
J Phys Chem A ; 109(11): 2572-81, 2005 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-16833561

RESUMO

In situ Fourier transform infrared (FTIR) extinction spectra of airborne alpha-NAD microparticles generated by two different methods were recorded in the large coolable aerosol chamber AIDA of Forschungszentrum Karlsruhe. The extinction spectrum of alpha-NAD crystals obtained by shock freezing of a HNO3/H2O gas mixture could be accurately reproduced using Mie theory with published refractive indices of alpha-NAD as input. In contrast, Mie theory proved to be inadequate to properly reproduce the infrared extinction spectrum of alpha-NAD crystals which were formed via homogeneous nucleation of supercooled HNO3/H2O solution droplets, evaporating slowly on a time scale of several hours at about 195 K. Much better agreement between measured and calculated extinction spectra was obtained by T-matrix calculations assuming oblate particles with aspect ratios greater than five. This indicates that strongly aspherical alpha-NAD crystals are obtained when supercooled nitric acid solution droplets freeze and grow slowly, a process which has been discussed as a potential pathway to the formation of crystalline polar stratospheric cloud (PSC) particles.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA