Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 569(7757): E9, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-31073227

RESUMO

Change history: In this Letter, the y-axis values in Fig. 3f should go from 4 to -8 (rather than from 4 to -4), the y-axis values in Fig. 3h should appear next to the major tick marks (rather than the minor ticks), and in Fig. 1b, the arrows at the top and bottom of the electron-scale current sheet were going in the wrong direction; these errors have been corrected online.

2.
Nature ; 561(7722): 206-210, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30209369

RESUMO

Earth and its magnetosphere are immersed in the supersonic flow of the solar-wind plasma that fills interplanetary space. As the solar wind slows and deflects to flow around Earth, or any other obstacle, a 'bow shock' forms within the flow. Under almost all solar-wind conditions, planetary bow shocks such as Earth's are collisionless, supercritical shocks, meaning that they reflect and accelerate a fraction of the incident solar-wind ions as an energy dissipation mechanism1,2, which results in the formation of a region called the ion foreshock3. In the foreshock, large-scale, transient phenomena can develop, such as 'hot flow anomalies'4-9, which are concentrations of shock-reflected, suprathermal ions that are channelled and accumulated along certain structures in the upstream magnetic field. Hot flow anomalies evolve explosively, often resulting in the formation of new shocks along their upstream edges5,10, and potentially contribute to particle acceleration11-13, but there have hitherto been no observations to constrain this acceleration or to confirm the underlying mechanism. Here we report observations of a hot flow anomaly accelerating solar-wind ions from roughly 1-10 kiloelectronvolts up to almost 1,000 kiloelectronvolts. The acceleration mechanism depends on the mass and charge state of the ions and is consistent with first-order Fermi acceleration14,15. The acceleration that we observe results from only the interaction of Earth's bow shock with the solar wind, but produces a much, much larger number of energetic particles compared to what would typically be produced in the foreshock from acceleration at the bow shock. Such autogenous and efficient acceleration at quasi-parallel bow shocks (the normal direction of which are within about 45 degrees of the interplanetary magnetic field direction) provides a potential solution to Fermi's 'injection problem', which requires an as-yet-unexplained seed population of energetic particles, and implies that foreshock transients may be important in the generation of cosmic rays at astrophysical shocks throughout the cosmos.

3.
Nature ; 557(7704): 202-206, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29743689

RESUMO

Magnetic reconnection in current sheets is a magnetic-to-particle energy conversion process that is fundamental to many space and laboratory plasma systems. In the standard model of reconnection, this process occurs in a minuscule electron-scale diffusion region1,2. On larger scales, ions couple to the newly reconnected magnetic-field lines and are ejected away from the diffusion region in the form of bi-directional ion jets at the ion Alfvén speed3-5. Much of the energy conversion occurs in spatially extended ion exhausts downstream of the diffusion region 6 . In turbulent plasmas, which contain a large number of small-scale current sheets, reconnection has long been suggested to have a major role in the dissipation of turbulent energy at kinetic scales7-11. However, evidence for reconnection plasma jetting in small-scale turbulent plasmas has so far been lacking. Here we report observations made in Earth's turbulent magnetosheath region (downstream of the bow shock) of an electron-scale current sheet in which diverging bi-directional super-ion-Alfvénic electron jets, parallel electric fields and enhanced magnetic-to-particle energy conversion were detected. Contrary to the standard model of reconnection, the thin reconnecting current sheet was not embedded in a wider ion-scale current layer and no ion jets were detected. Observations of this and other similar, but unidirectional, electron jet events without signatures of ion reconnection reveal a form of reconnection that can drive turbulent energy transfer and dissipation in electron-scale current sheets without ion coupling.

4.
Phys Rev Lett ; 125(26): 265102, 2020 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-33449730

RESUMO

Magnetic reconnection is of fundamental importance to plasmas because of its role in releasing and repartitioning stored magnetic energy. Previous results suggest that this energy is predominantly released as ion enthalpy flux along the reconnection outflow. Using Magnetospheric Multiscale data we find the existence of very significant electron energy flux densities in the vicinity of the magnetopause electron dissipation region, orthogonal to the ion energy outflow. These may significantly impact models of electron transport, wave generation, and particle acceleration.

5.
Geophys Res Lett ; 47(19): e2020GL089362, 2020 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-33380756

RESUMO

Energetic neutral atoms (ENAs) created by charge-exchange of ions with the Earth's hydrogen exosphere near the subsolar magnetopause yield information on the distribution of plasma in the outer magnetosphere and magnetosheath. ENA observations from the Interstellar Boundary Explorer (IBEX) are used to image magnetosheath plasma and, for the first time, low-energy magnetospheric plasma near the magnetopause. These images show that magnetosheath plasma is distributed fairly evenly near the subsolar magnetopause; however, low-energy magnetospheric plasma is not distributed evenly in the outer magnetosphere. Simultaneous images and in situ observations from the Magnetospheric Multiscale (MMS) spacecraft from November 2015 (during the solar cycle declining phase) are used to derive the exospheric density. The ~11-17 cm-3 density at 10 RE is similar to that obtained previously for solar minimum. Thus, these combined results indicate that the exospheric density 10 RE from the Earth may have a weak dependence on solar cycle.

6.
Geophys Res Lett ; 46(11): 5707-5716, 2019 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-31423036

RESUMO

Electromagnetic ion cyclotron (EMIC) waves at large L shells were observed away from the magnetic equator by the Magnetospheric MultiScale (MMS) mission nearly continuously for over four hours on 28 October 2015. During this event, the wave Poynting vector direction systematically changed from parallel to the magnetic field (toward the equator), to bidirectional, to antiparallel (away from the equator). These changes coincide with the shift in the location of the minimum in the magnetic field in the southern hemisphere from poleward to equatorward of MMS. The local plasma conditions measured with the EMIC waves also suggest that the outer magnetospheric region sampled during this event was generally unstable to EMIC wave growth. Together, these observations indicate that the bidirectionally propagating wave packets were not a result of reflection at high latitudes but that MMS passed through an off-equator EMIC wave source region associated with the local minimum in the magnetic field.

7.
Geophys Res Lett ; 46(12): 6287-6296, 2019 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-31598018

RESUMO

While vorticity defined as the curl of the velocity has been broadly used in fluid and plasma physics, this quantity has been underutilized in space physics due to low time resolution observations. We report Magnetospheric Multiscale (MMS) observations of enhanced electron vorticity in the vicinity of the electron diffusion region of magnetic reconnection. On 11 July 2017 MMS traversed the magnetotail current sheet, observing tailward-to-earthward outflow reversal, current-carrying electron jets in the direction along the electron meandering motion or out-of-plane direction, agyrotropic electron distribution functions, and dissipative signatures. At the edge of the electron jets, the electron vorticity increased with magnitudes greater than the electron gyrofrequency. The out-of-plane velocity shear along distance from the current sheet leads to the enhanced vorticity. This, in turn, contributes to the magnetic field perturbations observed by MMS. These observations indicate that electron vorticity can act as a proxy for delineating the electron diffusion region of magnetic reconnection.

8.
Phys Rev Lett ; 121(26): 265101, 2018 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-30636132

RESUMO

We study spectral features of ion velocity and magnetic field correlations in the magnetosheath and in the solar wind using data from the Magnetospheric Multiscale (MMS) spacecraft. High-resolution MMS observations enable the study of the transition of these correlations between their magnetofluid character at larger scales into the subproton kinetic range, previously unstudied in spacecraft data. Cross-helicity, angular alignment, and energy partitioning is examined over a suitable range of scales, employing measurements based on the Taylor frozen-in approximation as well as direct two-spacecraft correlation measurements. The results demonstrate signatures of alignment at large scales. As kinetic scales are approached, the alignment between v and b is destroyed by demagnetization of protons.

9.
Geophys Res Lett ; 45(10): 4569-4577, 2018 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-31031447

RESUMO

Magnetospheric Multiscale observations are used to probe the structure and temperature profile of a guide field reconnection exhaust ~100 ion inertial lengths downstream from the X-line in the Earth's magnetosheath. Asymmetric Hall electric and magnetic field signatures were detected, together with a density cavity confined near 1 edge of the exhaust and containing electron flow toward the X-line. Electron holes were also detected both on the cavity edge and at the Hall magnetic field reversal. Predominantly parallel ion and electron heating was observed in the main exhaust, but within the cavity, electron cooling and enhanced parallel ion heating were found. This is explained in terms of the parallel electric field, which inhibits electron mixing within the cavity on newly reconnected field lines but accelerates ions. Consequently, guide field reconnection causes inhomogeneous changes in ion and electron temperature across the exhaust.

10.
Geophys Res Lett ; 45(2): 578-584, 2018 01 28.
Artigo em Inglês | MEDLINE | ID: mdl-29576666

RESUMO

We report Magnetospheric Multiscale observations of electron pressure gradient electric fields near a magnetic reconnection diffusion region using a new technique for extracting 7.5 ms electron moments from the Fast Plasma Investigation. We find that the deviation of the perpendicular electron bulk velocity from E × B drift in the interval where the out-of-plane current density is increasing can be explained by the diamagnetic drift. In the interval where the out-of-plane current is transitioning to in-plane current, the electron momentum equation is not satisfied at 7.5 ms resolution.

11.
Phys Rev Lett ; 118(26): 265101, 2017 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-28707935

RESUMO

We report observations from the Magnetospheric Multiscale (MMS) satellites of the electron jet in a symmetric magnetic reconnection event with moderate guide field. All four spacecraft sampled the ion diffusion region and observed the electron exhaust. The observations suggest that the presence of the guide field leads to an asymmetric Hall field, which results in an electron jet skewed towards the separatrix with a nonzero component along the magnetic field. The jet appears in conjunction with a spatially and temporally persistent parallel electric field ranging from -3 to -5 mV/m, which led to dissipation on the order of 8 nW/m^{3}. The parallel electric field heats electrons that drift through it, and is associated with a streaming instability and electron phase space holes.

12.
Phys Rev Lett ; 119(5): 055101, 2017 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-28949734

RESUMO

We report unambiguous in situ observation of the coalescence of macroscopic flux ropes by the magnetospheric multiscale (MMS) mission. Two coalescing flux ropes with sizes of ∼1 R_{E} were identified at the subsolar magnetopause by the occurrence of an asymmetric quadrupolar signature in the normal component of the magnetic field measured by the MMS spacecraft. An electron diffusion region (EDR) with a width of four local electron inertial lengths was embedded within the merging current sheet. The EDR was characterized by an intense parallel electric field, significant energy dissipation, and suprathermal electrons. Although the electrons were organized by a large guide field, the small observed electron pressure nongyrotropy may be sufficient to support a significant fraction of the parallel electric field within the EDR. Since the flux ropes are observed in the exhaust region, we suggest that secondary EDRs are formed further downstream of the primary reconnection line between the magnetosheath and magnetospheric fields.

13.
Geophys Res Lett ; 44(8): 3456-3464, 2017 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-28713180

RESUMO

We report global observations of high-m poloidal waves during the recovery phase of the 22 June 2015 magnetic storm from a constellation of widely spaced satellites of five missions including Magnetospheric Multiscale (MMS), Van Allen Probes, Time History of Events and Macroscale Interactions during Substorm (THEMIS), Cluster, and Geostationary Operational Environmental Satellites (GOES). The combined observations demonstrate the global spatial extent of storm time poloidal waves. MMS observations confirm high azimuthal wave numbers (m ~ 100). Mode identification indicates the waves are associated with the second harmonic of field line resonances. The wave frequencies exhibit a decreasing trend as L increases, distinguishing them from the single-frequency global poloidal modes normally observed during quiet times. Detailed examination of the instantaneous frequency reveals discrete spatial structures with step-like frequency changes along L. Each discrete L shell has a steady wave frequency and spans about 1 RE , suggesting that there exist a discrete number of drift-bounce resonance regions across L shells during storm times.

14.
Phys Rev Lett ; 117(16): 165101, 2016 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-27792387

RESUMO

Collisionless shock nonstationarity arising from microscale physics influences shock structure and particle acceleration mechanisms. Nonstationarity has been difficult to quantify due to the small spatial and temporal scales. We use the closely spaced (subgyroscale), high-time-resolution measurements from one rapid crossing of Earth's quasiperpendicular bow shock by the Magnetospheric Multiscale (MMS) spacecraft to compare competing nonstationarity processes. Using MMS's high-cadence kinetic plasma measurements, we show that the shock exhibits nonstationarity in the form of ripples.

15.
Phys Rev Lett ; 116(23): 235102, 2016 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-27341241

RESUMO

We report observations from the Magnetospheric Multiscale satellites of parallel electric fields (E_{∥}) associated with magnetic reconnection in the subsolar region of the Earth's magnetopause. E_{∥} events near the electron diffusion region have amplitudes on the order of 100 mV/m, which are significantly larger than those predicted for an antiparallel reconnection electric field. This Letter addresses specific types of E_{∥} events, which appear as large-amplitude, near unipolar spikes that are associated with tangled, reconnected magnetic fields. These E_{∥} events are primarily in or near a current layer near the separatrix and are interpreted to be double layers that may be responsible for secondary reconnection in tangled magnetic fields or flux ropes. These results are telling of the three-dimensional nature of magnetopause reconnection and indicate that magnetopause reconnection may be often patchy and/or drive turbulence along the separatrix that results in flux ropes and/or tangled magnetic fields.

16.
Phys Rev Lett ; 117(1): 015001, 2016 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-27419573

RESUMO

We report observations from the Magnetospheric Multiscale (MMS) satellites of a large guide field magnetic reconnection event. The observations suggest that two of the four MMS spacecraft sampled the electron diffusion region, whereas the other two spacecraft detected the exhaust jet from the event. The guide magnetic field amplitude is approximately 4 times that of the reconnecting field. The event is accompanied by a significant parallel electric field (E_{∥}) that is larger than predicted by simulations. The high-speed (∼300 km/s) crossing of the electron diffusion region limited the data set to one complete electron distribution inside of the electron diffusion region, which shows significant parallel heating. The data suggest that E_{∥} is balanced by a combination of electron inertia and a parallel gradient of the gyrotropic electron pressure.

17.
Geophys Res Lett ; 43(12): 6012-6019, 2016 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-27478286

RESUMO

We present a statistical study of dipolarization fronts (DFs), using magnetic field data from MMS and Cluster, at radial distances below 12 RE and 20 RE , respectively. Assuming that the DFs have a semicircular cross section and are propelled by the magnetic tension force, we used multispacecraft observations to determine the DF velocities. About three quarters of the DFs propagate earthward and about one quarter tailward. Generally, MMS is in a more dipolar magnetic field region and observes larger-amplitude DFs than Cluster. The major findings obtained in this study are as follows: (1) At MMS ∼57 % of the DFs move faster than 150 km/s, while at Cluster only ∼35 %, indicating a variable flux transport rate inside the flow-braking region. (2) Larger DF velocities correspond to higher Bz  values directly ahead of the DFs. We interpret this as a snow plow-like phenomenon, resulting from a higher magnetic flux pileup ahead of DFs with higher velocities.

18.
Geophys Res Lett ; 43(10): 4716-4724, 2016 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-27635105

RESUMO

New Magnetospheric Multiscale (MMS) observations of small-scale (~7 ion inertial length radius) flux transfer events (FTEs) at the dayside magnetopause are reported. The 10 km MMS tetrahedron size enables their structure and properties to be calculated using a variety of multispacecraft techniques, allowing them to be identified as flux ropes, whose flux content is small (~22 kWb). The current density, calculated using plasma and magnetic field measurements independently, is found to be filamentary. Intercomparison of the plasma moments with electric and magnetic field measurements reveals structured non-frozen-in ion behavior. The data are further compared with a particle-in-cell simulation. It is concluded that these small-scale flux ropes, which are not seen to be growing, represent a distinct class of FTE which is generated on the magnetopause by secondary reconnection.

19.
Geophys Res Lett ; 43(10): 4841-4849, 2016 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-27867235

RESUMO

We report on field-aligned current observations by the four Magnetospheric Multiscale (MMS) spacecraft near the plasma sheet boundary layer (PSBL) during two major substorms on 23 June 2015. Small-scale field-aligned currents were found embedded in fluctuating PSBL flux tubes near the separatrix region. We resolve, for the first time, short-lived earthward (downward) intense field-aligned current sheets with thicknesses of a few tens of kilometers, which are well below the ion scale, on flux tubes moving equatorward/earthward during outward plasma sheet expansion. They coincide with upward field-aligned electron beams with energies of a few hundred eV. These electrons are most likely due to acceleration associated with a reconnection jet or high-energy ion beam-produced disturbances. The observations highlight coupling of multiscale processes in PSBL as a consequence of magnetotail reconnection.

20.
Nature ; 450(7170): 661-2, 2007 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-18046401

RESUMO

The occurrence of lightning in a planetary atmosphere enables chemical processes to take place that would not occur under standard temperatures and pressures. Although much evidence has been reported for lightning on Venus, some searches have been negative and the existence of lightning has remained controversial. A definitive detection would be the confirmation of electromagnetic, whistler-mode waves propagating from the atmosphere to the ionosphere. Here we report observations of Venus' ionosphere that reveal strong, circularly polarized, electromagnetic waves with frequencies near 100 Hz. The waves appear as bursts of radiation lasting 0.25 to 0.5 s, and have the expected properties of whistler-mode signals generated by lightning discharges in Venus' clouds.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA