Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 167
Filtrar
1.
Cell ; 158(2): 353-367, 2014 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-25036632

RESUMO

Hermes is a member of the hAT transposon superfamily that has active representatives, including McClintock's archetypal Ac mobile genetic element, in many eukaryotic species. The crystal structure of the Hermes transposase-DNA complex reveals that Hermes forms an octameric ring organized as a tetramer of dimers. Although isolated dimers are active in vitro for all the chemical steps of transposition, only octamers are active in vivo. The octamer can provide not only multiple specific DNA-binding domains to recognize repeated subterminal sequences within the transposon ends, which are important for activity, but also multiple nonspecific DNA binding surfaces for target capture. The unusual assembly explains the basis of bipartite DNA recognition at hAT transposon ends, provides a rationale for transposon end asymmetry, and suggests how the avidity provided by multiple sites of interaction could allow a transposase to locate its transposon ends amidst a sea of chromosomal DNA.


Assuntos
Elementos de DNA Transponíveis , Moscas Domésticas/enzimologia , Transposases/química , Animais , Sequência de Bases , Cristalografia por Raios X , Dimerização , Moscas Domésticas/genética , Proteínas de Insetos/química , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Modelos Moleculares , Dados de Sequência Molecular , Proteínas de Ligação a RNA/química , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Transposases/genética , Transposases/metabolismo
2.
Proc Natl Acad Sci U S A ; 116(9): 3556-3561, 2019 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-30737287

RESUMO

Double-stranded DNA viruses, including bacteriophages and herpesviruses, package their genomes into preformed capsids, using ATP-driven motors. Seeking to advance structural and mechanistic understanding, we established in vitro packaging for a thermostable bacteriophage, P23-45 of Thermus thermophilus Both the unexpanded procapsid and the expanded mature capsid can package DNA in the presence of packaging ATPase over the 20 °C to 70 °C temperature range, with optimum activity at 50 °C to 65 °C. Cryo-EM reconstructions for the mature and immature capsids at 3.7-Å and 4.4-Å resolution, respectively, reveal conformational changes during capsid expansion. Capsomer interactions in the expanded capsid are reinforced by formation of intersubunit ß-sheets with N-terminal segments of auxiliary protein trimers. Unexpectedly, the capsid has T=7 quasi-symmetry, despite the P23-45 genome being twice as large as those of known T=7 phages, in which the DNA is compacted to near-crystalline density. Our data explain this anomaly, showing how the canonical HK97 fold has adapted to double the volume of the capsid, while maintaining its structural integrity. Reconstructions of the procapsid and the expanded capsid defined the structure of the single vertex containing the portal protein. Together with a 1.95-Å resolution crystal structure of the portal protein and DNA packaging assays, these reconstructions indicate that capsid expansion affects the conformation of the portal protein, while still allowing DNA to be packaged. These observations suggest a mechanism by which structural events inside the capsid can be communicated to the outside.


Assuntos
Bacteriófagos/ultraestrutura , Capsídeo/ultraestrutura , Empacotamento do DNA/genética , Vírus de DNA/ultraestrutura , Bacteriófagos/genética , Microscopia Crioeletrônica , Vírus de DNA/genética , DNA Viral/genética , DNA Viral/ultraestrutura , Vírion/genética , Vírion/ultraestrutura , Montagem de Vírus/genética
3.
PLoS Comput Biol ; 16(4): e1007782, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32310951

RESUMO

Hepatitis B virus (HBV) is a leading cause of liver disease. The capsid is an essential component of the virion and it is therefore of interest how it assembles and disassembles. The capsid protein is unusual both for its rare fold and that it polymerizes according to two different icosahedral symmetries, causing the polypeptide chain to exist in seven quasi-equivalent environments: A, B, and C in AB and CC dimers in T = 3 capsids, and A, B, C, and D in AB and CD dimers in T = 4 capsids. We have compared the two capsids by cryo-EM at 3.5 Å resolution. To ensure a valid comparison, the two capsids were prepared and imaged under identical conditions. We find that the chains have different conformations and potential energies, with the T = 3 C chain having the lowest. Three of the four quasi-equivalent dimers are asymmetric with respect to conformation and potential energy; however, the T = 3 CC dimer is symmetrical and has the lowest potential energy although its intra-dimer interface has the least free energy of formation. Of all the inter-dimer interfaces, the CB interface has the least area and free energy, in both capsids. From the calculated energies of higher-order groupings of dimers discernible in the lattices we predict early assembly intermediates, and indeed we observe such structures by negative stain EM of in vitro assembly reactions. By sequence analysis and computational alanine scanning we identify key residues and motifs involved in capsid assembly. Our results explain several previously reported observations on capsid assembly, disassembly, and dimorphism.


Assuntos
Proteínas do Capsídeo , Capsídeo , Vírus da Hepatite B/química , Subunidades Proteicas , Sequência de Aminoácidos , Sítios de Ligação , Capsídeo/química , Capsídeo/metabolismo , Proteínas do Capsídeo/química , Proteínas do Capsídeo/metabolismo , Biologia Computacional/métodos , Conformação Proteica , Multimerização Proteica , Subunidades Proteicas/química , Subunidades Proteicas/metabolismo , Termodinâmica
4.
J Virol ; 93(5)2019 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-30541839

RESUMO

The 240-kb Salmonella phage SPN3US genome encodes 264 gene products, many of which are functionally uncharacterized. We have previously used mass spectrometry to define the proteomes of wild-type and mutant forms of the SPN3US virion. In this study, we sought to determine whether this technique was suitable for the characterization of the SPN3US proteome during liquid infection. Mass spectrometry of SPN3US-infected cells identified 232 SPN3US and 1,994 Salmonella proteins. SPN3US proteins with related functions, such as proteins with roles in DNA replication, transcription, and virion formation, were coordinately expressed in a temporal manner. Mass spectral counts showed the four most abundant SPN3US proteins to be the major capsid protein, two head ejection proteins, and the functionally unassigned protein gp22. This high abundance of gp22 in infected bacteria contrasted with its absence from mature virions, suggesting that it might be the scaffold protein, an essential head morphogenesis protein yet to be identified in giant phages. We identified homologs to SPN3US gp22 in 45 related giant phages, including ϕKZ, whose counterpart is also abundant in infected bacteria but absent in the virion. We determined the ϕKZ counterpart to be cleaved in vitro by its prohead protease, an event that has been observed to promote head maturation of some other phages. Our findings are consistent with a scaffold protein assignment for SPN3US gp22, although direct evidence is required for its confirmation. These studies demonstrate the power of mass spectral analyses for facilitating the acquisition of new knowledge into the molecular events of viral infection.IMPORTANCE "Giant" phages with genomes >200 kb are being isolated in increasing numbers from a range of environments. With hosts such as Salmonella enterica, Pseudomonas aeruginosa, and Erwinia amylovora, these phages are of interest for phage therapy of multidrug-resistant pathogens. However, our understanding of how these complex phages interact with their hosts is impeded by the proportion (∼80%) of their gene products that are functionally uncharacterized. To develop the repertoire of techniques for analysis of phages, we analyzed a liquid infection of Salmonella phage SPN3US (240-kb genome) using third-generation mass spectrometry. We observed the temporal production of phage proteins whose genes collectively represent 96% of the SPN3US genome. These findings demonstrate the sensitivity of mass spectrometry for global proteomic profiling of virus-infected cells, and the identification of a candidate for a major head morphogenesis protein will facilitate further studies into giant phage head assembly.


Assuntos
Vírus Gigantes/genética , Glicoproteínas/genética , Proteoma/análise , Fagos de Salmonella/genética , Salmonella typhimurium/virologia , Proteínas Virais/genética , DNA Viral/genética , Perfilação da Expressão Gênica , Genoma Viral/genética , Espectrometria de Massas , Pseudomonas aeruginosa/virologia
5.
J Virol ; 92(19)2018 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-30021893

RESUMO

Infectious bursal disease virus (IBDV), a nonenveloped, double-stranded RNA (dsRNA) virus with a T=13 icosahedral capsid, has a virion assembly strategy that initiates with a precursor particle based on an internal scaffold shell similar to that of tailed double-stranded DNA (dsDNA) viruses. In IBDV-infected cells, the assembly pathway results mainly in mature virions that package four dsRNA segments, although minor viral populations ranging from zero to three dsRNA segments also form. We used cryo-electron microscopy (cryo-EM), cryo-electron tomography, and atomic force microscopy to characterize these IBDV populations. The VP3 protein was found to act as a scaffold protein by building an irregular, ∼40-Å-thick internal shell without icosahedral symmetry, which facilitates formation of a precursor particle, the procapsid. Analysis of IBDV procapsid mechanical properties indicated a VP3 layer beneath the icosahedral shell, which increased the effective capsid thickness. Whereas scaffolding proteins are discharged in tailed dsDNA viruses, VP3 is a multifunctional protein. In mature virions, VP3 is bound to the dsRNA genome, which is organized as ribonucleoprotein complexes. IBDV is an amalgam of dsRNA viral ancestors and traits from dsDNA and single-stranded RNA (ssRNA) viruses.IMPORTANCE Structural analyses highlight the constraint of virus evolution to a limited number of capsid protein folds and assembly strategies that result in a functional virion. We report the cryo-EM and cryo-electron tomography structures and the results of atomic force microscopy studies of the infectious bursal disease virus (IBDV), a double-stranded RNA virus with an icosahedral capsid. We found evidence of a new inner shell that might act as an internal scaffold during IBDV assembly. The use of an internal scaffold is reminiscent of tailed dsDNA viruses, which constitute the most successful self-replicating system on Earth. The IBDV scaffold protein is multifunctional and, after capsid maturation, is genome bound to form ribonucleoprotein complexes. IBDV encompasses numerous functional and structural characteristics of RNA and DNA viruses; we suggest that IBDV is a modern descendant of ancestral viruses and comprises different features of current viral lineages.


Assuntos
Infecções por Birnaviridae/virologia , Genoma Viral , Vírus da Doença Infecciosa da Bursa/fisiologia , RNA de Cadeia Dupla/genética , Proteínas de Ligação a RNA/metabolismo , Proteínas Estruturais Virais/metabolismo , Montagem de Vírus , Animais , Infecções por Birnaviridae/genética , Infecções por Birnaviridae/metabolismo , Capsídeo/fisiologia , Capsídeo/ultraestrutura , Células Cultivadas , Coturnix/virologia , Microscopia Crioeletrônica , Vírus da Doença Infecciosa da Bursa/ultraestrutura , Células Musculares/virologia , Proteínas de Ligação a RNA/genética , Proteínas Estruturais Virais/genética , Vírion
6.
Proc Natl Acad Sci U S A ; 113(19): 5287-92, 2016 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-27114531

RESUMO

Retinoschisin (RS1) is involved in cell-cell junctions in the retina, but is unique among known cell-adhesion proteins in that it is a soluble secreted protein. Loss-of-function mutations in RS1 lead to early vision impairment in young males, called X-linked retinoschisis. The disease is characterized by separation of inner retinal layers and disruption of synaptic signaling. Using cryo-electron microscopy, we report the structure at 4.1 Å, revealing double octamer rings not observed before. Each subunit is composed of a discoidin domain and a small N-terminal (RS1) domain. The RS1 domains occupy the centers of the rings, but are not required for ring formation and are less clearly defined, suggesting mobility. We determined the structure of the discoidin rings, consistent with known intramolecular and intermolecular disulfides. The interfaces internal to and between rings feature residues implicated in X-linked retinoschisis, indicating the importance of correct assembly. Based on this structure, we propose that RS1 couples neighboring membranes together through octamer-octamer contacts, perhaps modulated by interactions with other membrane components.


Assuntos
Moléculas de Adesão Celular/química , Moléculas de Adesão Celular/ultraestrutura , Adesão Celular , Proteínas do Olho/química , Proteínas do Olho/ultraestrutura , Junções Intercelulares/ultraestrutura , Retina/química , Retina/ultraestrutura , Sequência de Aminoácidos , Animais , Simulação por Computador , Dimerização , Junções Intercelulares/química , Camundongos , Modelos Biológicos , Modelos Moleculares , Complexos Multiproteicos/química , Complexos Multiproteicos/ultraestrutura , Conformação Proteica
7.
J Struct Biol ; 203(2): 102-108, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29605570

RESUMO

HIV-1 Rev mediates the nuclear export of unspliced and partially-spliced viral transcripts for the production of progeny genomes and structural proteins. In this process, four (or more) copies of Rev assemble onto a highly-structured 351-nt region in such viral transcripts, the Rev response element (RRE). How this occurs is not known. The Rev assembly domain has a helical-hairpin structure which associates through three (A-A, B-B and C-C) interfaces. The RRE has the topology of an upper-case letter A, with the two known Rev binding sites mapping onto the legs of the A. We have determined a crystal structure for the Rev assembly domain at 2.25 Šresolution, without resort to either mutations or chaperones. It shows that B-B dimers adopt an arrangement reversed relative to that previously reported, and join through a C-C interface to form tetramers. The new subunit arrangement shows how four Rev molecules can assemble on the two sites on the RRE to form the specificity checkpoint, and how further copies add through A-A interactions. Residues at the C-C interface, specifically the Pro31-Trp45 axis, are a potential target for intervention.


Assuntos
Genes env/fisiologia , HIV-1/genética , HIV-1/metabolismo , RNA Viral/metabolismo , Transporte Ativo do Núcleo Celular/genética , Transporte Ativo do Núcleo Celular/fisiologia , Sítios de Ligação/genética , Sítios de Ligação/fisiologia , Genes env/genética , Ligação Proteica/genética , Ligação Proteica/fisiologia , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Splicing de RNA/genética , Splicing de RNA/fisiologia , RNA Viral/genética
8.
J Biol Chem ; 292(40): 16760-16772, 2017 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-28842495

RESUMO

Hepatitis B virus (HBV) infection afflicts millions worldwide, causing cirrhosis and liver cancer. HBV e-antigen (HBeAg), a clinical marker for disease severity, is a soluble variant of the viral capsid protein. HBeAg is not required for viral replication but is implicated in establishing immune tolerance and chronic infection. The structure of recombinant e-antigen (rHBeAg) was recently determined, yet to date, the exact nature and quantitation of HBeAg still remain uncertain. Here, to further characterize HBeAg, we used phage display to produce a panel of chimeric rabbit/human monoclonal antibody fragments (both Fab and scFv) against rHBeAg. Several of the Fab/scFv, expressed in Escherichia coli, had unprecedentedly high binding affinities (Kd ∼10-12 m) and high specificity. We used Fab/scFv in the context of an enzyme-linked immunosorbent assay (ELISA) for HBeAg quantification, which we compared with commercially available kits and verified with seroconversion panels, the WHO HBeAg standard, rHBeAg, and patient plasma samples. We found that the specificity and sensitivity are superior to those of existing commercial assays. To identify potential fine differences between rHBeAg and HBeAg, we used these Fabs in microscale immunoaffinity chromatography to purify HBeAg from individual patient plasmas. Western blotting and MS results indicated that rHBeAg and HBeAg are essentially structurally identical, although HBeAg from different patients exhibits minor carboxyl-terminal heterogeneity. We discuss several potential applications for the humanized Fab/scFv.


Assuntos
Anticorpos Anti-Hepatite B/imunologia , Antígenos E da Hepatite B/imunologia , Vírus da Hepatite B/imunologia , Hepatite B/imunologia , Proteínas Recombinantes de Fusão/imunologia , Anticorpos de Cadeia Única/imunologia , Animais , Ensaio de Imunoadsorção Enzimática/métodos , Hepatite B/sangue , Hepatite B/tratamento farmacológico , Anticorpos Anti-Hepatite B/química , Anticorpos Anti-Hepatite B/genética , Anticorpos Anti-Hepatite B/uso terapêutico , Antígenos E da Hepatite B/sangue , Antígenos E da Hepatite B/química , Vírus da Hepatite B/química , Humanos , Coelhos , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/uso terapêutico , Anticorpos de Cadeia Única/química , Anticorpos de Cadeia Única/genética , Anticorpos de Cadeia Única/uso terapêutico
9.
EMBO J ; 33(17): 1896-911, 2014 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-25024436

RESUMO

Living cells compartmentalize materials and enzymatic reactions to increase metabolic efficiency. While eukaryotes use membrane-bound organelles, bacteria and archaea rely primarily on protein-bound nanocompartments. Encapsulins constitute a class of nanocompartments widespread in bacteria and archaea whose functions have hitherto been unclear. Here, we characterize the encapsulin nanocompartment from Myxococcus xanthus, which consists of a shell protein (EncA, 32.5 kDa) and three internal proteins (EncB, 17 kDa; EncC, 13 kDa; EncD, 11 kDa). Using cryo-electron microscopy, we determined that EncA self-assembles into an icosahedral shell 32 nm in diameter (26 nm internal diameter), built from 180 subunits with the fold first observed in bacteriophage HK97 capsid. The internal proteins, of which EncB and EncC have ferritin-like domains, attach to its inner surface. Native nanocompartments have dense iron-rich cores. Functionally, they resemble ferritins, cage-like iron storage proteins, but with a massively greater capacity (~30,000 iron atoms versus ~3,000 in ferritin). Physiological data reveal that few nanocompartments are assembled during vegetative growth, but they increase fivefold upon starvation, protecting cells from oxidative stress through iron sequestration.


Assuntos
Fenômenos Fisiológicos Bacterianos , Proteínas de Bactérias/metabolismo , Ferro/metabolismo , Substâncias Macromoleculares/metabolismo , Myxococcus xanthus/fisiologia , Nanopartículas/metabolismo , Estresse Oxidativo , Microscopia Crioeletrônica , Modelos Moleculares , Myxococcus xanthus/ultraestrutura , Multimerização Proteica
10.
Nature ; 483(7387): 53-8, 2012 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-22327295

RESUMO

Neisseria are obligate human pathogens causing bacterial meningitis, septicaemia and gonorrhoea. Neisseria require iron for survival and can extract it directly from human transferrin for transport across the outer membrane. The transport system consists of TbpA, an integral outer membrane protein, and TbpB, a co-receptor attached to the cell surface; both proteins are potentially important vaccine and therapeutic targets. Two key questions driving Neisseria research are how human transferrin is specifically targeted, and how the bacteria liberate iron from transferrin at neutral pH. To address these questions, we solved crystal structures of the TbpA-transferrin complex and of the corresponding co-receptor TbpB. We characterized the TbpB-transferrin complex by small-angle X-ray scattering and the TbpA-TbpB-transferrin complex by electron microscopy. Our studies provide a rational basis for the specificity of TbpA for human transferrin, show how TbpA promotes iron release from transferrin, and elucidate how TbpB facilitates this process.


Assuntos
Proteínas de Bactérias/química , Ferro/metabolismo , Neisseria/metabolismo , Proteína A de Ligação a Transferrina/química , Proteína A de Ligação a Transferrina/metabolismo , Proteína B de Ligação a Transferrina/química , Proteína B de Ligação a Transferrina/metabolismo , Animais , Apoproteínas/química , Apoproteínas/metabolismo , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/ultraestrutura , Sítios de Ligação , Transporte Biológico , Bovinos , Cristalografia por Raios X , Humanos , Camundongos , Modelos Moleculares , Simulação de Dinâmica Molecular , Neisseria/patogenicidade , Conformação Proteica , Espalhamento a Baixo Ângulo , Especificidade da Espécie , Relação Estrutura-Atividade , Transferrina/química , Transferrina/metabolismo , Transferrina/ultraestrutura , Proteína A de Ligação a Transferrina/ultraestrutura , Proteína B de Ligação a Transferrina/ultraestrutura , Difração de Raios X
11.
J Biol Chem ; 291(5): 2310-8, 2016 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-26644467

RESUMO

Parkinson disease and other progressive neurodegenerative conditions are characterized by the intracerebral presence of Lewy bodies, containing amyloid fibrils of α-synuclein. We used cryo-electron microscopy and scanning transmission electron microscopy (STEM) to study in vitro-assembled fibrils. These fibrils are highly polymorphic. Focusing on twisting fibrils with an inter-crossover spacing of 77 nm, our reconstructions showed them to consist of paired protofibrils. STEM mass per length data gave one subunit per 0.47 nm axial rise per protofibril, consistent with a superpleated ß-structure. The STEM images show two thread-like densities running along each of these fibrils, which we interpret as ladders of metal ions. These threads confirmed the two-protofibril architecture of the 77-nm twisting fibrils and allowed us to identify this morphotype in STEM micrographs. Some other, but not all, fibril morphotypes also exhibit dense threads, implying that they also present a putative metal binding site. We propose a molecular model for the protofibril and suggest that polymorphic variant fibrils have different numbers of protofibrils that are associated differently.


Assuntos
Amiloide/química , alfa-Sinucleína/química , Sequência de Aminoácidos , Sítios de Ligação , Microscopia Crioeletrônica , Humanos , Processamento de Imagem Assistida por Computador , Íons , Corpos de Lewy/metabolismo , Microscopia Eletrônica de Transmissão e Varredura , Dados de Sequência Molecular , Estrutura Secundária de Proteína , Homologia de Sequência de Aminoácidos
12.
J Virol ; 90(2): 972-8, 2016 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-26537676

RESUMO

UNLABELLED: Upon release of HIV-1 particles from the infected cell, the viral protease cleaves the Gag polyprotein at specific sites, triggering maturation. During this process, which is essential for infectivity, the capsid protein (CA) reassembles into a conical core. Maturation inhibitors (MIs) block HIV-1 maturation by interfering with protease-mediated CA-spacer peptide 1 (CA-SP1) processing, concomitantly stabilizing the immature CA-SP1 lattice; virions from MI-treated cells retain an immature-like CA-SP1 lattice, whereas mutational abolition of cleavage at the CA-SP1 site results in virions in which the CA-SP1 lattice converts to a mature-like form. We previously reported that propagation of HIV-1 in the presence of MI PF-46396 selected for assembly-defective, compound-dependent mutants with amino acid substitutions in the major homology region (MHR) of CA. Propagation of these mutants in the absence of PF-46396 resulted in the acquisition of second-site compensatory mutations. These included a Thr-to-Ile substitution at SP1 residue 8 (T8I), which results in impaired CA-SP1 processing. Thus, the T8I mutation phenocopies PF-46396 treatment in terms of its ability to rescue the replication defect imposed by the MHR mutations and to impede CA-SP1 processing. Here, we use cryo-electron tomography to show that, like MIs, the T8I mutation stabilizes the immature-like CA-SP1 lattice. These results have important implications for the mechanism of action of HIV-1 MIs; they also suggest that T8I may provide a valuable tool for structural definition of the CA-SP1 boundary region, which has thus far been refractory to high-resolution analysis, apparently because of conformational flexibility in this region of Gag. IMPORTANCE: HIV-1 maturation involves dissection of the Gag polyprotein by the viral protease and assembly of a conical capsid enclosing the viral ribonucleoprotein. Maturation inhibitors (MIs) prevent the final cleavage step at the site between the capsid protein (CA) and spacer peptide 1 (SP1), apparently by binding at this site and denying the protease access. Additionally, MIs stabilize the immature-like CA-SP1 lattice, preventing release of CA into the soluble pool. We previously found that T8I, a mutation in SP1, rescues a PF-46396-dependent CA mutant and blocks CA-SP1 cleavage. In this study, we imaged T8I virions by cryo-electron tomography and showed that T8I mutants, like MI-treated virions, contain an immature CA-SP1 lattice. These results lay the groundwork needed to understand the structure of the CA-SP1 interface region and further illuminate the mechanism of action of MIs.


Assuntos
Proteína do Núcleo p24 do HIV/metabolismo , HIV-1/fisiologia , Mutação de Sentido Incorreto , Processamento de Proteína Pós-Traducional , Montagem de Vírus , Microscopia Crioeletrônica , Tomografia com Microscopia Eletrônica , Proteína do Núcleo p24 do HIV/genética , HIV-1/genética , HIV-1/ultraestrutura , Peptídeos
13.
J Virol ; 90(10): 5176-86, 2016 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-26984725

RESUMO

UNLABELLED: The herpes simplex virus 1 (HSV-1) capsid is a huge assembly, ∼1,250 Šin diameter, and is composed of thousands of protein subunits with a combined mass of ∼200 MDa, housing a 100-MDa genome. First, a procapsid is formed through coassembly of the surface shell with an inner scaffolding shell; then the procapsid matures via a major structural transformation, triggered by limited proteolysis of the scaffolding proteins. Three mature capsids are found in the nuclei of infected cells. A capsids are empty, B capsids retain a shrunken scaffolding shell, and C capsids-which develop into infectious virions-are filled with DNA and ostensibly have expelled the scaffolding shell. The possible presence of other internal proteins in C capsids has been moot as, in cryo-electron microscopy (cryo-EM), they would be camouflaged by the surrounding DNA. We have used bubblegram imaging to map internal proteins in all four capsids, aided by the discovery that the scaffolding protein is exceptionally prone to radiation-induced bubbling. We confirmed that this protein forms thick-walled inner shells in the procapsid and the B capsid. C capsids generate two classes of bubbles: one occupies positions beneath the vertices of the icosahedral surface shell, and the other is distributed throughout its interior. A likely candidate is the viral protease. A subpopulation of C capsids bubbles particularly profusely and may represent particles in which expulsion of scaffold and DNA packaging are incomplete. Based on the procapsid structure, we propose that the axial channels of hexameric capsomers afford the pathway via which the scaffolding protein is expelled. IMPORTANCE: In addition to DNA, capsids of tailed bacteriophages and their distant relatives, herpesviruses, contain internal proteins. These proteins are often essential for infectivity but are difficult to locate within the virion. A novel adaptation of cryo-EM based on detecting gas bubbles generated by radiation damage was used to localize internal proteins of HSV-1, yielding insights into how capsid maturation is regulated. The scaffolding protein, which forms inner shells in the procapsid and B capsid, is exceptionally bubbling-prone. In the mature DNA-filled C capsid, a previously undetected protein was found to underlie the icosahedral vertices: this is tentatively assigned as a storage form of the viral protease. We also observed a capsid species that appears to contain substantial amounts of scaffolding protein as well as DNA, suggesting that DNA packaging and expulsion of the scaffolding protein are coupled processes.


Assuntos
Proteínas do Capsídeo/química , Capsídeo/química , Capsídeo/ultraestrutura , Herpesvirus Humano 1/ultraestrutura , Capsídeo/metabolismo , Microscopia Crioeletrônica/instrumentação , Microscopia Crioeletrônica/métodos , Empacotamento do DNA , Herpesvirus Humano 1/química , Vírion , Montagem de Vírus
14.
Mol Cell ; 35(2): 217-27, 2009 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-19647518

RESUMO

To obtain structural information on the early stages of V(D)J recombination, we isolated a complex of the core RAG1 and RAG2 proteins with DNA containing a pair of cleaved recombination signal sequences (RSS). Stoichiometric and molecular mass analysis established that this signal-end complex (SEC) contains two protomers each of RAG1 and RAG2. Visualization of the SEC by negative-staining electron microscopy revealed an anchor-shaped particle with approximate two-fold symmetry. Consistent with a parallel arrangement of DNA and protein subunits, the N termini of RAG1 and RAG2 are positioned at opposing ends of the complex, and the DNA chains beyond the RSS nonamer emerge from the same face of the complex, near the RAG1 N termini. These first images of the V(D)J recombinase in its postcleavage state provide a framework for modeling RAG domains and their interactions with DNA.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Proteínas de Homeodomínio/metabolismo , Recombinação Genética/fisiologia , VDJ Recombinases/fisiologia , Proteínas de Transporte/análise , Proteínas de Transporte/metabolismo , DNA/química , DNA/metabolismo , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/ultraestrutura , Proteínas de Homeodomínio/química , Proteínas de Homeodomínio/ultraestrutura , Imuno-Histoquímica , Proteínas Ligantes de Maltose , Microscopia de Força Atômica , Microscopia Eletrônica de Transmissão , Modelos Moleculares , Coloração Negativa , Estrutura Terciária de Proteína , Proteínas Recombinantes de Fusão/análise , VDJ Recombinases/química , VDJ Recombinases/ultraestrutura
15.
Nucleic Acids Res ; 43(8): 4274-83, 2015 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-25820430

RESUMO

Genome packing in adenovirus has long evaded precise description, since the viral dsDNA molecule condensed by proteins (core) lacks icosahedral order characteristic of the virus protein coating (capsid). We show that useful insights regarding the organization of the core can be inferred from the analysis of spatial distributions of the DNA and condensing protein units (adenosomes). These were obtained from the inspection of cryo-electron tomography reconstructions of individual human adenovirus particles. Our analysis shows that the core lacks symmetry and strict order, yet the adenosome distribution is not entirely random. The features of the distribution can be explained by modeling the condensing proteins and the part of the genome in each adenosome as very soft spheres, interacting repulsively with each other and with the capsid, producing a minimum outward pressure of ∼0.06 atm. Although the condensing proteins are connected by DNA in disrupted virion cores, in our models a backbone of DNA linking the adenosomes is not required to explain the experimental results in the confined state. In conclusion, the interior of an adenovirus infectious particle is a strongly confined and dense phase of soft particles (adenosomes) without a strictly defined DNA backbone.


Assuntos
Adenoviridae/ultraestrutura , DNA Viral/ultraestrutura , Proteínas do Core Viral/ultraestrutura , Vírion/ultraestrutura , Tomografia com Microscopia Eletrônica , Simulação de Dinâmica Molecular
16.
J Virol ; 89(19): 9765-80, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26178982

RESUMO

UNLABELLED: During virion maturation, HIV-1 capsid protein assembles into a conical core containing the viral ribonucleoprotein (vRNP) complex, thought to be composed mainly of the viral RNA and nucleocapsid protein (NC). After infection, the viral RNA is reverse transcribed into double-stranded DNA, which is then incorporated into host chromosomes by integrase (IN) catalysis. Certain IN mutations (class II) and antiviral drugs (allosteric IN inhibitors [ALLINIs]) adversely affect maturation, resulting in virions that contain "eccentric condensates," electron-dense aggregates located outside seemingly empty capsids. Here we demonstrate that in addition to this mislocalization of electron density, a class II IN mutation and ALLINIs each increase the fraction of virions with malformed capsids (from ∼ 12% to ∼ 53%). Eccentric condensates have a high NC content, as demonstrated by "tomo-bubblegram" imaging, a novel labeling technique that exploits the susceptibility of NC to radiation damage. Tomo-bubblegrams also localized NC inside wild-type cores and lining the spherical Gag shell in immature virions. We conclude that eccentric condensates represent nonpackaged vRNPs and that either genetic or pharmacological inhibition of IN can impair vRNP incorporation into mature cores. Supplying IN in trans as part of a Vpr-IN fusion protein partially restored the formation of conical cores with internal electron density and the infectivity of a class II IN deletion mutant virus. Moreover, the ability of ALLINIs to induce eccentric condensate formation required both IN and viral RNA. Based on these observations, we propose a role for IN in initiating core morphogenesis and vRNP incorporation into the mature core during HIV-1 maturation. IMPORTANCE: Maturation, a process essential for HIV-1 infectivity, involves core assembly, whereby the viral ribonucleoprotein (vRNP, composed of vRNA and nucleocapsid protein [NC]) is packaged into a conical capsid. Allosteric integrase inhibitors (ALLINIs) affect multiple viral processes. We have characterized ALLINIs and integrase mutants that have the same phenotype. First, by comparing the effects of ALLINIs on several steps of the viral cycle, we show that inhibition of maturation accounts for compound potency. Second, by using cryoelectron tomography, we find that ALLINIs impair conical capsid assembly. Third, by developing tomo-bubblegram imaging, which specifically labels NC protein, we find that ALLINIs block vRNP packaging; instead, vRNPs form "eccentric condensates" outside the core. Fourth, malformed cores, typical of integrase-deleted virus, are partially replaced by conical cores when integrase is supplied in trans. Fifth, vRNA is necessary for ALLINI-induced eccentric condensate formation. These observations suggest that integrase is involved in capsid morphogenesis and vRNP packaging.


Assuntos
Integrase de HIV/metabolismo , HIV-1/fisiologia , Proteínas do Nucleocapsídeo/metabolismo , Vírion/fisiologia , Montagem de Vírus/fisiologia , Microscopia Crioeletrônica , Células HEK293 , HIV-1/metabolismo , Humanos , Microscopia Eletrônica de Transmissão , Reação em Cadeia da Polimerase , Vírion/metabolismo
17.
Proc Natl Acad Sci U S A ; 110(27): E2441-50, 2013 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-23776210

RESUMO

MuB is an ATP-dependent nonspecific DNA-binding protein that regulates the activity of the MuA transposase and captures target DNA for transposition. Mechanistic understanding of MuB function has previously been hindered by MuB's poor solubility. Here we combine bioinformatic, mutagenic, biochemical, and electron microscopic analyses to unmask the structure and function of MuB. We demonstrate that MuB is an ATPase associated with diverse cellular activities (AAA+ ATPase) and forms ATP-dependent filaments with or without DNA. We also identify critical residues for MuB's ATPase, DNA binding, protein polymerization, and MuA interaction activities. Using single-particle electron microscopy, we show that MuB assembles into a helical filament, which binds the DNA in the axial channel. The helical parameters of the MuB filament do not match those of the coated DNA. Despite this protein-DNA symmetry mismatch, MuB does not deform the DNA duplex. These findings, together with the influence of MuB filament size on strand-transfer efficiency, lead to a model in which MuB-imposed symmetry transiently deforms the DNA at the boundary of the MuB filament and results in a bent DNA favored by MuA for transposition.


Assuntos
Adenosina Trifosfatases/química , Adenosina Trifosfatases/metabolismo , Bacteriófago mu/enzimologia , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/metabolismo , Proteínas Virais/química , Proteínas Virais/metabolismo , Adenosina Trifosfatases/genética , Trifosfato de Adenosina/metabolismo , Sequência de Aminoácidos , Bacteriófago mu/genética , Sítios de Ligação/genética , DNA Viral/metabolismo , Proteínas de Ligação a DNA/genética , Imageamento Tridimensional , Microscopia Eletrônica de Transmissão , Modelos Moleculares , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Multimerização Proteica/genética , Homologia de Sequência de Aminoácidos , Transposases/genética , Transposases/metabolismo , Proteínas Virais/genética
18.
J Biol Chem ; 289(29): 20222-33, 2014 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-24878961

RESUMO

The HIV-1 protein Rev oligomerizes on viral transcripts and directs their nuclear export. Previously, a Fab against Rev generated by phage display was used to crystallize and solve the structure of the Rev oligomerization domain. Here we have investigated the capability of this Fab to block Rev oligomerization and inhibit HIV-1 replication. The Fab itself did not have antiviral activity, but when a Tat-derived cell-penetrating peptide was appended, the resulting molecule (FabRev1-Tat) was strongly inhibitory of three different CCR5-tropic HIV-1 isolates (IC50 = 0.09-0.44 µg/ml), as assessed by suppression of reverse transcriptase activity in infected peripheral blood mononuclear cells, and had low cell toxicity (TC50 > 100 µg/ml). FabRev1-Tat was taken up by both peripheral blood mononuclear and HEK293T cells, appearing in both the cytoplasm and nucleus, as shown by immunofluorescence confocal laser scanning microscopy. Computational alanine scanning was used to identify key residues in the complementarity-determining regions to guide mutagenesis experiments. Residues in the light chain CDR3 (LCDR3) were assessed to be important. Residues in LCDR3 were mutated, and LCDR3-Tyr(92) was found to be critical for binding to Rev, as judged by surface plasmon resonance and electron microscopy. Peptides corresponding to all six CDR regions were synthesized and tested for Rev binding. None of the linear peptides had significant affinity for Rev, but four of the amide-cyclic forms did. Especially cyclic-LCDR3 (LGGYPAASYRTA) had high affinity for Rev and was able to effectively depolymerize Rev filaments, as shown by both surface plasmon resonance and electron microscopy.


Assuntos
Fármacos Anti-HIV/farmacologia , Peptídeos Penetradores de Células/farmacologia , HIV-1/efeitos dos fármacos , HIV-1/imunologia , Fragmentos Fab das Imunoglobulinas/farmacologia , Produtos do Gene rev do Vírus da Imunodeficiência Humana/antagonistas & inibidores , Sequência de Aminoácidos , Fármacos Anti-HIV/química , Fármacos Anti-HIV/imunologia , Sítios de Ligação de Anticorpos/genética , Sítios de Ligação de Anticorpos/imunologia , Peptídeos Penetradores de Células/genética , Peptídeos Penetradores de Células/imunologia , Regiões Determinantes de Complementaridade , Células HEK293 , HIV-1/fisiologia , Humanos , Fragmentos Fab das Imunoglobulinas/genética , Fragmentos Fab das Imunoglobulinas/imunologia , Cinética , Microscopia Eletrônica de Transmissão , Modelos Moleculares , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Ligação Proteica , Engenharia de Proteínas , Multimerização Proteica/efeitos dos fármacos , Replicação Viral/efeitos dos fármacos , Replicação Viral/imunologia , Produtos do Gene rev do Vírus da Imunodeficiência Humana/genética , Produtos do Gene rev do Vírus da Imunodeficiência Humana/metabolismo
19.
J Virol ; 88(5): 2677-89, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24352457

RESUMO

UNLABELLED: Glycoprotein B (gB), the fusogen of herpes simplex virus (HSV), is a class III fusion protein with a trimeric ectodomain of known structure for the postfusion state. Seen by negative-staining electron microscopy, it presents as a rod with three lobes (base, middle, and crown). gB has four functional regions (FR), defined by the physical location of epitopes recognized by anti-gB neutralizing monoclonal antibodies (MAbs). Located in the base, FR1 contains two internal fusion loops (FLs) and is the site of gB-lipid interaction (the fusion domain). Many of the MAbs to FR1 are neutralizing, block cell-cell fusion, and prevent the association of gB with lipid, suggesting that these MAbs affect FL function. Here we characterize FR1 epitopes by using electron microscopy to visualize purified Fab-gB ectodomain complexes, thus confirming the locations of several epitopes and localizing those of MAbs DL16 and SS63. We also generated MAb-resistant viruses in order to localize the SS55 epitope precisely. Because none of the epitopes of our anti-FR1 MAbs mapped to the FLs, we hyperimmunized rabbits with FL1 or FL2 peptides to generate polyclonal antibodies (PAbs). While the anti-FL1 PAb failed to bind gB, the anti-FL2 PAb had neutralizing activity, implying that the FLs become exposed during virus entry. Unexpectedly, the anti-FL2 PAb (and the anti-FR1 MAbs) bound to liposome-associated gB, suggesting that their epitopes are accessible even when the FLs engage lipid. These studies provide possible mechanisms of action for HSV neutralization and insight into how gB FR1 contributes to viral fusion. IMPORTANCE: For herpesviruses, such as HSV, entry into a target cell involves transfer of the capsid-encased genome of the virus to the target cell after fusion of the lipid envelope of the virus with a lipid membrane of the host. Virus-encoded glycoproteins in the envelope are responsible for fusion. Antibodies to these glycoproteins are important biological tools, providing a way of examining how fusion works. Here we used electron microscopy and other techniques to study a panel of anti-gB antibodies. Some, with virus-neutralizing activity, impair gB-lipid association. We also generated a peptide antibody against one of the gB fusion loops; its properties provide insight into the way the fusion loops function as gB transits from its prefusion form to an active fusogen.


Assuntos
Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Domínios e Motivos de Interação entre Proteínas/imunologia , Simplexvirus/imunologia , Proteínas Virais de Fusão/imunologia , Animais , Anticorpos Monoclonais/imunologia , Anticorpos Monoclonais/metabolismo , Anticorpos Neutralizantes/metabolismo , Anticorpos Antivirais/metabolismo , Linhagem Celular , Chlorocebus aethiops , Mapeamento de Epitopos , Epitopos/química , Epitopos/genética , Epitopos/imunologia , Humanos , Fragmentos Fab das Imunoglobulinas/imunologia , Fragmentos Fab das Imunoglobulinas/metabolismo , Imunoglobulina G/imunologia , Imunoglobulina G/metabolismo , Lipossomos/química , Lipossomos/metabolismo , Modelos Moleculares , Mutação , Testes de Neutralização , Ligação Proteica , Conformação Proteica , Simplexvirus/genética , Células Vero , Proteínas Virais de Fusão/química , Proteínas Virais de Fusão/genética
20.
Arch Biochem Biophys ; 581: 86-97, 2015 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-25958107

RESUMO

Influenza virus, the causative agent of flu, enters the host cell by endocytosis. The low pH encountered inside endosomes triggers conformational changes in the viral glycoprotein hemagglutinin (HA), that mediate fusion of the viral and cellular membranes. This releases the viral genome into the cytoplasm of the infected cell, establishing the onset of the replication cycle. To investigate the structural basis of HA-mediated membrane fusion, a number of techniques have been employed. These include X-ray crystallography, which has provided atomic models of the HA ectodomain in its initial (pre-fusion) state and of part of HA in its final (post-fusion) state. However, this left an information deficit concerning many other aspects of the fusion process. Electron microscopy (EM) approaches are helping to fill this void. For example, influenza virions at neutral pH have been imaged by cryo-EM and cryo-electron tomography (cryo-ET); thin section EM has shown that influenza viruses enter the cell by endocytosis; the large-scale structural changes in HA when virions are exposed to low pH (pre-fusion to post-fusion states) have been visualized by negative staining and cryo-EM; acidification also induces structural changes in the M1 matrix layer and its separation from the viral envelope; intermediate HA conformations between its pre- and post-fusion states have been detected by cryo-ET supplemented with subtomogram averaging; and fusion of influenza virions with liposomes has been visualized by cryo-ET. In this review, we survey EM-based contributions towards the characterization of influenza virus-mediated membrane fusion and anticipate the potential for future developments.


Assuntos
Microscopia Crioeletrônica/métodos , Citoplasma , Tomografia com Microscopia Eletrônica/métodos , Vírus da Influenza A , Fusão de Membrana , Internalização do Vírus , Citoplasma/ultraestrutura , Citoplasma/virologia , Endocitose , Genoma Viral/fisiologia , Humanos , Vírus da Influenza A/fisiologia , Vírus da Influenza A/ultraestrutura , Estrutura Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA