Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Tipo de documento
País/Região como assunto
Ano de publicação
Intervalo de ano de publicação
1.
Environ Sci Technol ; 58(2): 1088-1096, 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38165830

RESUMO

Methane emissions from oil and gas operations exhibit skewed distributions. New technologies such as aerial-based leak detection surveys promise cost-effective detection of large emitters (greater than 10 kg/h). Recent policies such as the US Environmental Protection Agency (EPA) methane rule that allow the use of new technologies as part of leak detection and repair (LDAR) programs require a demonstration of equivalence with existing optical gas imaging (OGI) based LDAR programs. In this work, we illustrate the impact of emission size distribution on the equivalency condition between the OGI and site-wide survey technologies. Emission size distributions compiled from aerial measurements include significantly more emitters between 1 and 10 kg/h and lower average emission rates for large emitters compared to the emission distribution in the EPA rule. As a result, we find that equivalence may be achieved at lower site-wide survey frequencies when using technologies with detection thresholds below 10 kg/h, compared to the EPA rule. However, equivalence cannot be achieved with a detection threshold of 30 kg/h at any survey frequency, because most emitters across most US basins exhibit emission rates below 30 kg/h. We find that equivalence is a complex tradeoff among technology choice, design of LDAR programs, and survey frequency that can have more than one unique solution set.


Assuntos
Poluentes Atmosféricos , Metano , Estados Unidos , Metano/análise , Monitoramento Ambiental/métodos , United States Environmental Protection Agency , Gás Natural/análise , Poluentes Atmosféricos/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA