Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Exp Physiol ; 2024 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-39222217

RESUMO

In muscle, digoxin inhibits Na+,K+-ATPase (NKA) whereas acute exercise can increase NKA gene expression, consistent with training-induced increased NKA content. We investigated whether oral digoxin increased NKA isoform mRNA expression (qPCR) in muscle at rest, during and post-exercise in 10 healthy adults, who received digoxin (DIG, 0.25 mg per day) or placebo (CON) for 14 days, in a randomised, double-blind and cross-over design. Muscle was biopsied at rest, after cycling 20 min (10 min each at 33%, then 67% V ̇ O 2 peak ${{\dot{V}}_{{{{\mathrm{O}}}_2}{\mathrm{peak}}}}$ ), then to fatigue at 90% V ̇ O 2 peak ${{\dot{V}}_{{{{\mathrm{O}}}_2}{\mathrm{peak}}}}$ and 3 h post-exercise. No differences were found between DIG and CON for NKA α1-3 or ß1-3 isoform mRNA. Both α1 (354%, P = 0.001) and ß3 mRNA (P = 0.008) were increased 3 h post-exercise, with α2 and ß1-2 mRNA unchanged, whilst α3 mRNA declined at fatigue (-43%, P = 0.045). In resting muscle, total ß mRNA (∑(ß1+ß2+ß3)) increased in DIG (60%, P = 0.025) and also when transcripts for each isoform were normalised to CON then either summed (P = 0.030) or pooled (n = 30, P = 0.034). In contrast, total α mRNA (∑(α1+α2+α3), P = 0.348), normalised then summed (P = 0.332), or pooled transcripts (n = 30, P = 0.717) did not differ with DIG. At rest, NKA α1-2 and ß1-2 protein abundances were unchanged by DIG. Post-exercise, α1 and ß1-2 proteins were unchanged, but α2 declined at 3 h (19%, P = 0.020). In conclusion, digoxin did not modify gene expression of individual NKA isoforms at rest or with exercise, indicating NKA gene expression was maintained consistent with protein abundances. However, elevated resting muscle total ß mRNA with digoxin suggests a possible underlying ß gene-stimulatory effect. HIGHLIGHTS: What is the central question of this study? Na+,K+-ATPase (NKA) in muscle is important for Na+/K+ homeostasis. We investigated whether the NKA-inhibitor digoxin stimulates increased NKA gene expression in muscle and exacerbates NKA gene responses to exercise in healthy adults. What is the main finding and its importance? Digoxin did not modify exercise effects on muscle NKA α1-3 and ß1-3 gene transcripts, which comprised increased post-exercise α1 and ß3 mRNA and reduced α3 mRNA during exercise. However, in resting muscle, digoxin increased NKA total ß isoform mRNA expression. Despite inhibitory-digoxin or acute exercise stressors, NKA gene regulation in muscle is consistent with the maintenance of NKA protein contents.

2.
J Physiol ; 600(16): 3749-3774, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35837833

RESUMO

We investigated whether digoxin lowered muscle Na+ ,K+ -ATPase (NKA), impaired muscle performance and exacerbated exercise K+ disturbances. Ten healthy adults ingested digoxin (0.25 mg; DIG) or placebo (CON) for 14 days and performed quadriceps strength and fatiguability, finger flexion (FF, 105%peak-workrate , 3 × 1 min, fourth bout to fatigue) and leg cycling (LC, 10 min at 33% V O 2 peak ${\rm{V}}_{{{\rm{O}}}_{\rm{2}}{\rm{peak}}}$ and 67% V O 2 peak ${\rm{V}}_{{{\rm{O}}}_{\rm{2}}{\rm{peak}}}$ , 90% V O 2 peak ${\rm{V}}_{{{\rm{O}}}_{\rm{2}}{\rm{peak}}}$ to fatigue) trials using a double-blind, crossover, randomised, counter-balanced design. Arterial (a) and antecubital venous (v) blood was sampled (FF, LC) and muscle biopsied (LC, rest, 67% V O 2 peak ${\rm{V}}_{{{\rm{O}}}_{\rm{2}}{\rm{peak}}}$ , fatigue, 3 h after exercise). In DIG, in resting muscle, [3 H]-ouabain binding site content (OB-Fab ) was unchanged; however, bound-digoxin removal with Digibind revealed total ouabain binding (OB+Fab ) increased (8.2%, P = 0.047), indicating 7.6% NKA-digoxin occupancy. Quadriceps muscle strength declined in DIG (-4.3%, P = 0.010) but fatiguability was unchanged. During LC, in DIG (main effects), time to fatigue and [K+ ]a were unchanged, whilst [K+ ]v was lower (P = 0.042) and [K+ ]a-v greater (P = 0.004) than in CON; with exercise (main effects), muscle OB-Fab was increased at 67% V O 2 peak ${\rm{V}}_{{{\rm{O}}}_{\rm{2}}{\rm{peak}}}$ (per wet-weight, P = 0.005; per protein P = 0.001) and at fatigue (per protein, P = 0.003), whilst [K+ ]a , [K+ ]v and [K+ ]a-v were each increased at fatigue (P = 0.001). During FF, in DIG (main effects), time to fatigue, [K+ ]a , [K+ ]v and [K+ ]a-v were unchanged; with exercise (main effects), plasma [K+ ]a , [K+ ]v , [K+ ]a-v and muscle K+ efflux were all increased at fatigue (P = 0.001). Thus, muscle strength declined, but functional muscle NKA content was preserved during DIG, despite elevated plasma digoxin and muscle NKA-digoxin occupancy, with K+ disturbances and fatiguability unchanged. KEY POINTS: The Na+ ,K+ -ATPase (NKA) is vital in regulating skeletal muscle extracellular potassium concentration ([K+ ]), excitability and plasma [K+ ] and thereby also in modulating fatigue during intense contractions. NKA is inhibited by digoxin, which in cardiac patients lowers muscle functional NKA content ([3 H]-ouabain binding) and exacerbates K+ disturbances during exercise. In healthy adults, we found that digoxin at clinical levels surprisingly did not reduce functional muscle NKA content, whilst digoxin removal by Digibind antibody revealed an ∼8% increased muscle total NKA content. Accordingly, digoxin did not exacerbate arterial plasma [K+ ] disturbances or worsen fatigue during intense exercise, although quadriceps muscle strength was reduced. Thus, digoxin treatment in healthy participants elevated serum digoxin, but muscle functional NKA content was preserved, whilst K+ disturbances and fatigue with intense exercise were unchanged. This resilience to digoxin NKA inhibition is consistent with the importance of NKA in preserving K+ regulation and muscle function.


Assuntos
Digoxina , Ouabaína , Adulto , Digoxina/metabolismo , Fadiga , Humanos , Músculo Esquelético/fisiologia , Sódio/metabolismo , ATPase Trocadora de Sódio-Potássio/metabolismo
3.
Physiol Rep ; 9(11): e14889, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34110701

RESUMO

AIM: We investigated whether acute carbohydrate ingestion reduced arterial potassium concentration ([K+ ]) during and after intense exercise and delayed fatigue. METHODS: In a randomized, double-blind crossover design, eight males ingested 300 ml water containing 75 g glucose (CHO) or placebo (CON); rested for 60 min, then performed high-intensity intermittent cycling (HIIC) at 130% V˙O2peak , comprising three 45-s exercise bouts (EB), then a fourth EB until fatigue. Radial arterial (a) and antecubital venous (v) blood was sampled at rest, before, during and after HIIC and analyzed for plasma ions and metabolites, with forearm arteriovenous differences (a-v diff) calculated to assess inactive forearm muscle effects. RESULTS: Glucose ingestion elevated [glucose]a and [insulin]a above CON (p = .001), being, respectively, ~2- and ~5-fold higher during CHO at 60 min after ingestion (p = .001). Plasma [K+ ]a rose during and declined following each exercise bout in HIIC (p = .001), falling below baseline at 5 min post-exercise (p = .007). Both [K+ ]a and [K+ ]v were lower during CHO (p = .036, p = .001, respectively, treatment main effect). The [K+ ]a-v diff across the forearm widened during exercise (p = .001), returned to baseline during recovery, and was greater in CHO than CON during EB1, EB2 (p = .001) and EB3 (p = .005). Time to fatigue did not differ between trials. CONCLUSION: Acute oral glucose ingestion, as used in a glucose tolerance test, induced a small, systemic K+ -lowering effect before, during, and after HIIC, that was detectable in both arterial and venous plasma. This likely reflects insulin-mediated, increased Na+ ,K+ -ATPase induced K+ uptake into non-contracting muscles. However, glucose ingestion did not delay fatigue.


Assuntos
Exercício Físico , Glucose/farmacologia , Potássio/sangue , Glicemia/análise , Estudos Cross-Over , Método Duplo-Cego , Exercício Físico/fisiologia , Feminino , Humanos , Insulina/sangue , Masculino , Fadiga Muscular/efeitos dos fármacos , Fadiga Muscular/fisiologia , Adulto Jovem
4.
J Appl Physiol (1985) ; 121(5): 1074-1086, 2016 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-27633740

RESUMO

Physical training increases skeletal muscle Na+,K+-ATPase content (NKA) and improves exercise performance, but the effects of inactivity per se on NKA content and isoform abundance in human muscle are unknown. We investigated the effects of 23-day unilateral lower limb suspension (ULLS) and subsequent 4-wk resistance training (RT) on muscle function and NKA in 6 healthy adults, measuring quadriceps muscle peak torque; fatigue and venous [K+] during intense one-legged cycling exercise; and skeletal muscle NKA content ([3H]ouabain binding) and NKA isoform abundances (immunoblotting) in muscle homogenates (α1-3, ß1-2) and in single fibers (α1-3, ß1). In the unloaded leg after ULLS, quadriceps peak torque and cycling time to fatigue declined by 22 and 23%, respectively, which were restored with RT. Whole muscle NKA content and homogenate NKA α1-3 and ß1-2 isoform abundances were unchanged with ULLS or RT. However, in single muscle fibers, NKA α3 in type I (-66%, P = 0.006) and ß1 in type II fibers (-40%, P = 0.016) decreased after ULLS, with other NKA isoforms unchanged. After RT, NKA α1 (79%, P = 0.004) and ß1 (35%, P = 0.01) increased in type II fibers, while α2 (76%, P = 0.028) and α3 (142%, P = 0.004) increased in type I fibers compared with post-ULLS. Despite considerably impaired muscle function and earlier fatigue onset, muscle NKA content and homogenate α1 and α2 abundances were unchanged, thus being resilient to inactivity induced by ULLS. Nonetheless, fiber type-specific downregulation with inactivity and upregulation with RT of several NKA isoforms indicate complex regulation of muscle NKA expression in humans.


Assuntos
Fadiga/metabolismo , Fadiga/fisiopatologia , Músculo Esquelético/metabolismo , Músculo Esquelético/fisiologia , ATPase Trocadora de Sódio-Potássio/metabolismo , Adulto , Ciclismo/fisiologia , Exercício Físico/fisiologia , Feminino , Humanos , Perna (Membro)/fisiologia , Masculino , Fibras Musculares de Contração Rápida/metabolismo , Fibras Musculares de Contração Lenta/metabolismo , Força Muscular/fisiologia , Ouabaína/metabolismo , Isoformas de Proteínas/metabolismo , Treinamento Resistido/métodos , Torque , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA