Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 74
Filtrar
1.
Cell ; 175(1): 6-9, 2018 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-30217360

RESUMO

This year's Albert Lasker Basic Medical Research Award honors David Allis and Michael Grunstein for their pioneering research that highlighted the importance of histones and their post-translational modifications in the direct control of gene expression.


Assuntos
Cromatina/fisiologia , Histonas/fisiologia , Processamento de Proteína Pós-Traducional/fisiologia , Distinções e Prêmios , Pesquisa Biomédica , Expressão Gênica , Código das Histonas , Histonas/história , História do Século XXI , Humanos
2.
Mol Cell ; 83(3): 352-372, 2023 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-36640769

RESUMO

Errors occurring during DNA replication can result in inaccurate replication, incomplete replication, or re-replication, resulting in genome instability that can lead to diseases such as cancer or disorders such as autism. A great deal of progress has been made toward understanding the entire process of DNA replication in eukaryotes, including the mechanism of initiation and its control. This review focuses on the current understanding of how the origin recognition complex (ORC) contributes to determining the location of replication initiation in the multiple chromosomes within eukaryotic cells, as well as methods for mapping the location and temporal patterning of DNA replication. Origin specification and configuration vary substantially between eukaryotic species and in some cases co-evolved with gene-silencing mechanisms. We discuss the possibility that centromeres and origins of DNA replication were originally derived from a common element and later separated during evolution.


Assuntos
Centrômero , Replicação do DNA , Origem de Replicação , Centrômero/metabolismo , Complexo de Reconhecimento de Origem/genética , Origem de Replicação/genética , Saccharomyces cerevisiae/genética
3.
Mol Cell ; 81(9): 1951-1969.e6, 2021 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-33761311

RESUMO

The initiation of DNA replication involves cell cycle-dependent assembly and disassembly of protein complexes, including the origin recognition complex (ORC) and CDC6 AAA+ ATPases. We report that multiple short linear protein motifs (SLiMs) within intrinsically disordered regions (IDRs) in ORC1 and CDC6 mediate cyclin-CDK-dependent and independent protein-protein interactions, conditional on the cell cycle phase. A domain within the ORC1 IDR is required for interaction between the ORC1 and CDC6 AAA+ domains in G1, whereas the same domain prevents CDC6-ORC1 interaction during mitosis. Then, during late G1, this domain facilitates ORC1 destruction by a SKP2-cyclin A-CDK2-dependent mechanism. During G1, the CDC6 Cy motif cooperates with cyclin E-CDK2 to promote ORC1-CDC6 interactions. The CDC6 IDR regulates self-interaction by ORC1, thereby controlling ORC1 protein levels. Protein phosphatase 1 binds directly to a SLiM in the ORC1 IDR, causing ORC1 de-phosphorylation upon mitotic exit, increasing ORC1 protein, and promoting pre-RC assembly.


Assuntos
ATPases Associadas a Diversas Atividades Celulares/metabolismo , Proteínas de Ciclo Celular/metabolismo , Núcleo Celular/metabolismo , Replicação do DNA , Proteínas Intrinsicamente Desordenadas/metabolismo , Mitose , Proteínas Nucleares/metabolismo , Complexo de Reconhecimento de Origem/metabolismo , Domínio AAA , ATPases Associadas a Diversas Atividades Celulares/genética , Proteínas de Ciclo Celular/genética , Núcleo Celular/genética , Ciclina A/genética , Ciclina A/metabolismo , Ciclina E/genética , Ciclina E/metabolismo , Fase G1 , Células HeLa , Humanos , Proteínas Intrinsicamente Desordenadas/genética , Proteínas Nucleares/genética , Complexo de Reconhecimento de Origem/genética , Fosforilação , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Proteína Fosfatase 1/genética , Proteína Fosfatase 1/metabolismo , Estabilidade Proteica , Proteínas Quinases Associadas a Fase S/genética , Proteínas Quinases Associadas a Fase S/metabolismo
4.
Proc Natl Acad Sci U S A ; 121(23): e2400667121, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38758693

RESUMO

In the mid-1950s, Arthur Kornberg elucidated the enzymatic synthesis of DNA by DNA polymerase, for which he was recognized with the 1959 Nobel Prize in Physiology or Medicine. He then identified many of the proteins that cooperate with DNA polymerase to replicate duplex DNA of small bacteriophages. However, one major unanswered problem was understanding the mechanism and control of the initiation of chromosome replication in bacteria. In a seminal paper in 1981, Fuller, Kaguni, and Kornberg reported the development of a cell-free enzyme system that could replicate DNA that was dependent on the bacterial origin of DNA replication, oriC. This advance opened the door to a flurry of discoveries and important papers that elucidated the process and control of initiation of chromosome replication in bacteria.


Assuntos
Cromossomos Bacterianos , Replicação do DNA , Cromossomos Bacterianos/genética , Cromossomos Bacterianos/metabolismo , História do Século XX , DNA Polimerase Dirigida por DNA/metabolismo , DNA Polimerase Dirigida por DNA/genética , Bactérias/genética , Bactérias/metabolismo , DNA Bacteriano/metabolismo , DNA Bacteriano/genética
5.
Cell ; 147(7): 1525-36, 2011 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-22177093

RESUMO

Although replication-coupled chromatin assembly is known to be important for the maintenance of patterns of gene expression through sequential cell divisions, the role of replication-coupled chromatin assembly in controlling cell differentiation during animal development remains largely unexplored. Here we report that the CAF-1 protein complex, an evolutionarily conserved histone chaperone that deposits histone H3-H4 proteins onto replicating DNA, is required to generate a bilateral asymmetry in the C. elegans nervous system. A mutation in 1 of 24 C. elegans histone H3 genes specifically eliminates this aspect of neuronal asymmetry by causing a defect in the formation of a histone H3-H4 tetramer and the consequent inhibition of CAF-1-mediated nucleosome formation. Our results reveal that replication-coupled nucleosome assembly is necessary to generate a bilateral asymmetry in C. elegans neuroanatomy and suggest that left-right asymmetric epigenetic regulation can establish bilateral asymmetry in the nervous system.


Assuntos
Caenorhabditis elegans/embriologia , Caenorhabditis elegans/metabolismo , Montagem e Desmontagem da Cromatina , Replicação do DNA , Epigenômica , Sequência de Aminoácidos , Animais , Padronização Corporal , Proteínas de Caenorhabditis elegans/metabolismo , Histonas/química , Histonas/metabolismo , Dados de Sequência Molecular , Sistema Nervoso/embriologia , Neurônios/metabolismo , Nucleossomos/metabolismo , Alinhamento de Sequência
6.
Mol Cell ; 59(2): 139-41, 2015 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-26186286

RESUMO

The distribution of DNA polymerase activities at the eukaryotic DNA replication fork was "established," but recent genetic studies in this issue of Molecular Cell raise questions about which polymerases are copying the leading and lagging strand templates (Johnson et al, 2015).


Assuntos
DNA Polimerase III/metabolismo , Replicação do DNA , DNA Fúngico/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
7.
Proc Natl Acad Sci U S A ; 117(30): 17747-17756, 2020 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-32669428

RESUMO

DNA replication origins serve as sites of replicative helicase loading. In all eukaryotes, the six-subunit origin recognition complex (Orc1-6; ORC) recognizes the replication origin. During late M-phase of the cell-cycle, Cdc6 binds to ORC and the ORC-Cdc6 complex loads in a multistep reaction and, with the help of Cdt1, the core Mcm2-7 helicase onto DNA. A key intermediate is the ORC-Cdc6-Cdt1-Mcm2-7 (OCCM) complex in which DNA has been already inserted into the central channel of Mcm2-7. Until now, it has been unclear how the origin DNA is guided by ORC-Cdc6 and inserted into the Mcm2-7 hexamer. Here, we truncated the C-terminal winged-helix-domain (WHD) of Mcm6 to slow down the loading reaction, thereby capturing two loading intermediates prior to DNA insertion in budding yeast. In "semi-attached OCCM," the Mcm3 and Mcm7 WHDs latch onto ORC-Cdc6 while the main body of the Mcm2-7 hexamer is not connected. In "pre-insertion OCCM," the main body of Mcm2-7 docks onto ORC-Cdc6, and the origin DNA is bent and positioned adjacent to the open DNA entry gate, poised for insertion, at the Mcm2-Mcm5 interface. We used molecular simulations to reveal the dynamic transition from preloading conformers to the loaded conformers in which the loading of Mcm2-7 on DNA is complete and the DNA entry gate is fully closed. Our work provides multiple molecular insights into a key event of eukaryotic DNA replication.


Assuntos
Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/metabolismo , DNA Helicases/química , DNA Helicases/metabolismo , Replicação do DNA , Origem de Replicação , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Sítios de Ligação , Microscopia Crioeletrônica , Componente 6 do Complexo de Manutenção de Minicromossomo/química , Componente 6 do Complexo de Manutenção de Minicromossomo/metabolismo , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Complexo de Reconhecimento de Origem , Ligação Proteica , Conformação Proteica , Relação Estrutura-Atividade
8.
Genes Dev ; 28(20): 2291-303, 2014 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-25319829

RESUMO

Eukaryotic cells license each DNA replication origin during G1 phase by assembling a prereplication complex that contains a Mcm2-7 (minichromosome maintenance proteins 2-7) double hexamer. During S phase, each Mcm2-7 hexamer forms the core of a replicative DNA helicase. However, the mechanisms of origin licensing and helicase activation are poorly understood. The helicase loaders ORC-Cdc6 function to recruit a single Cdt1-Mcm2-7 heptamer to replication origins prior to Cdt1 release and ORC-Cdc6-Mcm2-7 complex formation, but how the second Mcm2-7 hexamer is recruited to promote double-hexamer formation is not well understood. Here, structural evidence for intermediates consisting of an ORC-Cdc6-Mcm2-7 complex and an ORC-Cdc6-Mcm2-7-Mcm2-7 complex are reported, which together provide new insights into DNA licensing. Detailed structural analysis of the loaded Mcm2-7 double-hexamer complex demonstrates that the two hexamers are interlocked and misaligned along the DNA axis and lack ATP hydrolysis activity that is essential for DNA helicase activity. Moreover, we show that the head-to-head juxtaposition of the Mcm2-7 double hexamer generates a new protein interaction surface that creates a multisubunit-binding site for an S-phase protein kinase that is known to activate DNA replication. The data suggest how the double hexamer is assembled and how helicase activity is regulated during DNA licensing, with implications for cell cycle control of DNA replication and genome stability.


Assuntos
Proteínas de Manutenção de Minicromossomo/química , Proteínas de Manutenção de Minicromossomo/metabolismo , Saccharomyces cerevisiae/enzimologia , Trifosfato de Adenosina/metabolismo , Sítios de Ligação , Ativação Enzimática , Hidrólise , Microscopia Eletrônica , Proteínas de Manutenção de Minicromossomo/isolamento & purificação , Conformação Molecular , Ligação Proteica
9.
Proc Natl Acad Sci U S A ; 114(45): E9529-E9538, 2017 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-29078375

RESUMO

During replication initiation, the core component of the helicase-the Mcm2-7 hexamer-is loaded on origin DNA as a double hexamer (DH). The two ring-shaped hexamers are staggered, leading to a kinked axial channel. How the origin DNA interacts with the axial channel is not understood, but the interaction could provide key insights into Mcm2-7 function and regulation. Here, we report the cryo-EM structure of the Mcm2-7 DH on dsDNA and show that the DNA is zigzagged inside the central channel. Several of the Mcm subunit DNA-binding loops, such as the oligosaccharide-oligonucleotide loops, helix 2 insertion loops, and presensor 1 (PS1) loops, are well defined, and many of them interact extensively with the DNA. The PS1 loops of Mcm 3, 4, 6, and 7, but not 2 and 5, engage the lagging strand with an approximate step size of one base per subunit. Staggered coupling of the two opposing hexamers positions the DNA right in front of the two Mcm2-Mcm5 gates, with each strand being pressed against one gate. The architecture suggests that lagging-strand extrusion initiates in the middle of the DH that is composed of the zinc finger domains of both hexamers. To convert the Mcm2-7 DH structure into the Mcm2-7 hexamer structure found in the active helicase, the N-tier ring of the Mcm2-7 hexamer in the DH-dsDNA needs to tilt and shift laterally. We suggest that these N-tier ring movements cause the DNA strand separation and lagging-strand extrusion.


Assuntos
DNA Helicases/química , Proteínas de Ligação a DNA/química , DNA/química , Proteínas de Manutenção de Minicromossomo/química , Replicação do DNA/genética , Oligossacarídeos/química , Domínios Proteicos/genética , Dedos de Zinco/genética
10.
Genes Dev ; 26(16): 1797-810, 2012 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-22855792

RESUMO

Like DNA replication, centrosomes are licensed to duplicate once per cell division cycle to ensure genetic stability. In addition to regulating DNA replication, the Orc1 subunit of the human origin recognition complex controls centriole and centrosome copy number. Here we report that Orc1 harbors a PACT centrosome-targeting domain and a separate domain that differentially inhibits the protein kinase activities of Cyclin E-CDK2 and Cyclin A-CDK2. A cyclin-binding motif (Cy motif) is required for Orc1 to bind Cyclin A and inhibit Cyclin A-CDK2 kinase activity but has no effect on Cyclin E-CDK2 kinase activity. In contrast, Orc1 inhibition of Cyclin E-CDK2 kinase activity occurs by a different mechanism that is affected by Orc1 mutations identified in Meier-Gorlin syndrome patients. The cyclin/CDK2 kinase inhibitory domain of Orc1, when tethered to the PACT domain, localizes to centrosomes and blocks centrosome reduplication. Meier-Gorlin syndrome mutations that disrupt Cyclin E-CDK2 kinase inhibition also allow centrosome reduplication. Thus, Orc1 contains distinct domains that control centrosome copy number and DNA replication. We suggest that the Orc1 mutations present in some Meier-Gorlin syndrome patients contribute to the pronounced microcephaly and dwarfism observed in these individuals by altering centrosome duplication in addition to DNA replication defects.


Assuntos
Centrossomo/patologia , Transtornos do Crescimento/genética , Micrognatismo/genética , Complexo de Reconhecimento de Origem/genética , Sequência de Aminoácidos , Linhagem Celular Tumoral , Centríolos/metabolismo , Microtia Congênita , Quinases Ciclina-Dependentes/metabolismo , Orelha/anormalidades , Transtornos do Crescimento/enzimologia , Células HEK293 , Humanos , Micrognatismo/enzimologia , Dados de Sequência Molecular , Mutação , Patela/anormalidades , Patela/enzimologia , Estrutura Terciária de Proteína , Proteínas de Ligação a RNA/metabolismo , Alinhamento de Sequência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA