Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros

Base de dados
Tipo de documento
País/Região como assunto
Intervalo de ano de publicação
1.
Physiol Plant ; 168(3): 563-575, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31090072

RESUMO

In the French Alps, Soldanella alpina (S. alpina) grow under shade and sun conditions during the vegetation period. This species was investigated as a model for the dynamic acclimation of shade leaves to the sun under natural alpine conditions, in terms of photosynthesis and leaf anatomy. Photosynthetic activity in sun leaves was only slightly higher than in shade leaves. The leaf thickness, the stomatal density and the epidermal flavonoid content were markedly higher, and the chlorophyll/flavonoid ratio was significantly lower in sun than in shade leaves. Sun leaves also had a more oxidised plastoquinone pool, their PSII efficiency in light was higher and their non-photochemical quenching (NPQ) capacity was higher than that of shade leaves. Shade-sun transferred leaves increased their leaf thickness, stomatal density and epidermal flavonoid content, while their photosynthetic activity and chlorophyll/flavonoid ratio declined compared to shade leaves. Parameters indicating protection against high light and oxidative stress, such as NPQ and ascorbate peroxidase, increased in shade-sun transferred leaves and leaf mortality increased. We conclude that the dynamic acclimation of S. alpina leaves to high light under alpine conditions mainly concerns anatomical features and epidermal flavonoid acclimation, as well as an increase in antioxidative protection. However, this increase is not large enough to prevent damage under stress conditions and to replace damaged leaves.


Assuntos
Aclimatação , Fotossíntese , Primulaceae/fisiologia , Luz Solar , Clorofila , Estresse Oxidativo , Folhas de Planta
2.
Plant J ; 85(2): 219-28, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26663146

RESUMO

The plastid terminal oxidase PTOX is a plastohydroquinone:oxygen oxidoreductase that is important for carotenoid biosynthesis and plastid development. Its role in photosynthesis is controversially discussed. Under a number of abiotic stress conditions, the protein level of PTOX increases. PTOX is thought to act as a safety valve under high light protecting the photosynthetic apparatus against photodamage. However, transformants with high PTOX level were reported to suffer from photoinhibition. To analyze the effect of PTOX on the photosynthetic electron transport, tobacco expressing PTOX-1 from Chlamydomonas reinhardtii (Cr-PTOX1) was studied by chlorophyll fluorescence, thermoluminescence, P700 absorption kinetics and CO2 assimilation. Cr-PTOX1 was shown to compete very efficiently with the photosynthetic electron transport for PQH2 . High pressure liquid chromatography (HPLC) analysis confirmed that the PQ pool was highly oxidized in the transformant. Immunoblots showed that, in the wild-type, PTOX was associated with the thylakoid membrane only at a relatively alkaline pH value while it was detached from the membrane at neutral pH. We present a model proposing that PTOX associates with the membrane and oxidizes PQH2 only when the oxidation of PQH2 by the cytochrome b6 f complex is limiting forward electron transport due to a high proton gradient across the thylakoid membrane.


Assuntos
Chlamydomonas/enzimologia , Nicotiana/enzimologia , Nicotiana/genética , Oxirredutases/metabolismo , Fotossíntese/genética , Plastídeos/enzimologia , Chlamydomonas/genética , Transporte de Elétrons/genética , Oxirredutases/genética , Plantas Geneticamente Modificadas/enzimologia , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo
3.
J Exp Bot ; 67(9): 2603-15, 2016 04.
Artigo em Inglês | MEDLINE | ID: mdl-26970389

RESUMO

The issues of whether, where, and to what extent carbon isotopic fractionations occur during respiration affect interpretations of plant functions that are important to many disciplines across the natural sciences. Studies of carbon isotopic fractionation during dark respiration in C3 plants have repeatedly shown respired CO2 to be (13)C enriched relative to its bulk leaf sources and (13)C depleted relative to its bulk root sources. Furthermore, two studies showed respired CO2 to become progressively (13)C enriched during leaf ontogeny and (13)C depleted during root ontogeny in C3 legumes. As such data on C4 plants are scarce and contradictory, we investigated apparent respiratory fractionations of carbon and their possible causes in different organs of maize plants during early ontogeny. As in the C3 plants, leaf-respired CO2 was (13)C enriched whereas root-respired CO2 was (13)C depleted relative to their putative sources. In contrast to the findings for C3 plants, however, not only root- but also leaf-respired CO2 became more (13)C depleted during ontogeny. Leaf-respired CO2 was highly (13)C enriched just after light-dark transition but the enrichment rapidly decreased over time in darkness. We conclude that (i) although carbon isotopic fractionations in C4 maize and leguminous C3 crop roots are similar, increasing phosphoenolpyruvate-carboxylase activity during maize ontogeny could have produced the contrast between the progressive (13)C depletion of maize leaf-respired CO2 and (13)C enrichment of C3 leaf-respired CO2 over time, and (ii) in both maize and C3 leaves, highly (13)C enriched leaf-respired CO2 at light-to-dark transition and its rapid decrease during darkness, together with the observed decrease in leaf malate content, may be the result of a transient effect of light-enhanced dark respiration.


Assuntos
Dióxido de Carbono/metabolismo , Respiração Celular , Zea mays/crescimento & desenvolvimento , Isótopos de Carbono/metabolismo , Respiração Celular/fisiologia , Escuridão , Luz , Malatos/metabolismo , Folhas de Planta/metabolismo , Raízes de Plantas/metabolismo , Zea mays/metabolismo
4.
Plant Cell Environ ; 36(7): 1296-310, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23301628

RESUMO

Ranunculus glacialis leaves were tested for their plastid terminal oxidase (PTOX) content and electron flow to photorespiration and to alternative acceptors. In shade-leaves, the PTOX and NAD(P)H dehydrogenase (NDH) content were markedly lower than in sun-leaves. Carbon assimilation/light and Ci response curves were not different in sun- and shade-leaves, but photosynthetic capacity was the highest in sun-leaves. Based on calculation of the apparent specificity factor of ribulose 1.5-bisphosphate carboxylase/oxygenase (Rubisco), the magnitude of alternative electron flow unrelated to carboxylation and oxygenation of Rubisco correlated to the PTOX content in sun-, shade- and growth chamber-leaves. Similarly, fluorescence induction kinetics indicated more complete and more rapid reoxidation of the plastoquinone (PQ) pool in sun- than in shade-leaves. Blocking electron flow to assimilation, photorespiration and the Mehler reaction with appropriate inhibitors showed that sun-leaves were able to maintain higher electron flow and PQ oxidation. The results suggest that PTOX can act as a safety valve in R. glacialis leaves under conditions where incident photon flux density (PFD) exceeds the growth PFD and under conditions where the plastoquinone pool is highly reduced. Such conditions can occur frequently in alpine climates due to rapid light and temperature changes.


Assuntos
Oxirredutases/fisiologia , Proteínas de Plantas/fisiologia , Plastídeos/enzimologia , Ranunculus/enzimologia , Oxirredutases/metabolismo , Fotossíntese , Folhas de Planta/metabolismo , Folhas de Planta/fisiologia , Proteínas de Plantas/metabolismo , Plastídeos/metabolismo , Estresse Fisiológico , Luz Solar
5.
Planta ; 235(3): 603-14, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22002624

RESUMO

To investigate the role of plant mitochondria in drought tolerance, the response to water deprivation was compared between Nicotiana sylvestris wild type (WT) plants and the CMSII respiratory complex I mutant, which has low-efficient respiration and photosynthesis, high levels of amino acids and pyridine nucleotides, and increased antioxidant capacity. We show that the delayed decrease in relative water content after water withholding in CMSII, as compared to WT leaves, is due to a lower stomatal conductance. The stomatal index and the abscisic acid (ABA) content were unaffected in well-watered mutant leaves, but the ABA/stomatal conductance relation was altered during drought, indicating that specific factors interact with ABA signalling. Leaf hydraulic conductance was lower in mutant leaves when compared to WT leaves and the role of oxidative aquaporin gating in attaining a maximum stomatal conductance is discussed. In addition, differences in leaf metabolic status between the mutant and the WT might contribute to the low stomatal conductance, as reported for TCA cycle-deficient plants. After withholding watering, TCA cycle derived organic acids declined more in CMSII leaves than in the WT, and ATP content decreased only in the CMSII. Moreover, in contrast to the WT, total free amino acid levels declined whilst soluble protein content increased in CMSII leaves, suggesting an accelerated amino acid remobilisation. We propose that oxidative and metabolic disturbances resulting from remodelled respiration in the absence of Complex I activity could be involved in bringing about the lower stomatal and hydraulic conductances.


Assuntos
Secas , Complexo I de Transporte de Elétrons/deficiência , Complexo I de Transporte de Elétrons/metabolismo , Nicotiana/metabolismo , Nicotiana/fisiologia , Folhas de Planta/metabolismo , Folhas de Planta/fisiologia , Estômatos de Plantas/metabolismo , Estômatos de Plantas/fisiologia , Ácido Abscísico/metabolismo , Trifosfato de Adenosina/metabolismo , Complexo I de Transporte de Elétrons/genética , Regulação da Expressão Gênica de Plantas/genética , Regulação da Expressão Gênica de Plantas/fisiologia , Folhas de Planta/genética , Estômatos de Plantas/genética , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Plantas Geneticamente Modificadas/fisiologia , Nicotiana/genética
6.
Physiol Plant ; 143(3): 246-60, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21848651

RESUMO

The significance of total glutathione content was investigated in two alpine plant species with highly differing antioxidative scavenging capacity. Leaves of Soldanella alpina and Ranunculus glacialis incubated for 48 h in the presence of buthionine-sulfoximine had 50% lower glutathione contents when compared with leaves incubated in water. The low leaf glutathione content was not compensated for by activation of other components involved in antioxidative protection or electron consumption. However, leaves with normal but not with low glutathione content increased their ascorbate content during high light (HL) treatment (S. alpina) or catalase activity at low temperature (LT) (R. glacialis), suggesting that the mere decline of the leaf glutathione content does not act as a signal to ameliorate antioxidative protection by alternative mechanisms. CO(2)-saturated oxygen evolution was not affected in glutathione-depleted leaves at various temperatures, except at 35°C, thereby increasing the high temperature (HT) sensitivity of both alpine species. Leaves with low and normal glutathione content were similarly resistant to photoinhibition and photodamage during HL treatment at ambient temperature in the presence and absence of paraquat or at LT. However, HL- and HT-induced photoinhibition increased in leaves with low compared to leaves with normal glutathione content, mainly because the recovery after heat inactivation was retarded in glutathione-depleted leaves. Differences in the response of photosystem II (PSII) activity and CO(2)-saturated photosynthesis suggest that PSII is not the primary target during HL inactivation at HT. The results are discussed with respect to the role of antioxidative protection as a safety valve for temperature extremes to which plants are not acclimated.


Assuntos
Glutationa/metabolismo , Primulaceae/fisiologia , Ranunculus/fisiologia , Aclimatação , Antioxidantes/metabolismo , Ácido Ascórbico/metabolismo , Catalase/metabolismo , Temperatura Baixa , Glutationa/biossíntese , Luz , Fotossíntese/fisiologia , Complexo de Proteína do Fotossistema II/metabolismo , Folhas de Planta/química , Primulaceae/metabolismo , Ranunculus/metabolismo
7.
Plant Physiol Biochem ; 151: 10-20, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32179468

RESUMO

Soldanella alpina differing in leaf epidermal UV-A absorbance (DEA375), as measured with the Dualex, was investigated as a model alpine plant for the flavonoid (Flav) composition and concentration and for anatomical and pigment characteristics. In sun leaves, twenty-three flavones were characterised by their mass formula, their maximum absorption, their glycosylation, their methylation and dehydroxylation pattern. The flavones belonged to four subfamilies (tetra-hydroxy-flavones, penta-hydroxy-flavones, penta-hydroxy-methyl-flavones and tri-hydroxy-di-methoxy-flavones), abundant in sun and shade leaves. Their concentration was estimated by their absorption at 350 nm after HPLC separation. Sun leaves contained relatively higher contents of penta-hydroxy-methyl-flavones and shade leaves higher contents of tetra-hydroxy-flavones. The flavones were present mainly in vacuoles, all over the leaf. After shade-sun transfer, the content of most flavones increased, irrespective of the presence or absence of UV radiation. Highly significant correlations with the log-transformed DEA375 suggest that DEA375 can be readily applied to predict the flavone content of S. alpina leaves. Shade-sun transfer of leaves decreased the hydroxycinnamic acid (HCA) content, the mass-based chlorophyll (Chl) a+b content and the Chl/Carotenoid (Car) ratio but increased DEA375, and the Car content. Together with previously reported anatomical characteristics all these parameters correlated significantly with the DEA375. The Flav content is therefore correlated to most of the structural characteristics of leaf acclimation to light and this can be probed in situ by DEA375.


Assuntos
Aclimatação , Folhas de Planta/fisiologia , Primulaceae/fisiologia , Raios Ultravioleta , Carotenoides/análise , Clorofila/análise , Flavonoides/análise , Fotossíntese , Folhas de Planta/efeitos da radiação , Primulaceae/efeitos da radiação , Luz Solar
8.
Plant Cell Environ ; 32(1): 82-92, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19021881

RESUMO

Metabolic profiling using phosphorus nuclear magnetic resonance ((31)P-NMR) revealed that the leaves of different herbs and trees accumulate 2-C-methyl-D-erythritol 2,4-cyclodiphosphate (MEcDP), an intermediate of the methylerythritol 4-phosphate (MEP) pathway, during bright and hot days. In spinach (Spinacia oleracea L.) leaves, its accumulation closely depended on irradiance and temperature. MEcDP was the only (31)P-NMR-detected MEP pathway intermediate. It remained in chloroplasts and was a sink for phosphate. The accumulation of MEcDP suggested that its conversion rate into 4-hydroxy-3-methylbut-2-enyl diphosphate, catalysed by (E)-4-hydroxy-3-methylbut-2-enyl diphosphate synthase (GcpE), was limiting under oxidative stress. Indeed, O(2) and ROS produced by photosynthesis damage this O(2)-hypersensitive [4Fe-4S]-protein. Nevertheless, as isoprenoid synthesis was not inhibited, damages were supposed to be continuously repaired. On the contrary, in the presence of cadmium that reinforced MEcDP accumulation, the MEP pathway was blocked. In vitro studies showed that Cd(2+) does not react directly with fully assembled GcpE, but interferes with its reconstitution from recombinant GcpE apoprotein and prosthetic group. Our results suggest that MEcDP accumulation in leaves may originate from both GcpE sensitivity to oxidative environment and limitations of its repair. We propose a model wherein GcpE turnover represents a bottleneck of the MEP pathway in plant leaves simultaneously exposed to high irradiance and hot temperature.


Assuntos
Eritritol/análogos & derivados , Metaboloma , Folhas de Planta/metabolismo , Fosfatos Açúcares/metabolismo , Terpenos/metabolismo , Alquil e Aril Transferases/metabolismo , Cádmio/metabolismo , Eritritol/biossíntese , Eritritol/metabolismo , Temperatura Alta , Proteínas Ferro-Enxofre/metabolismo , Luz , Estresse Oxidativo , Proteínas de Plantas/metabolismo , Spinacia oleracea/enzimologia
9.
Plant Physiol Biochem ; 141: 1-19, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31125807

RESUMO

Salinity is one of the most severe environmental stresses limiting agricultural crop production worldwide. Photosynthesis is one of the main biochemical processes getting affected by such stress conditions. Here we investigated the stomatal and non-stomatal factors during photosynthesis in two Iranian melon genotypes "Ghobadlu" and "Suski-e-Sabz", as well as the "Galia" F1 cultivar, with an insight into better understanding the physiological mechanisms involved in the response of melon plants to increasing salinity. After plants were established in the greenhouse, they were supplied with nutrient solutions containing three salinity levels (0, 50, or 100 mM NaCl) for 15 and 30 days. With increasing salinity, almost all of the measured traits (e.g. stomatal conductance, transpiration rate, internal to ambient CO2 concentration ratio (Ci/Ca), Rubisco and nitrate reductase activity, carbon isotope discrimination (Δ13C), chlorophyll content, relative water content (RWC), etc.) significantly decreased after 15 and 30 days of treatments. In contrast, the overall mean of water use efficiency (intrinsic and instantaneous WUE), leaf abscisic acid (ABA) and flavonol contents, as well as osmotic potential (ΨS), all increased remarkably with increasing stress, across all genotypes. In addition, notable correlations were found between Δ13C and leaf gas exchange parameters as well as most of the measured traits (e.g. leaf area, biomass, RWC, ΨS, etc.), encouraging the possibility of using Δ13C as an important proxy for indirect selection of melon genotypes with higher photosynthetic capacity and higher salinity tolerance. The overall results suggest that both stomatal and non-stomatal limitations play an important role in reduced photosynthesis rate in melon genotypes studied under NaCl stress. This conclusion is supported by the concurrently increased resistance to CO2 diffusion, and lower Rubisco activity under NaCl treatments at the two sampling dates, and this was revealed by the appearance of lower Ci/Ca ratios and lower Δ13C in the leaves of salt-treated plants.


Assuntos
Isótopos de Carbono/química , Cucurbitaceae/fisiologia , Fotossíntese , Estômatos de Plantas/fisiologia , Salinidade , Clorofila/química , Cucurbitaceae/genética , Regulação para Baixo , Gases , Genes de Plantas , Genótipo , Irã (Geográfico) , Nitrato Redutase/química , Nitrogênio/química , Osmose , Estresse Oxidativo , Folhas de Planta/fisiologia , Polifenóis/química , Ribulose-Bifosfato Carboxilase/química , Tolerância ao Sal , Sais/química , Sementes/fisiologia , Cloreto de Sódio/química , Água
10.
Physiol Mol Biol Plants ; 14(3): 185-93, 2008 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23572886

RESUMO

Under high light intensity, low temperatures as well as heavy metals induce photoinhibition of PSII and oxidative stress in leaves. Since cold acclimation of leaves ameliorates their capacity of antioxidative defence, cross tolerance between cold-induced and heavy metal-induced photoinhibition was investigated in pea leaves grown at either 22 °C or 6 °C. The experimental conditions were chosen to induce a uniform level of short-term photoinhibition at low temperature or in the presence of CuSO4 or CdCl2 in leaves grown at 22 °C. Under all conditions photoinhibition of PSII was lower in cold-acclimated (6°C-grown) than in non-acclimated (22°C-grown) pea leaves. In darkness PSII was not affected by all treatments. Other parameters like catalase activity, chlorophyll content and metabolite contents were most sensitive to CuSO4, but less affected by CdCl2 and low temperature treatments. Strong oxidation of ascorbate and concomitant loss of catalase activity showed the enhanced oxidative stress in CuSO4-treated leaves. Generally, all measured parameters were less affected in cold-acclimated leaves than in non-acclimated leaves under all experimental conditions. Cold-acclimated pea leaves contained higher levels of ascorbate and particularly of glutathione and a higher capacity to keep the primary electron acceptor of PSII more oxidised. Incubation with heavy metals caused a nearly complete loss of reduced glutathione. It is suggested that reduced glutathione served as a source for phytochelatin synthesis. The extraordinarily high glutathione content in cold-acclimated pea leaves might therefore increase their ability to chelate heavy metals and thus to protect leaves from heavy-metal induced damage.

11.
Funct Plant Biol ; 42(7): 599-608, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32480704

RESUMO

Alpine plants like Soldanella alpina L. are subjected to high PAR and high UV radiation. Among the important photoprotective mechanisms that prevent photoinhibition under such conditions, passive optical barriers such as UV-absorbing compounds were investigated. In this study, temporal and spatial patterns of epidermal UV-A absorbance for S. alpina leaves were investigated with a combination of absorbance measurements at 375nm and imaging methods. UV-A absorbance was highest in plants acclimated to full sunlight and was markedly stable during the leaves' lifetime. UV-A absorbance was correlated with leaf structure (leaf mass per area ratio, density of epidermal cells and stomata) and biochemical features such as chlorophyll and carotenoid content and ratio, which are characteristics of light acclimation. UV-A-absorbing compounds were mainly localised in the epidermal vacuoles and trichomes. Leaves with low UV-A absorbance were significantly more photosensitive than leaves with high UV-A absorbance. However, the epidermal UV-A absorbance increased in low-absorbance leaves under full sunlight even in the absence of UV radiation. Results suggest that high epidermal UV-A absorbance protects S. alpina leaves from photoinactivation, which is especially important after snowmelt, when plants are suddenly exposed to full sunlight.

12.
Physiol Plant ; 88(4): 590-598, 1993 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28741781

RESUMO

Activity of catalase (EC 1.11.1.6) and variable fluorescence (F) were measured in sections of rye leaves (Secale cereale L. cv. Halo) that were exposed for 24 h to moderately high irradiance under osmotic or chemical stress conditions (paraquat, DCMU, mannitol, NaCl, CdCl2 , CuSO4 , Pb(NO3 )2 , KNO2 , or K2 SO3 ). Changes of the chlorophyll content and of enzyme activities related to peroxide metabolism, such as glycolate oxidase, glutathione reductase, and peroxidase, were assayed for comparison. In the presence of the herbicides paraquat and low DCMU concentrations that exert only partial inhibition of photosynthesis, as well as after most treatments with osmotic or chemical stress factors, catalase markedly declined due to a preferential photoinactivation. At higher DCMU levels catalase did not decline. At low KNO2 concentrations catalase activity was preferentially increased. In general, photoinactivation of catalase was accompanied by a decline of the F/Fm ratio, indicating photoinhibition of photosystem II, while other parameters were much more stable. Inasmuch as both catalase and the D1 reaction center protein of photosystem II have a rapid turnover in light, their steady state levels appear to decline whenever stress effects either excessively enhance deleterious oxidative conditions and degradation (e. g. Paraquat, low DCMU), or inhibit repair synthesis. Photoinactivation of catalase and of photosystem II represent specific and widely occurring early symptoms of incipient photodamage indicating stress conditions where the repair capacity is not sufficient. During prolonged exposures, e. g. to NaCl and CuSO4 , chlorophyll was bleached in light and the rate of its photodegradation increased in proportion as the catalase level had declined. The results suggest that the enhanced susceptibility of leaf tissues to photooxidative damage which is widely observed in stressed plants is related to the early loss of catalase.

13.
Physiol Plant ; 118(1): 96-104, 2003 May.
Artigo em Inglês | MEDLINE | ID: mdl-12702018

RESUMO

Leaves of the two cold-acclimated alpine plant species Ranunculus glacialis and Soldanella alpina and, for comparison, of the non-acclimated lowland species Pisum sativum were illuminated with high light intensity at low temperature. The light- and cold-induced changes of antioxidants and of the major carbon and phosphate metabolites were analysed to examine which metabolic pathways might be limiting in non-acclimated pea leaves and whether alpine plants are able to circumvent such limitation. During illumination at low temperature pea leaves accumulated high quantities of sucrose, glucose-6-phosphate, fructose-6-phosphate, mannose-6-phosphate and phosphoglycerate (PGA) whereas ATP/ADP-ratios decreased. Although the PGA content also increased in leaves of R. glacialis the other metabolites did not accumulate and ATP/ADP-ratios remained fairly constant in either alpine species. These data indicate a inorganic phosphate (Pi)-limitation in the chloroplasts of pea leaves but not in the alpine species. However, the total phosphate pool and the percentage of free Pi were highest in pea and did not change during illumination in cold. In contrast, free Pi contents declined markedly in R. glacialis leaves, suggesting that Pi is available for metabolism in this species. In S. alpina leaves contents of ascorbate and glutathione doubled in light and cold, while the contents of sugars did not increase. Obviously, S. alpina leaves can use assimilated carbon for ascorbate synthesis, rather than for the synthesis of sugars. A high capacity for ascorbate synthesis might prevent the accumulation of mannose-6-phosphate and Pi-limitation.

14.
Plant Sci ; 205-206: 20-8, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23498859

RESUMO

Photosynthetic responses to persisting mild water stress were compared between the wild type (WT) and the respiratory complex I mutant CMSII of Nicotiana sylvestris. In both genotypes, plants kept at 80% leaf-RWC (WT80 and CMSII80) had lower photosynthetic activity and stomatal/mesophyll conductances compared to well-watered controls. While the stomatal conductance and the chloroplastic CO2 molar ratio were similar in WT80 and CMSII80 leaves, net photosynthesis was higher in CMSII80. Carboxylation efficiency was lowest in WT80 leaves both, on the basis of the same internal and chloroplastic CO2 molar ratio. Photosynthetic and fluorescence parameters indicate that WT80 leaves were only affected in the presence of oxygen. Photorespiration, as estimated by electron flux to oxygen, increased slightly in CMSII80 and WT80 leaves in accordance with increased glycerate contents but maximum photorespiration at low chloroplastic CO2 was markedly lowest in WT80 leaves. This suggests that carbon assimilation of WT80 leaves is impaired by limited photorespiratory activity. The results are discussed with respect to a possible pre-acclimation of complex I deficient leaves in CMSII to drive photosynthesis and photorespiration at low CO2 partial pressure.


Assuntos
Dióxido de Carbono/metabolismo , Nicotiana/fisiologia , Fotossíntese/fisiologia , Complexo de Proteína do Fotossistema II/fisiologia , Água/fisiologia , Aclimatação , Carbono/metabolismo , Clorofila/metabolismo , Cloroplastos/metabolismo , Desidratação , Genótipo , Luz , Mitocôndrias/metabolismo , Mutação , Oxigênio/metabolismo , Folhas de Planta/genética , Folhas de Planta/fisiologia , Estômatos de Plantas , Transpiração Vegetal , Nicotiana/genética , Nicotiana/efeitos da radiação
15.
J Exp Bot ; 57(14): 3837-45, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-17030537

RESUMO

Very little is known about the primary carbon metabolism of the high mountain plant Ranunculus glacialis. It is a species with C3 photosynthesis, but with exceptionally high malate content in its leaves, the biological significance of which remains unclear. 13C/12C-isotope ratio mass spectrometry (IRMS) and 13C-nuclear magnetic resonance (NMR) labelling were used to study the carbon metabolism of R. glacialis, paying special attention to respiration. Although leaf dark respiration was high, the temperature response had a Q10 of 2, and the respiratory quotient (CO2 produced divided by O2 consumed) was nearly 1, indicating that the respiratory pool is comprised of carbohydrates. Malate, which may be a large carbon substrate, was not respired. However, when CO2 fixed by photosynthesis was labelled, little labelling of the CO2 subsequently respired in the dark was detected, indicating that: (i) most of the carbon recently assimilated during photosynthesis is not respired in the dark; and (ii) the carbon used for respiration originates from (unlabelled) reserves. This is the first demonstration of such a low metabolic coupling of assimilated and respired carbon in leaves. The biological significance of the uncoupling between assimilation and respiration is discussed.


Assuntos
Carbono/metabolismo , Ranunculus/metabolismo , Dióxido de Carbono/metabolismo , Transporte de Elétrons/fisiologia , Malatos/metabolismo , Ressonância Magnética Nuclear Biomolecular , Fotossíntese , Folhas de Planta/metabolismo , Folhas de Planta/fisiologia , Ranunculus/fisiologia , Temperatura
16.
J Exp Bot ; 54(384): 1075-83, 2003 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-12598577

RESUMO

In cold-hardened leaves (CHL) of winter rye (Secale cereale L.) much higher levels of malate were detected by (13)C-NMR than in non-hardened leaves (NHL). As this was not observed previously, malate metabolism of CHL was studied in more detail by biochemical assays. The activities of several enzymes of malate metabolism, NADP-malate dehydrogenase, NAD-malate dehydrogenase, phosphoenolpyruvate carboxylase, and NADP-malic enzyme, were also increased in CHL. Short exposures to low temperature of 1-3 d did not induce increases in the malate content or in the activities of enzymes of malate metabolism in mature NHL. The malate content and the enzyme activities declined within 1-2 d after a transfer of CHL from their growing temperature of 4 degrees C to 22 degrees C. The malate content was further increased when CHL were exposed to a higher light intensity at 4 degrees C. In CO(2)-free air the malate content of CHL strongly declined at 4 degrees C. Malate may thus serve as an additional carbon sink and as a CO(2)-store in CHL. It may further function as a vacuolar osmolyte balancing increased concentrations of soluble sugars previously observed in the cytosol of CHL. Malate was not used as a source of reductants when CHL were exposed to photo-oxidative stress by treatment with paraquat. However, the activities of enzymes of the oxidative pentose phosphate pathway were markedly increased in CHL and may serve as non-photosynthetic sources of NADPH and thus contribute to the previously observed superior capacity of CHL of winter rye to maintain their antioxidants in a reduced state in the presence of paraquat.


Assuntos
Malatos/metabolismo , Folhas de Planta/metabolismo , Secale/metabolismo , Aclimatação/efeitos dos fármacos , Aclimatação/efeitos da radiação , Dióxido de Carbono/metabolismo , Isótopos de Carbono/metabolismo , Temperatura Baixa , Citosol/enzimologia , Luz , Espectroscopia de Ressonância Magnética , Malato Desidrogenase/metabolismo , Malato Desidrogenase (NADP+) , Malatos/química , Oxirredução/efeitos dos fármacos , Oxirredução/efeitos da radiação , Paraquat/farmacologia , Fosfoenolpiruvato Carboxilase/metabolismo , Folhas de Planta/enzimologia , Secale/enzimologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA