Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Mol Psychiatry ; 2024 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-39112778

RESUMO

Resilience is the capacity to adapt to stressful life events. As such, this trait is associated with physical and mental functions and conditions. Here, we aimed to identify the genetic factors contributing to shape resilience. We performed variant- and gene-based meta-analyses of genome-wide association studies from six German cohorts (N = 15822) using the 11-item version of the Resilience Scale (RS-11) as outcome measure. Variant- and gene-level results were combined to explore the biological context using network analysis. In addition, we conducted tests of correlation between RS-11 and the polygenic scores (PGSs) for 12 personality and mental health traits in one of these cohorts (PROCAM-2, N = 3879). The variant-based analysis found no signals associated with resilience at the genome-wide level (p < 5 × 10-8), but suggested five genomic loci (p < 1 × 10-5). The gene-based analysis identified three genes (ROBO1, CIB3 and LYPD4) associated with resilience at genome-wide level (p < 2.48 × 10-6) and 32 potential candidates (p < 1 × 10-4). Network analysis revealed enrichment of biological pathways related to neuronal proliferation and differentiation, synaptic organization, immune responses and vascular homeostasis. We also found significant correlations (FDR < 0.05) between RS-11 and the PGSs for neuroticism and general happiness. Overall, our observations suggest low heritability of resilience. Large, international efforts will be required to uncover the genetic factors that contribute to shape trait resilience. Nevertheless, as the largest investigation of the genetics of resilience in general population to date, our study already offers valuable insights into the biology potentially underlying resilience and resilience's relationship with other personality traits and mental health.

2.
J Physiol ; 2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38345865

RESUMO

Androgenic anabolic steroids (AAS) are commonly abused by young men. Male sex and increased AAS levels are associated with earlier and more severe manifestation of common cardiac conditions, such as atrial fibrillation, and rare ones, such as arrhythmogenic right ventricular cardiomyopathy (ARVC). Clinical observations suggest a potential atrial involvement in ARVC. Arrhythmogenic right ventricular cardiomyopathy is caused by desmosomal gene defects, including reduced plakoglobin expression. Here, we analysed clinical records from 146 ARVC patients to identify that ARVC is more common in males than females. Patients with ARVC also had an increased incidence of atrial arrhythmias and P wave changes. To study desmosomal vulnerability and the effects of AAS on the atria, young adult male mice, heterozygously deficient for plakoglobin (Plako+/- ), and wild type (WT) littermates were chronically exposed to 5α-dihydrotestosterone (DHT) or placebo. The DHT increased atrial expression of pro-hypertrophic, fibrotic and inflammatory transcripts. In mice with reduced plakoglobin, DHT exaggerated P wave abnormalities, atrial conduction slowing, sodium current depletion, action potential amplitude reduction and the fall in action potential depolarization rate. Super-resolution microscopy revealed a decrease in NaV 1.5 membrane clustering in Plako+/- atrial cardiomyocytes after DHT exposure. In summary, AAS combined with plakoglobin deficiency cause pathological atrial electrical remodelling in young male hearts. Male sex is likely to increase the risk of atrial arrhythmia, particularly in those with desmosomal gene variants. This risk is likely to be exaggerated further by AAS use. KEY POINTS: Androgenic male sex hormones, such as testosterone, might increase the risk of atrial fibrillation in patients with arrhythmogenic right ventricular cardiomyopathy (ARVC), which is often caused by desmosomal gene defects (e.g. reduced plakoglobin expression). In this study, we observed a significantly higher proportion of males who had ARVC compared with females, and atrial arrhythmias and P wave changes represented a common observation in advanced ARVC stages. In mice with reduced plakoglobin expression, chronic administration of 5α-dihydrotestosterone led to P wave abnormalities, atrial conduction slowing, sodium current depletion and a decrease in membrane-localized NaV 1.5 clusters. 5α-Dihydrotestosterone, therefore, represents a stimulus aggravating the pro-arrhythmic phenotype in carriers of desmosomal mutations and can affect atrial electrical function.

3.
Angiogenesis ; 27(3): 461-474, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38780883

RESUMO

The presence of atherosclerotic plaque vessels is a critical factor in plaque destabilization. This may be attributable to the leaky phenotype of these microvessels, although direct proof for this notion is lacking. In this study, we investigated molecular and cellular patterns of stable and hemorrhaged human plaque to identify novel drivers of intraplaque vessel dysfunction. From transcriptome data of a human atherosclerotic lesion cohort, we reconstructed a co-expression network, identifying a gene module strongly and selectively correlated with both plaque microvascular density and inflammation. Spectrin Beta Non-Erythrocytic 1 (sptbn1) was identified as one of the central hubs of this module (along with zeb1 and dock1) and was selected for further study based on its predominant endothelial expression. Silencing of sptbn1 enhanced leukocyte transmigration and vascular permeability in vitro, characterized by an increased number of focal adhesions and reduced junctional VE-cadherin. In vivo, sptbn1 knockdown in zebrafish impaired the development of the caudal vein plexus. Mechanistically, increased substrate stiffness was associated with sptbn1 downregulation in endothelial cells in vitro and in human vessels. Plaque SPTBN1 mRNA and protein expression were found to correlate with an enhanced presence of intraplaque hemorrhage and future cardiovascular disease (CVD) events during follow-up. In conclusion, we identify SPTBN1 as a central hub gene in a gene program correlating with plaque vascularisation. SPTBN1 was regulated by substrate stiffness in vitro while silencing blocked vascular development in vivo, and compromised barrier function in vitro. Together, SPTBN1 is identified as a new potential regulator of the leaky phenotype of atherosclerotic plaque microvessels.


Assuntos
Microvasos , Placa Aterosclerótica , Espectrina , Peixe-Zebra , Animais , Humanos , Permeabilidade Capilar , Células Endoteliais da Veia Umbilical Humana/metabolismo , Microvasos/patologia , Microvasos/metabolismo , Fenótipo , Placa Aterosclerótica/patologia , Placa Aterosclerótica/genética , Placa Aterosclerótica/metabolismo , Espectrina/genética , Espectrina/metabolismo , Transcriptoma , Peixe-Zebra/genética
4.
Cardiovasc Res ; 2024 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-39129206

RESUMO

AIM: Reduced left atrial PITX2 is associated with atrial cardiomyopathy and atrial fibrillation. PITX2 is restricted to left atrial cardiomyocytes in the adult heart. The links between PITX2 deficiency, atrial cardiomyopathy and atrial fibrillation are not fully understood. METHODS AND RESULTS: To identify mechanisms linking PITX2 deficiency to atrial fibrillation, we generated and characterized PITX2-deficient human atrial cardiomyocytes derived from human induced pluripotent stem cells (hiPSC) and their controls. PITX2-deficient hiPSC-derived atrial cardiomyocytes showed shorter and disorganised sarcomeres and increased mononucleation. Electron microscopy found an increased number of smaller mitochondria compared to the control. Mitochondrial protein expression was altered in PITX2-deficient hiPSC-derived atrial cardiomyocytes. Single-nuclear RNA-sequencing found differences in cellular respiration pathways and differentially expressed mitochondrial and ion channel genes in PITX2-deficient hiPSC-derived atrial cardiomyocytes. PITX2 repression in hiPSC-derived atrial cardiomyocytes replicated dysregulation of cellular respiration. Mitochondrial respiration was shifted to increased glycolysis in PITX2-deficient hiPSC-derived atrial cardiomyocytes. PITX2-deficient human hiPSC-derived atrial cardiomyocytes showed higher spontaneous beating rates. Action potential duration was more variable with an overall prolongation of early repolarization, consistent with metabolic defects. Gene expression analyses confirmed changes in mitochondrial genes in left atria from 42 patients with atrial fibrillation compared to 43 patients in sinus rhythm. Dysregulation of left atrial mitochondrial (COX7C) and metabolic (FOXO1) genes was associated with PITX2 expression in human left atria. CONCLUSIONS: In summary, PITX2 deficiency causes mitochondrial dysfunction and a metabolic shift to glycolysis in human atrial cardiomyocytes. PITX2-dependent metabolic changes can contribute to the structural and functional defects found in PITX2-deficient atria.

5.
J Clin Med ; 13(1)2023 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-38202056

RESUMO

BACKGROUND: Congenital factor VII (FVII) deficiency, a rare bleeding disorder resulting from mutations in the F7 gene with autosomal recessive inheritance, exhibits clinical heterogeneity that lacks a strong correlation with FVII:C levels. The objective of this study was to discern genetic defects and assess their associations with the clinical phenotype in a substantial cohort comprising 785 white women exhibiting FVII:C levels below the age-dependent cut-off percentage. PATIENTS AND METHODS: Individuals with verified inherited factor VII deficiency underwent i) genotyping using the Sanger method and multiplex ligation-dependent probe amplification (MLPA) to identify F7 mutations, including common polymorphic variants. Additionally, they were ii) categorized based on clinical bleeding scores (BS). Thrombophilic variants and blood groups were also determined in the study participants. RESULTS: The probands in this study encompassed both asymptomatic individuals (referred for a laboratory investigation due to recurrent prolonged prothrombin time; n = 221) and patients who manifested mild, moderate, or severe bleeding episodes (n = 564). The spectrum of bleeding symptoms included epistaxis, gum bleeding, gastrointestinal bleeding, hematuria, postoperative bleeding, and gynecologic hemorrhage. The median ISTH bleeding score (BS) recorded within a two-year period prior to the work-up was 2 (0-17). Notably, this score was significantly higher in symptomatic women compared to their asymptomatic counterparts (3 versus 0; p < 0.001). The corresponding PBAC score before hormonal treatment stood at 225 (5-1200), exhibiting a positive correlation with the ISTH BS (rho = 0.38; p = 0.001). Blood group O was more prevalent in symptomatic women compared to asymptomatic individuals (58 versus 42%; p = 0.01). Among the 329 women (42%), known and novel mutations in the F7 gene, encompassing coding regions, exon/intron boundaries, and the promoter region, were identified, while common polymorphisms were detected in 647 subjects (95%). Logistic regression analysis, adjusted for clinical and laboratory data (including blood group, FVII activity, the presence of F7 gene mutations and/or polymorphisms, thrombophilia status, and additional factor deficiencies) revealed that older age at referral (increase per year) (odds/95% CI: 1.02/1.007-1.03), the presence of blood group O (odds/95% CI: 1.9/1.2-3.3), and the coexistence of further bleeding defects (odds/95% CI: 1.8/1.03-3.1) partially account for the differences in the clinical bleeding phenotype associated with FVII deficiency. CONCLUSION: The clinical phenotype in individuals with FVII deficiency is impacted by factors such as age, blood group, and the concurrent presence of other bleeding defects.

6.
Front Mol Med ; 2: 839338, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-39086967

RESUMO

The heart has been the center of numerous transcriptomic studies in the past decade. Even though our knowledge of the key organ in our cardiovascular system has significantly increased over the last years, it is still not fully understood yet. In recent years, extensive efforts were made to understand the genetic and transcriptomic contribution to cardiac function and failure in more detail. The advent of Next Generation Sequencing (NGS) technologies has brought many discoveries but it is unable to comprehend the finely orchestrated interactions between and within the various cell types of the heart. With the emergence of single-cell sequencing more than 10 years ago, researchers gained a valuable new tool to enable the exploration of new subpopulations of cells, cell-cell interactions, and integration of multi-omic approaches at a single-cell resolution. Despite this innovation, it is essential to make an informed choice regarding the appropriate technique for transcriptomic studies, especially when working with myocardial tissue. Here, we provide a primer for researchers interested in transcriptomics using NGS technologies.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA